Skip to main content
  • Research Article
  • Published:

The induction of apoptosis by daunorubicin and idarubicin in human trisomic and diabetic fibroblasts

Abstract

In this study, we investigated apoptosis induced in human trisomic and diabetic fibroblasts by daunorubicin (DNR) and its derivative, idarubicin (IDA). The cells were incubated with DNR or IDA for 2 h and then cultured in a drug-free medium for a further 2–48 h. The apoptosis in the cultured cell lines was assessed by biochemical analysis. We found that both drugs induced a timedependent loss of mitochondrial membrane potential, and a significant increase in intracellular calcium and caspase-3 activity. Mitochondrial polarization and changes in the level of intracellular calcium were observed during the first 2–6 h after drug treatment. Caspase-3 activation occurred in the late stages of the apoptotic pathway. Our findings also demonstrated that idarubicin was more cytotoxic and more effective than daunorubicin in inducing apoptosis in trisomic and diabetic fibroblasts.

Abbreviations

DiOC6(3):

3,3′-dihexyloxycarbocyanin iodide

DNR:

daunorubicin

DS:

Down’s syndrome

IC50 :

the drug concentration that reduces cell growth to 50% of that of the control cells

IDA:

idarubicin

MTT:

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide

PBS:

phosphate buffered saline

Z-(DEVD-AMC):

Z-(Asp-Glu-Val-Asp)-7-amido-4-methylcoumarin

ΔΨm :

mitochondrial membrane potential

References

  1. Goebel, M. Oral idarubicin-an anthracycline derivative with unique properties. Ann. Hematol. 66 (1993) 33–43.

    Article  PubMed  CAS  Google Scholar 

  2. Berman, E. and McBride, M. Comparative cellular pharmacology of daunorubicin and idarubicin in human multidrug-resistant leukemia cells. Blood 79 (1992) 3267–3273.

    PubMed  CAS  Google Scholar 

  3. Mazue, G., Iatropoulos, M., Imondi, A., Castellino, S., Brughera, M., Podesta, A., Della Torre, P. and Moneta, D. Anthracyclines: A review of general and special toxicity studies. Int. J. Oncol. 7 (1995) 713–726.

    CAS  Google Scholar 

  4. Quillet-Mary, A., Mansat, V., Duchayne, E., Come, M.G., Allouche, M., Bailly, J.D., Bordier, C. and Laurent, G. Daunorubicin-induced internucleosomal DNA fragmentation in acute myeloid cell lines. Leukemia 10 (1996) 417–425.

    PubMed  CAS  Google Scholar 

  5. Masquelier, M., Zhou, Q.F., Gruber, A. and Vitols, S. Relationship between daunorubicin concentration and apoptosis induction in leukemic cells. Biochem. Pharmacol. 67 (2004) 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, J-S., Chai, M-Q., Chen, H., Zhao, S. and Song, J. Regulation of phospholipase D activity and ceramide production in daunorubicin-induced apoptosis in A-431 cells. Biochim. Biophys. Acta 1488 (2000) 219–232.

    PubMed  CAS  Google Scholar 

  7. Gervasoni, J.E., Hindenburg, A., Vezeridis, M., Shulze, S., Wanebo, H.J. and Mehta, S. An effective in vitro antitumor response against human pancreatic carcinoma with paclitaxel and daunorubicin by induction of both necrosis and apoptosis. Anticancer Res. 24 (2004) 2617–2626.

    PubMed  CAS  Google Scholar 

  8. Liu, F.T., Kelsey, S.M., Newland, A.C. and Jia, L. Generation of reactive oxygen species is not involved in idarubicin-induced apoptosis in human leukaemic cells. Br. J. Haematol. 115 (2001) 817–825.

    Article  PubMed  CAS  Google Scholar 

  9. Willmore, E., Errington, F., Tilby, M.J. and Austin, C.A. Formation and longevity of idarubicin-induced DNA topoisomerase II cleavable complexes in K562 human leukaemia cells. Biochem. Pharmacol. 63 (2002) 1807–1815.

    Article  PubMed  CAS  Google Scholar 

  10. Pytel, D., Wysocki, T. and Majsterek, J. Comparative study of DNA damage, cell cycle and apoptosis in human K562 and CCRF-CEM leukemia cells: Role of BCR/ABL in therapeutic resistance. Comp. Biochem. Physiol. Part C 144 (2006) 85–92.

    Google Scholar 

  11. Vermeulen, K., van Bockstaele, D.K. and Berneman, Z.N. Apoptosis: mechanisms and relevance in cancer. Ann. Hematol. 84 (2005) 627–639.

    Article  PubMed  CAS  Google Scholar 

  12. Jabs, T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 57 (1999) 231–245.

    Article  PubMed  CAS  Google Scholar 

  13. Robertson, P.P. and Harmon, J.S. Diabetes, glucose toxicity, and oxidative stress: A case of double jeopardy for the pancreatic islet β cell. Free Radic. Biol. Med. 41 (2006) 177–184.

    Article  PubMed  CAS  Google Scholar 

  14. Zatorska, A., Maszewski, J. and Jóźwiak, Z. Changes in GSH-antioxidant system induced by daunorubicin in human normal and diabetic fibroblasts. Acta Biochim. Pol. 50 (2003) 825–835.

    PubMed  CAS  Google Scholar 

  15. Kiyomiya, K., Matsuo, S. and Kurebe, M. Proteasome is a carrier to translocate doxorubicin from cytoplasm into nucleus. Life Sci. 62 (1998) 1853–1860.

    Article  PubMed  CAS  Google Scholar 

  16. Özgen, U., Savasan, S., Buck, S. and Ravindranath, Y. Comparison of DiOC6(3) uptake and annexin V labeling for quantification of apoptosis in leukemia cells and non-malignant T lymphocytes from children. Cytometry 42 (2000) 74–78.

    Article  PubMed  Google Scholar 

  17. Mulvaney, J.M., Zhang, T., Fewtrell, C. and Roberson, M.S. Calcium influx through L-type channels is required for selective activation of extracellular signal-regulated kinase by gonadotropin-releasing hormone. J. Biol. Chem. 274 (1999) 29796–29804.

    Article  PubMed  CAS  Google Scholar 

  18. Kania, K., Dragojew, S. and Jóźwiak, Z. Morphological and biochemical changes in human fibroblast lines induced by anthracyclines during apoptosis. Cell. Mol. Biol. Lett. 8 (2003) 121–126.

    PubMed  CAS  Google Scholar 

  19. Hasle, H. Pattern of malignant disorders in individuals with Down’s syndrome. Lancet Oncol. 2 (2001) 429–436.

    Article  PubMed  CAS  Google Scholar 

  20. Przybylska, M., Koceva-Chyła, A., Rózga, B. and Jóźwiak, Z. Cytotoxicity of daunorubicin in trisomic (+21) human fibroblasts: Relation to drug uptake and cell membrane fluidity. Cell Biol. Int. 25 (2001) 157–170.

    Article  PubMed  CAS  Google Scholar 

  21. Jędrzejczak, M., Koceva-Chyła, A., Gwoździński, K. and Jóźwiak, Z. Changes in plasma membrane fluidity of immortal rodent cells induced by anticancer drugs doxorubicin, aclarubicin and mitoxantrone. Cell Biol. Int. 23 (1999) 497–506.

    Article  PubMed  Google Scholar 

  22. Huigsloot, M., Tijdens, I.B., Mulder, G.J. and van de Water, B. Differential regulation of doxorubicin-induced mitochondrial dysfunction and apoptosis by Bcl-2 in mammary adenocarcinoma (MTLn3) cells. J. Biol. Chem. 277 (2002) 35869–35879.

    Article  PubMed  CAS  Google Scholar 

  23. Hanada, M., Noguchi, T. and Yamaoka, T. Amrubicin induces apoptosis in human tumor cells mediated by the activation of caspase-3/7 preceding a loss of mitochondrial membrane potential. Cancer Sci. 97 (2006) 1396–1403.

    Article  PubMed  CAS  Google Scholar 

  24. Ray, S.K., Fidan, M., Nowak, M.W., Wilford, G.G., Hogan, E.L. and Banik, N.L. Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC 12 cells. Brain Res. 852 (2000) 326–334.

    Article  PubMed  CAS  Google Scholar 

  25. McConkey, D.J. and Orrenius, S. The role of calcium in regulation of apoptosis. Biochem. Biophys. Res. Commun. 239 (1997) 357–366.

    Article  PubMed  CAS  Google Scholar 

  26. Mathiasen, I.S., Sergeev, I.N., Bastholm, L., Elling, F., Norman, A.W. and Jaattela, M. Calcium and calpain as key mediators of apoptosis-like death induced by vitamin D compounds in breast cancer cells. J. Biol. Chem. 277 (2002) 30738–30745.

    Article  PubMed  CAS  Google Scholar 

  27. Turnbull, K.J., Brown, B.L. and Dobson, P.R. Caspase-3-like activity is necessary but not sufficient for daunorubicin induced apoptosis in Jurkat human lymphoblastic leukemia cells. Leukemia 13 (1999) 1056–1061.

    Article  PubMed  CAS  Google Scholar 

  28. Bellarosa, D., Ciucci, A., Bullo, A., Nardelli, F., Manzini, S., Maggi, C.A. and Goso, C. Apoptotic events in a human ovarian cancer cell line exposed to anthracyclines. J. Pharmacol. Exp. Ther. 296 (2001) 276–283.

    PubMed  CAS  Google Scholar 

  29. Dartsch, D.C., Schaefer, A., Boldt, S., Kolch, W. and Marquardt, H. Comparison of anthracycline-induced death of human leukemia cells: Programmed cell death versus necrosis. Apoptosis 7 (2002) 537–548.

    Article  PubMed  CAS  Google Scholar 

  30. Anneren, G. and Epstein, C.J. Lipid peroxidation and superoxide dismutase-1 and glutathione peroxidase activities in trisomy 16 fetal mice and human trisomy 21 fibroblasts. Pediatr. Res. 21 (1987) 88–92.

    Article  PubMed  CAS  Google Scholar 

  31. Zatorska, A. and Jóźwiak, Z. Involvement of glutathione and glutathione related enzymes in the protection of normal and trisomic human fibroblasts against daunorubicin Cell. Biol. Int. 26 (2002) 383–391.

    Article  PubMed  CAS  Google Scholar 

  32. Pelsman, A., Hoyo-Vadillo, C., Gudasheva, T.A., Seredenin, S.B., Ostrovskaya, R.U. and Busciglio, J. GVS-111 prevents oxidative damage and apoptosis in normal and Down’s syndrome human cortical neurons. Int. J. Dev. Neurosci. 21 (2003) 117–124.

    Article  PubMed  CAS  Google Scholar 

  33. Anderson, A.J., Stoltzner, S., Lai, F., Su, J. and Nixon, R.A. Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, and effect of postmortem tissue archival on TUNEL. Neurobiol. Aging 21 (2000) 511–524.

    Article  PubMed  CAS  Google Scholar 

  34. Busciglio, J. and Yanker, B.A. Apotosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378 (1995) 776–779.

    Article  PubMed  CAS  Google Scholar 

  35. Paz-Miguel, J.E., Flores, R., Sanchez-Velasco, P., Ocejo-Vinyals, G., de Diego, J.E., de Rego, J. and Leyva-Cobian, F. Reactive oxygen intermediates during programmed cell death induced in the thymus of the Ts(1716)65Dn mouse, a murine model for human Down’s syndrome. J. Immunol. 163 (1999) 5399–5410.

    PubMed  CAS  Google Scholar 

  36. Gulesserian, T., Engidawork, E., Yoo, B.C., Cairns, N. and Lubec, G. Alteration of caspases and other apoptosis regulatory proteins in Down syndrome. J. Neural. Transm. 61 (2001) 163–179.

    Google Scholar 

  37. Mohr, S., Xi, X., Tang, J. and Kern, T.S. Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes 51 (2002) 1172–1179.

    Article  PubMed  CAS  Google Scholar 

  38. Cai, L., Li, W., Wang, G.W., Guo, L.P., Jiang, Y.C. and Kang, Y.J. Hyperglycemia-induced apoptosis in mouse myocardium-mitochondrial cytochrome c — mediated caspase-3 activation pathway. Diabetes 51 (2002) 1938–1948.

    Article  PubMed  CAS  Google Scholar 

  39. Schmeichel, A.M., Schmelzer, J.D. and Low, P.A. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52 (2003) 165–171.

    Article  PubMed  CAS  Google Scholar 

  40. Roat, E., Prada, N., Ferraresi, R., Giovenzana, Ch., Nasi, M., Troiano, L., Pinti, M., Nemes, E., Lugli, E., Biagioni, O., Mariotti, M., Ciacci, L., Consolo, U., Balli, F and Cossarizza, A. Mitochondrial alterations and tendency to apoptosis in peripheral blood cells from children with Down syndrome. FEBS Lett. 581 (2007) 521–525.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zofia Jóźwiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragojew, S., Marczak, A., Maszewski, J. et al. The induction of apoptosis by daunorubicin and idarubicin in human trisomic and diabetic fibroblasts. Cell Mol Biol Lett 13, 182–194 (2008). https://doi.org/10.2478/s11658-007-0045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-007-0045-7

Key words