Skip to main content
  • Research Article
  • Published:

Accumulation of aquaporin-1 during hemolysininduced necrotic cell death

Abstract

Altered tissue water homeostasis may contribute to edema formation during various stresses including bacterial infection. We observed induction of aquaporin-1 (AQP1) during Staphylococcus aureus infection of cultured cells indicating a potential mechanism underlying altered water homeostasis during infection. To investigate mechanisms of AQP1 induction, we examined the effects of the S. aureus α-hemolysin on AQP1 abundance in Balb/c fibroblasts. Fibroblasts incubated with 30 μg/ml hemolysin exhibited a 5–10 fold increase in AQP1 protein within 4-6 hours of exposure. The use of multiple signaling cascade inhibitors failed to affect hemolysin-mediated accumulation of AQP1. However, immunoprecipitation revealed an initial accumulation of ubiquitinated AQP1 followed by a decrease to baseline levels after 4 hours. Immunofluorescence indicated that following hemolysin exposure, AQP1 was no longer on the plasma membrane, but was found in a population of submembrane vacuoles. AQP1 redistribution was further indicated by surface biotinylation experiments suggesting diminished AQP1 abundance on the plasma membrane as well as redistribution out of lipid raft fractions. Live cell confocal microscopy revealed that the pattern of cell volume change observed following hemolysin exposure was altered in cells in which AQP1 was silenced. We conclude that alpha-toxin alters proteasomal processing and leads to intracellular accumulation of AQP1, which may likely contribute to disrupted cell volume homeostasis in infection.

Abbreviations

AQP:

aquaporin

MAPK:

mitogen-activated protein kinase

siRNA:

small interfering RNA

References

  1. Preston, G.M. and Agre, P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 11110–11114.

    Article  PubMed  CAS  Google Scholar 

  2. King, L.S., Kozono, D. and Agre, P. From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell. Biol. 5 (2004) 687–698.

    Article  PubMed  CAS  Google Scholar 

  3. Preston, G.M., Carroll, T.P., Guggino, W.B. and Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256 (1992) 385–387.

    Article  PubMed  CAS  Google Scholar 

  4. King, L.S., Nielsen, S., Agre, P. and Brown, R.H. Decreased pulmonary vascular permeability in aquaporin-1-null humans. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 1059–1063.

    Article  PubMed  CAS  Google Scholar 

  5. Ma, T., Yang, B., Gillespie, A., Carlson, E.J., Epstein, C.J. and Verkman, A.S. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J. Biol. Chem. 273 (1998) 4296–4299.

    Article  PubMed  CAS  Google Scholar 

  6. King, L.S., Choi, M., Fernandez, P.C., Cartron, J.P. and Agre, P. Defective urinary-concentrating ability due to a complete deficiency of aquaporin-1. N. Engl. J. Med. 345 (2001) 175–179.

    Article  PubMed  CAS  Google Scholar 

  7. Saadoun, S, Papadopoulos, M.C., Hara-Chikuma, M. and Verkman, A.S. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434 (2005) 786–792.

    Article  PubMed  CAS  Google Scholar 

  8. Umenishi, F. and Schrier, R.W. Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicityresponsive element in the AQP1 gene. J. Biol. Chem. 278 (2003) 15765–15770.

    Article  PubMed  CAS  Google Scholar 

  9. Leitch, V., Agre, P. and King, L.S. Altered ubiquitination and stability of aquaporin-1 in hypertonic stress. Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 2894–2898.

    Article  PubMed  CAS  Google Scholar 

  10. Schwan, W.R. and Kopecko, D.J. Uptake of pathogenic intracellular bacteria into human and murine macrophages downregulates the eukaryotic 26S protease complex ATPase gene. Infect. Immun. 65 (1997) 4754–4760.

    PubMed  CAS  Google Scholar 

  11. Dubiel, W., Ferrell, K. and Rechsteiner, M. Peptide sequencing identifies MSS1, a modulator of HIV Tat-mediated transactivation, as subunit 7 of the 26 S protease. FEBS Lett. 323 (1993) 276–278.

    Article  PubMed  CAS  Google Scholar 

  12. Shibuya, H., Irie, K., Ninomiya-Tsuji, J., Goebl, M., Taniguchi, T. and Matsumoto, K. New human gene encoding a positive modulator of HIV Tatmediated transactivation. Nature 357 (1992) 700–702.

    Article  PubMed  CAS  Google Scholar 

  13. Ishikawa, Y., Yuan, Z., Inoue, N., Skowronski, M.T., Nakae, Y., Shono, M., Cho, G., Yasui, M., Agre, P. and Nielsen, S. Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland. Am. J. Physiol. Cell Physiol. 289 (2005) C1303–C1311.

    Article  PubMed  CAS  Google Scholar 

  14. Mazzone, A., Tietz, P., Jefferson, J., Pagano, R. and LaRusso, N.F. Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of rat hepatocytes. Hepatology 43 (2006) 287–296.

    Article  PubMed  CAS  Google Scholar 

  15. Zheng, X. and Bollinger Bollag, W. Aquaporin 3 co-locates with phospholipase d2 in caveolin-rich membrane microdomains and is downregulated upon keratinocyte differentiation. J. Invest. Dermatol. 121 (2003) 1487–1495.

    Article  PubMed  CAS  Google Scholar 

  16. Guttman, J.A., Samji, F.N., Li, Y., Deng, W., Lin, A. and Finlay, B.B. Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cell Microbiol. 9 (2006) 131–141.

    Article  PubMed  Google Scholar 

  17. Le Roy, C. and Wrana, J.L. Clathrin-and non-clathrin-mediated endocytic regulation of cell signaling. Nat. Rev. Mol. Cell. Biol. 6 (2005) 112–126.

    Article  PubMed  Google Scholar 

  18. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. and van der Goot, F.G. Caspase-1 activation of lipid metabolic pathways in response to bacterial poreforming toxins promotes cell survival. Cell 126 (2006) 1135–1145.

    Article  PubMed  CAS  Google Scholar 

  19. Padanilam, B.J. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am. J. Physiol. Renal. Physiol. 284 (2003) F608–F627.

    PubMed  CAS  Google Scholar 

  20. Szabo, C. Mechanisms of cell necrosis. Crit. Care Med. 33 (2005) S530–S534.

    Article  PubMed  Google Scholar 

  21. Broker, L.E., Kruyt, F.A. and Giaccone, G. Cell death independent of caspases: a review. Clin. Cancer Res. 11 (2005) 3155–3162.

    Article  PubMed  Google Scholar 

  22. Lang, F., Gulbins, E., Szabo, I., Lepple-Wienhues, A., Huber, S.M., Duranton, C., Lang, K.S., Lang, P.A. and Wieder, T. Cell volume and the regulation of apoptotic cell death. J. Mol. Recognit. 17 (2004) 473–480.

    Article  PubMed  CAS  Google Scholar 

  23. Bortner, C.D. and Cidlowski, J.A. A necessary role for cell shrinkage in apoptosis. Biochem. Pharmacol. 56 (1998) 1549–1559.

    Article  PubMed  CAS  Google Scholar 

  24. Bortner, C.D. and Cidlowski, J.A. The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Pflugers Arch. 448 (2004) 313–318.

    Article  PubMed  CAS  Google Scholar 

  25. Bortner, C.D. and Cidlowski, J.A. Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ. 9 (2002) 1307–1310.

    Article  PubMed  CAS  Google Scholar 

  26. Sidhaye, V., Hoffert, J.D. and King, L.S. cAMP regulation of AQP5: Distinct acute and chronic effects in lung epithelial cells. J. Biol. Chem. 280 (2004) 3590–3596.

    Article  PubMed  Google Scholar 

  27. Schmittgen, T.D., Zakrajsek, B.A., Mills, A.G., Gorn, V., Singer, M.J. and Reed, M.W. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285 (2000) 194–204.

    Article  PubMed  CAS  Google Scholar 

  28. Song, K.S., Li, S., Okamoto, T., Quilliam, L.A., Sargiacomo, M. and Lisanti, M.P. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271 (1996) 9690–9697.

    Article  PubMed  CAS  Google Scholar 

  29. Jablonski, E.M., Webb, A.N., McConnell, N.A., Riley, M.C. and Hughes Jr. F.M. Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease. Am. J. Phys.-Cell Phys. 286 (2004) C975–C985.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Landon S. King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweitzer, K., Li, E., Sidhaye, V. et al. Accumulation of aquaporin-1 during hemolysininduced necrotic cell death. Cell Mol Biol Lett 13, 195–211 (2008). https://doi.org/10.2478/s11658-007-0044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-007-0044-8

Key words