Skip to main content
  • Published:

Higly fusogenic cationic liposomes transiently permeabilize the plasma membrane of HeLa cells

Abstract

Cationic liposomes can efficiently carry nucleic acids into mammalian cells. This property is tightly connected with their ability to fuse with negatively charged natural membranes (i.e. the plasma membrane and endosomal membrane). We used FRET to monitor and compare the efficiency of lipid mixing of two liposomal preparations — one of short-chained diC14-amidine and one of long-chained unsaturated DOTAP — with the plasma membrane of HeLa cells. The diC14-amidine liposomes displayed a much higher susceptibility to lipid mixing with the target membranes. They disrupted the membrane integrity of the HeLa cells, as detected using the propidium iodide permeabilization test. Morphological changes were transient and essentially did not affect the viability of the HeLa cells. The diC14-amidine liposomes were much more effective at either inducing lipid mixing or facilitating transfection.

Abbreviations

DiC14-amidine:

N-t-butyl-N’-tetradecylaminopropionamidine

DMPC:

dimyristoylphosphatidylcholine

DOTAP:

1,2-dioleoyl-3-trimethylammonium-propane

FRET:

fluorescence resonance energy transfer

MEMα:

minimum essential medium alpha

NBD-PE:

N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-3-phosphoetanolamine

PBS:

phosphate buffered saline

PC:

phosphatidylcholine

PMSF:

phenylmethylsulphonyl fluoride

PS:

phosphatidylserine

Rh-PE:

N-(lissamineTM rhodamine B sulfonyl)-1,2-dihexadecanoyl-sn-glycero-3-phospho-ethanolamine

SDS:

sodium dodecyl sulphate

References

  1. Friend, D.S., Papahadjopoulos, D. and Debs, R.J. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta 1278 (1996) 41–50.

    Article  PubMed  Google Scholar 

  2. Koltover, I., Salditt, T., Radler, J.O. and Säfinya, C.R. An inverted hexagonal phase of cationic liposomes-DNA complexes related to DNA release and delivery. Science 281 (1998) 78–81.

    Article  PubMed  CAS  Google Scholar 

  3. Zuhorn, I.S., Kalicharan, R. and Hoekstra, D. Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J. Biol. Chem. 277 (2002) 18021–18028.

    Article  PubMed  CAS  Google Scholar 

  4. Elouahabi, A., Thiry, M., Schiffmann, S., Fuks, R., Nguyen-Tran. H., Ruysschaert, J.-M. and Vandenbranden, M. Intracellular visualization of BrdU-labeled plasmid DNA/cationic liposome complexes. J. Histochem. Cytochem. 47 (1999) 1159–66.

    CAS  Google Scholar 

  5. Almofti, M.R., Harashima, H., Shinohara, Y., Almofti, A., Baba, Y. and Kiwada, H. Cationic liposome-mediated gene delivery: Biophysical study and mechanism of internalization. Arch. Biochem. Biophys. 410 (2003) 246–253.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, L. and MacDonald, R.C. Effects of microtubule-depolymerizing agents on the transfection of cultured vascular smooth muscle cells: enhanced expression with free drug and especially with drug-gene lipoplexes. Mol. Ther. 9 (2004) 729–737.

    Article  PubMed  CAS  Google Scholar 

  7. Elouahabi, A. and Ruysschaert, J.M. Formation and intracellular trafficking of lipoplexes and poliplexes. Mol. Ther. 11 (2005) 336–347.

    Article  PubMed  CAS  Google Scholar 

  8. Noguchi, A., Furunot, T., Kawaura, C. and Nakanishi, M. Membrane fusion plays an important role in gene transfection mediated by cationic liposomes. FEBS Lett. 433 (1998) 169–173.

    Article  PubMed  CAS  Google Scholar 

  9. Zelpathi, O. and Szoka, F.C. Jr. Mechanism of oligonucleotide release of cationic liposomes. Proc. Natl. Acad. Sci. USA 93 (1996) 11493–11498.

    Article  Google Scholar 

  10. Pantazatos, D.P., Pantazatos, S.P. and MacDonald, R.C. Bilayer mixing, fusion, and lysis following the interaction of populations of cationic and anionic phospholipid bilayer vesicles. J. Membr. Biol. 194 (1999) 129–139.

    Article  CAS  Google Scholar 

  11. El Ouahabi, A., Thiry, M., Pector, V., Fuks, R., Ruysschaert, J.-M. and Vandenbranden, M. The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids. FEBS Lett. 414 (1997) 187–92.

    Article  PubMed  Google Scholar 

  12. Wang, L. and MacDonald, R.C. New strategy for transfection: mixtures of medium-chain and long-chain cationic lipids synergistically enhance transfection. Gene Ther. 11 (2004) 1358–1362.

    Article  PubMed  CAS  Google Scholar 

  13. Cherezov, V., Qiu, H., Pector, V., Vandenbranden, M., Ruysschaert, J.-M. and Caffrey M. Biophysical and transfection studies of the diC(14)-amidine/DNA complex. Biophys. J. 82 (2002) 3105–3117.

    Article  PubMed  CAS  Google Scholar 

  14. Elouahabi, A., Flamand, V., Ozkan, S., Paulart, F., Vandenbranden, M., Goldman, M. and Ruysschaert, J.-M. Free cationic liposomes inhibit the inflammatory response to cationic lipid-DNA complex injected intravenously and enhance its transfection efficiency. Mol. Ther. 7 (2003) 81–88.

    Article  PubMed  CAS  Google Scholar 

  15. Jacquet, A., Vanderschrick, J.-F., Vandenbranden, M., Elouahabi, A., Magi, M., Garcia, L. and Ruysschaert, J.-M. Vaccination with the recombinant allergen ProDer p 1 complexed with the cationic lipid diC14-amidine prevents allergic responses to house dust mite. Mol. Ther. 11 (2005) 960–968.

    Article  PubMed  CAS  Google Scholar 

  16. Ruysschaert, J.M., El Ouahabi, A., Willeaume, V., Huez, G., Fuks, R., Vanderbranden, M. and Di Stefano, P. A novel cationic amphiphile for transfection of mammalian cells. Biochem. Biophys. Res. Commun. 203 (1994) 1622–1628.

    Article  PubMed  CAS  Google Scholar 

  17. Manno, S., Takakuwa, Y. and Mohandas, N. Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserineskeletal protein interactions modulate membrane stability. Proc. Natl. Acad. Sci. USA 99 (2002) 1943–1948.

    Article  PubMed  CAS  Google Scholar 

  18. Stebelska, K., Dubielecka, P.M. and Sikorski, A.F. The effect of PS content on the ability of natural membranes to fuse with positively charged liposomes and lipoplexes. J. Membr. Biol. 206 (2005) 203–214.

    Article  PubMed  CAS  Google Scholar 

  19. Rouser, G., Siakatos, A. and Fleischer, S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1 (1966) 85–86.

    Article  CAS  PubMed  Google Scholar 

  20. Struck, D.K., Hoekstra, D. and Pagano, R.E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20 (1981) 4093–4099.

    Article  PubMed  CAS  Google Scholar 

  21. Stebelska, K., Wyrozumska, P. and Sikorski, A.F. PS exposure increases the susceptibility of cells to fusion with DOTAP liposomes. Chem. Biol. Interact. 160 (2006) 165–174.

    Article  PubMed  CAS  Google Scholar 

  22. Tandia, B.-M., Lonez, C., Vandenbranden, M., Ruysschaert, J.-M. and Elouahabi A. Lipid mixing between lipoplexes and plasma lipoproteins is a major barrier for intravenous transfection mediated by cationic lipids. J. Biol. Chem. 280 (2005) 1225–12261.

    Google Scholar 

  23. Girao da Cruz, M.T., Simoes, S., Pires, P.P., Nir, S. and de Lima, M.C. Kinetic analysis of the initial steps involved in lipoplex-cell interactions: effect of various factors that influence transfection activity. Biochim. Biophys. Acta 1510 (2001) 136–151.

    Article  Google Scholar 

  24. Hägerstrand, H., Danieluk, M., Bobrowska-Hägerstrand, M., Pector, V., Ruysschaert, J-M., Kralj-Iglič, V. and Iglič, A. Liposomes composed of a double-chain cationic amphiphile (vectamidine) induce their own encapsulation into human erythrocytes. Biochim. Biophys. Acta 1421 (1999) 125–130.

    Article  PubMed  Google Scholar 

  25. Harding, C., Heuser, J. and Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97 (1983) 329–39.

    Article  PubMed  CAS  Google Scholar 

  26. Mounkes, L.C., Zhong, W., Cipres-Palacin, G., Heath, T.D. and Debs, R.J. Proteoglycans mediate cationic liposomes-DNA complex-based gene delivery in vitro and in vivo. J. Biol. Chem. 273 (1998) 26164–26170.

    Article  PubMed  CAS  Google Scholar 

  27. Sogabe, K., Roeser, N.F., Davis, J.A., Nurko, S., Venkatachalam, M.A. and Weinberg, J.M. Calcium dependence of integrity of the actin cytoskeleton of proximal tubule cell microvilli. Am. J. Physiol. 271 (1996) 292–303.

    Google Scholar 

  28. Konopka, K., Fallah B., Monzon-Duller, J., Overlid, N. and Duzgunes, N. Serum-resistant gene transfer to oral cancer cells by Metafectene and Genejammer: Application to HSV-tk/Ganciclovir-mediated cytotoxicity. Cell. Mol. Biol. Lett. 10 (2005) 455–470.

    PubMed  CAS  Google Scholar 

  29. Lam, A.M.I. and Cullis, P.T. Calcium enhances the transfection potency of plasmid DNA-cationic liposome complexes. Biochim. Biophys. Acta 1463 (2000) 279–290.

    Article  PubMed  CAS  Google Scholar 

  30. Zabner, J., Fasbender, A.J., Moninger, T., Poellinger, K.A. and Welsh, M.J. Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270 (1995) 18997–19007.

    Article  PubMed  CAS  Google Scholar 

  31. Pires, P., Simoes, S., Nir, S., Gaspar, R., Duzgunes, N. and Pedroso de Lima, M.C. sInteraction of cationic liposomes and their DNA complexes with monocytic leukemia cells. Biochim. Biophys. Acta 1418 (1999) 71–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stebelska, K., Wyrozumska, P., Gubernator, J. et al. Higly fusogenic cationic liposomes transiently permeabilize the plasma membrane of HeLa cells. Cell Mol Biol Lett 12, 39–50 (2007). https://doi.org/10.2478/s11658-006-0049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-006-0049-8

Key words