Skip to main content
  • Review
  • Published:

Regulation of bacterial protease activity

Abstract

Proteases, also referred to as peptidases, are the enzymes that catalyse the hydrolysis of peptide bonds in polipeptides. A variety of biological functions and processes depend on their activity. Regardless of the organism’s complexity, peptidases are essential at every stage of life of every individual cell, since all protein molecules produced must be proteolytically processed and eventually recycled. Protease inhibitors play a crucial role in the required strict and multilevel control of the activity of proteases involved in processes conditioning both the physiological and pathophysiological functioning of an organism, as well as in host-pathogen interactions. This review describes the regulation of activity of bacterial proteases produced by dangerous human pathogens, focusing on the Staphylococcus genus.

Abbreviations

α2M:

alpha2-macroglobulin

aa:

amino acid

agr :

accesory gene regulator

AprA:

alkaline protease from Pseudomonas aeruginosa

aur :

aureolysin gene

Clp:

bacterial proteolytic system analogous to eukaryotic proteasome

ClpP:

proteolytic core of the Clp

DegP:

conserved heat shock protein

LasB:

elastase from P. aeruginosa

RBS:

ribosome binding site

sar :

staphylococcal accessory regulator

scp :

staphylococcal cysteine protease operon

SpeB:

streptopain, cysteine protease form Streptococcus pyogenes

Spi:

specific inhibitor of SpeB

spl :

serine protease-like operon

ssp :

staphylococcal serine protease operon

VVP:

Vibro vulnificus protease

References

  1. Potempa, J. and Pike, R.N. Bacterial peptidases. In: Concepts in Bacterial Virulence (Russell, W., Herwald, H. Eds.) Contrib Microbiol. Basel, Karger, 12 (2005) 132–180.

    Google Scholar 

  2. Yamaguchi, T., Hayashi, T., Takami, H., Nakasone, K., Ohnishi, M., Nakayama, K., Yamada, S., Komatsuzawa, H. and Sugai, M. Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol. Microbiol. 38 (2000) 694–705.

    Article  PubMed  CAS  Google Scholar 

  3. Yamaguchi, T., Hayashi, T., Takami, H., Ohnishi, M., Murata, T., Nakayama, K., Asakawa, K., Ohara, M., Komatsuzawa, H. and Sugai, M. Complete nucleotide sequence of a Staphylococcus aureus exfoliative toxin B plasmid and identification of a novel ADP-ribosyltransferase, EDIN-C. Infect. Immun. 69 (2001) 7760–7771.

    Article  PubMed  CAS  Google Scholar 

  4. Rice, K., Peralta, R., Bast, D., De Azavedo, J. and McGavin, M.J. Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect. Immun. 69 (2001) 159–169.

    Article  PubMed  CAS  Google Scholar 

  5. Massimi, I., Park, E., Rice, K., Muller-Esterl, W., Sauder, D. and McGavin, M.J. Identification of a novel maturation mechanism and restricted substrate specificity for the SspB cysteine protease of Staphylococcus aureus. J. Biol. Chem. 277 (2002) 41770–41777.

    Article  PubMed  CAS  Google Scholar 

  6. Rzychon, M., Sabat, A., Kosowska, K., Potempa, J. and Dubin, A. Staphostatins: an expanding new group of proteinase inhibitors with a unique specificity for the regulation of staphopains, Staphylococcus spp. cysteine proteinases. Mol. Microbiol. 49 (2003) 1051–1066.

    Article  PubMed  CAS  Google Scholar 

  7. Dubin, G., Krajewski, M., Popowicz, G., Stec-Niemczyk, J., Bochtler, M., Potempa, J., Dubin, A. and Holak, T.A. A novel class of cysteine protease inhibitors: solution structure of staphostatin A from Staphylococcus aureus. Biochemistry 42 (2003) 13449–13456.

    Article  PubMed  CAS  Google Scholar 

  8. Shaw, L., Golonka, E., Potempa, J. and Foster, S.J. The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150 (2004) 217–228.

    Article  PubMed  CAS  Google Scholar 

  9. Takeuchi, S., Kinoshita, T., Kaidoh, T. and Hashizume, N. Purification and characterization of protease produced by Staphylococcus aureus isolated from a diseased chcken. Vet. Microbiol. 67 (1999) 195–202.

    Article  PubMed  CAS  Google Scholar 

  10. Takeuchi, S., Matsunaga, K., Inubushi, S., Higuchi, H., Imaizumi, K. and Kaidoh, T. Structural gene and strain specificity of a novel cysteine protease produced by Staphylococcus aureus isolated from a diseased chicken. Vet. Microbiol. 89 (2002) 201–210.

    Article  PubMed  CAS  Google Scholar 

  11. Dubin, G., Wladyka, B., Stee-Niemczyk, J., Chmiel, D., Zdzalik, M., Dubin, A. and Potempa, J. The staphostatin family of cysteine protease inhibitors in Staphylococcus genus as an example of parallel evolution of protease and inhibitor specificity. Biol. Chem. 388 (2007) 227–235.

    Article  PubMed  CAS  Google Scholar 

  12. Dubin, G., Stec-Niemczyk, J., Dylag, T., Silbering, J., Dubin, A. and Potempa, J. Characterisation of a highly specific, endogenous inhibitor of cysteine protease from Staphylococcus epidermidis, a new member of the staphostatin family. Biol. Chem. 385 (2004) 543–546.

    Article  PubMed  CAS  Google Scholar 

  13. Potempa, J., Golonka, E., Filipek, R. and Shaw, L.N. Fighting an enemy within: cytoplasmic inhibitors of bacterial cysteine proteases. Mol. Microbiol. 57 (2005) 605–610.

    Article  PubMed  CAS  Google Scholar 

  14. Reed, S.B., Wesson, C.A., Liou, L.E., Trumble, W.R., Schlievert, P.M., Bohach, G.A. and Bayles, K.W. Molecular characterization of a novel Staphylococcus aureus serine protease operon. Infect. Immun. 69 (2001) 1521–1527.

    Article  PubMed  CAS  Google Scholar 

  15. Duong, F., Lazdunski, A., Cami, B. and Murgier, M. Sequence of a cluster of genes controlling synthesis and secretion of alkaline proteinase in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene 121 (1992) 47–54.

    Article  PubMed  CAS  Google Scholar 

  16. Kagawa, T.F., O’Toole, P.W. and Cooney, J.C. SpeB-Spi: a novel proteaseinhibitor pair from Streptococcus pyogenes. Mol. Microbiol. 57 (2005) 650–666.

    Article  PubMed  CAS  Google Scholar 

  17. Rzychon, M., Filipek, R., Sabat, A., Kosowska, K., Potempa, J., Dubin, A. and Bochtler, M. Staphostatins resemble lipocalins, not cystatins in fold. Protein Sci. 12 (2003) 2252–2256.

    Article  PubMed  CAS  Google Scholar 

  18. Recsei, P., Kreiswirth, B., O’Reilly, M., Schlievert, P., Gruss, A. and Novick, R.P. Regulation of exoprotein gene expression in Staphylococcus aureus by agr. Mol. Gen. Genet. 202 (1986) 58–61.

    Article  PubMed  CAS  Google Scholar 

  19. Bayer, M.G., Heinrichs, J.H. and Cheung, A.L. The molecular architecture of the sar locus in Staphylococcus aureus. J. Bacteriol. 178 (1996) 4563–4570.

    PubMed  CAS  Google Scholar 

  20. Novick, R.P., Projan, S.J., Kornblum, J., Ross, H.F., Ji, G., Kreiswirth, B., Vandenesch, F. and Moghazeh, S. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol. Gen. Genet. 248 (1995) 446–458.

    Article  PubMed  CAS  Google Scholar 

  21. Ji, G., Beavis, R.C. and Novick, R.P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92 (1995) 12055–12059.

    Article  PubMed  CAS  Google Scholar 

  22. Gambello, M.J., Kaye, S. and Iglewski, B.H. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect. Immun. 61 (1993) 1180–1184.

    PubMed  CAS  Google Scholar 

  23. Passador, L., Cook, J.M., Gambello, M.J., Rust, L. and Iglewski, B.H. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260 (1993) 1127–1130.

    Article  PubMed  CAS  Google Scholar 

  24. Heinrichs, J.H., Bayer, M.G. and Cheung, A.L. Characterization of the sar locus and its interactions with agr in Staphylococcus aureus. J. Bacteriol. 178 (1996) 418–423.

    PubMed  CAS  Google Scholar 

  25. Cheung, A.L., Bayer, M.G. and Heinrichs, J.H. sar genetic determinants necessary for transcription of RNAII and RNAIII in the agr locus of Staphylococcus aureus. J. Bacteriol. 179 (1997) 3963–3971.

    PubMed  CAS  Google Scholar 

  26. Chien, Y., Manna, A.C., Projan, S.J. and Cheung, A.L. SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation. J. Biol. Chem. 274 (1999) 37169–37176.

    Article  PubMed  CAS  Google Scholar 

  27. Chan, P.F. and Foster, S.J. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J. Bacteriol. 180 (1998) 6232–6241.

    PubMed  CAS  Google Scholar 

  28. McNamara, P.J., Milligan-Monroe, K.C., Khalili, S. and Proctor, R.A. Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J. Bacteriol. 182 (2000) 3197–3203.

    Article  PubMed  CAS  Google Scholar 

  29. Saïd-Salim, B., Dunman, P.M., McAleese, F.M., Macapagal, D., Murphy, E., McNamara, P.J., Arvidson, S., Foster, T.J., Projan, S.J. and Kreiswirth, B.N. Global regulation of Staphylococcus aureus genes by Rot. J. Bacteriol. 185 (2003) 610–619.

    Article  PubMed  Google Scholar 

  30. Horsburgh, M., Aish, J., White, I., Shaw, L., Lithgow, J. and Foster, S. SigmaB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J. Bacteriol. 184 (2002) 5457–5467.

    Article  PubMed  CAS  Google Scholar 

  31. Shaw, L.N., Golonka, E., Szmyd, G., Foster, S.J., Travis, J. and Potempa, J. Cytoplasmic control of premature activation of a secreted protease zymogen: deletion of staphostatin B (SspC) in Staphylococcus aureus 8325-4 yields a profound pleiotropic phenotype. J. Bacteriol. 187 (2005) 1751–1762.

    Article  PubMed  CAS  Google Scholar 

  32. Lowther, W.T. and Matthews, B.W. Structure and function of the methionine aminopeptidases. Biochim. Biophys. Acta 1477 (2000) 157–167.

    PubMed  CAS  Google Scholar 

  33. Tuteja, R. Type I signal peptidase: an overview. Arch. Biochem. Biophys. 441 (2005) 107–111.

    Article  PubMed  CAS  Google Scholar 

  34. Neurath, H. The versatility of proteolytic enzymes. J. Cell Biochem. 32 (1986) 35–49.

    Article  PubMed  CAS  Google Scholar 

  35. Vasantha, N., Thompson, L.D., Rhodes, C., Banner, C., Nagle, J. and Filpula, D. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159 (1984) 811–819.

    PubMed  CAS  Google Scholar 

  36. Zhu, X., Ohta, Y., Jordan, F. and Inouye, M. Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339 (1989) 483–484.

    Article  PubMed  CAS  Google Scholar 

  37. Sabat, A., Kosowska, K., Poulsen, K., Kasprowicz, A., Sekowska, A., van der Burg, B., Travis, J. and Potempa, J. Two allelic forms of the aureolysin gene (aur) within Staphylococcus aureus. Infect. Immun. 68 (2000) 973–976.

    Article  PubMed  CAS  Google Scholar 

  38. Miyoshi, S. and Shinoda, S. Microbal metalloproteases and pathogenesis. Microbes Infect. 2 (2000) 91–98.

    Article  PubMed  CAS  Google Scholar 

  39. Carmona, C. and Gray, G.L. Nucleotide sequence of the serine protease gene of Staphylococcus aureus, strain V8. Nucleic Acids Res. 15 (1987) 6757.

  40. Yoshikawa, K., Tsuzuki, H., Fujiwara, T., Nakamura, E., Iwamoto, H., Matsumoto, K., Shin, M., Yoshida, N. and Teraoka, H. Purification, characterization and gene cloning of a novel glutamic acid-specific endopeptidase from Staphylococcus aureus ATCC 12600. Biochim. Biophys. Acta 1121 (1992) 221–228.

    PubMed  CAS  Google Scholar 

  41. Beaudet, R., Saheb, S.A. and Drapeau, G.R. Structural heterogenicity of the protease isolated from several strains of Staphylococcus aureus. J. Biol. Chem. 249 (1974) 6468–6471.

    PubMed  CAS  Google Scholar 

  42. Drapeau, G.R. Role of a metalloprotease in activation of the precursor of staphylococcal protease. J. Bacteriol. 136 (1978) 607–613.

    PubMed  CAS  Google Scholar 

  43. Lindsay, J. and Foster, S. Interactive regulatory pathways control virulence determinant production and stability in response to the environment in Staphylococcus aureus. Mol. Gen. Genet. 262 (1999) 323–331.

    Article  PubMed  CAS  Google Scholar 

  44. Filipek, R., Szczepanowski, R., Sabat, A., Potempa, J. and Bochtler, M. Prostaphopain B structure: a comparison of proregion-mediated and staphostatin-mediated protease inhibition. Biochemistry 43 (2004) 14306–14315.

    Article  PubMed  CAS  Google Scholar 

  45. Popowicz, G.M., Dubin, G., Stec-Niemczyk, J., Czarny, A., Dubin, A., Potempa, J. and Holak, T.A. Functional and structural characterization of Spl proteases from Staphylococcus aureus. J. Mol. Biol. 358 (2006) 270–279.

    Article  PubMed  CAS  Google Scholar 

  46. Rasmussen, M. and Björck, L. Proteolysis and its regulation at the surface of Streptococcus pyogenes. Mol. Microbiol. 43 (2002) 537–544.

    Article  PubMed  CAS  Google Scholar 

  47. Kagawa, T.F., Cooney, J.C., Baker, H.M., McSweeney, S., Liu, M., Gubba, S., Musser, J.M. and Baker, E.N. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease. Proc. Natl. Acad. Sci. USA 97 (2000) 2235–2240.

    Article  PubMed  CAS  Google Scholar 

  48. Doran, J.D., Nomizu, M., Takebe, S., Ménard, R., Griffith, D. and Ziomek, E. Autocatalytic processing of the streptococcal cysteine protease zymogen: processing mechanism and characterization of the autoproteolytic cleavage sites. Eur. J. Biochem. 263 (1999) 145–151.

    Article  PubMed  CAS  Google Scholar 

  49. Braun, P., de Groot, A., Bitter W. and Tommassen, J. Secretion of elastolytic enzymes and their propeptides by Pseudomonas aeruginosa. J. Bacteriol. 173 (1998) 3467–3469.

    Google Scholar 

  50. Miyoshi, S., Wakae, H., Tomochika, K. and Shinoda, S. Functional domains of a zinc metalloprotease from Vibrio vulnificus. Infect. Immun. 179 (1997) 7606–7609.

    CAS  Google Scholar 

  51. Prokesová, L., Porwit-Bobr, Z., Baran, K., Potempa, J., Pospisil, M. and John, C. Effect of metalloproteinase from Staphylococcus aureus on in vitro stimulation of human lymphocytes. Immun. Lett. 27 (1991) 225–230.

    Article  Google Scholar 

  52. Potempa, J., Watorek, W. and Travis, J. The inactivation of human plasma a1-proteinase inhibitor by proteinases form Staphylococcus aureus. J. Biol. Chem. 261 (1986) 14330–14334.

    PubMed  CAS  Google Scholar 

  53. Potempa, J., Fedak, D., Dubin, A., Mast, A. and Travis, J. Proteolytic inactivation of α-1-antichymotrypsin. Sites of cleavage and generation of chemotactic activity. J. Biol. Chem. 266 (1991) 21482–21487.

    PubMed  CAS  Google Scholar 

  54. Amagai, M., Matsuyoshi, N., Wang, Z.H., Andl, C. and Stanley, J.R. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nature Med. 6 (2000) 1275–1277.

    Article  PubMed  CAS  Google Scholar 

  55. Arvidson, S. Extracellular enzymes. In: Gram-Positive Pathogens (Fischetti, V.A., Novick, R.P., Ferretti, J.J., Portnoy, D.A. and Rood, J.I. Eds.) Washington, D.C., USA, American Society for Microbiology, pp. 379–385.

  56. Potempa, J., Dubin, A., Korzus, G. and Travis, J. Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J. Biol. Chem. 263 (1988) 2664–2667.

    PubMed  CAS  Google Scholar 

  57. Imamura, T., Tanase, S., Szmyd, G., Kozik, A., Travis, J. and Potempa, J. Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. J. Exp. Med. 201 (2005) 1669–1676.

    Article  PubMed  CAS  Google Scholar 

  58. Rieneck, K., Rennenberg, J., Diamant, M., Gutschik, E. and Bendtzen, K. Molecular cloning and expression of novel Staphylococcus aureus antigen. Biochim. Biophys. Acta 44 (1997) 128–132.

    Google Scholar 

  59. Matsumoto, K. Role of bacterial proteases in pseudomonal and serratial keratitis. Biol. Chem. 385 (2004) 1007–1016.

    Article  PubMed  CAS  Google Scholar 

  60. Dubin, G., Popowicz, G., Krajewski, M., Potempa, J., Dubin, A. and Holak, T.A. 1H, 15N and 13C NMR resonance assignments of staphostatin A, a specific Staphylococcus aureus cysteine proteinase inhibitor. J. Biomol. NMR 28 (2004) 295–296.

    Article  PubMed  CAS  Google Scholar 

  61. Filipek, R., Rzychon, M., Oleksy, A., Gruca, M., Dubin, A., Potempa, J. and Bochtler, M. The staphostatin-staphopain complex: a forward binding inhibitor in complex with its target cysteine protease. J. Biol. Chem. 278 (2003) 40959–40966.

    Article  PubMed  CAS  Google Scholar 

  62. Dubin, G. Defense against own arms: staphylococcal cysteine proteases and their inhibitors. Acta Biochim. Polon. 50 (2003) 715–724.

    PubMed  CAS  Google Scholar 

  63. Wladyka, B., Puzia, K. and Dubin, A. Efficient co-expression of a recombinant staphopain A and its inhibitor staphostatin A in Escherichia coli. Biochem. J. 385 (2005) 181–187.

    Article  PubMed  CAS  Google Scholar 

  64. Herwald, H., Collin, M., Muller-Esterl, W. and Björck, L. Streptococcal cysteine proteinase releases kinins: a virulence mechanism. J. Exp. Med. 184 (1996) 665–673.

    Article  PubMed  CAS  Google Scholar 

  65. Schroeter, J.P., Kolodziej, S.J., Wagenknecht, T., Bretaudiere, J.P., Tapon-Bretaudiere, J., Strickland, D.K. and Stoops, J.K. Three-dimensional structures of the human alpha 2-macroglobulin-methylamine and chymotrypsin complexes. J. Struct. Biol. 109 (1992) 235–247.

    Article  PubMed  CAS  Google Scholar 

  66. Starkey, P.M. and Barrett, A.J. Inhibition by α-macroglobulin and other serum proteins. Biochem. J. 131 (1973) 823–831.

    PubMed  CAS  Google Scholar 

  67. Sottrup-Jensen, L., Sand, O., Kristensen, L. and Fey, G.H. The α-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian a-macroglobulins. J. Biol. Chem. 264 (1989) 15781–15789.

    PubMed  CAS  Google Scholar 

  68. Maeda, S., Molla, T., Oda, A. and Katsuki, T. Internalization of serratial protease into cells as an enzyme-inhibitor complex with α2-macroglobulin and regeneration of protease activity and cytotoxicity. J. Biol. Chem. 262 (1987) 10946–10950.

    PubMed  CAS  Google Scholar 

  69. Nyberg, P., Rasmussen, M. and Björck, L. αa2-macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobal peptide LL-37. J. Biol. Chem. 279 (2004) 52820–52823.

    Article  PubMed  CAS  Google Scholar 

  70. Giles, N.M., Watts, A.B., Giles, G.I., Fry, F.H., Littlechild, J.A. and Jacob, C. Metal and redox modulation of cysteine protein function. Chem. Biol. 10 (200) 3677–1093.

  71. Wasylewski, Z., Stryjewski, W., Wasniowska, A., Potempa, J. and Baran, K. Effect of calcium binding on conformational changes of staphylococcal metalloproteinase measured by means of intrinsic protein fluorescence. Biochim. Biophys. Acta 871 (1986) 177–181.

    PubMed  CAS  Google Scholar 

  72. Potempa, J., Porwit-Bobr, Z. and Travis, J. Stabilization vs. degradation of Staphylococcus aureus metalloproteinase. Biochim. Biophys. Acta 993 (1989) 301–304.

    PubMed  CAS  Google Scholar 

  73. Gottesman, S. Regulation by proteolysis: developmental switches. Curr. Opin. Microbiol. 2 (1999) 142–147.

    Article  PubMed  CAS  Google Scholar 

  74. Hoskins, J.R., Singh, A.K., Maurizi, M.R. and Wickner, S. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc. Natl. Acad. Sci. USA 97 (2000) 8892–8897.

    Article  PubMed  CAS  Google Scholar 

  75. Frees, D., Qazi, S.N., Hill, P.J. and Ingmer, H. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol. Microbiol. 48 (2003) 1565–1578.

    Article  PubMed  CAS  Google Scholar 

  76. Frees, D., Sørensen, K. and Ingmer, H. Global virulence regulation in Staphylococcus aureus: pinpointing the roles of ClpP and ClpX in the sar/agr regulatory network. Infect. Immun. 73 (2005) 8100–8108.

    Article  PubMed  CAS  Google Scholar 

  77. Butler, S.M., Festa, R.A., Pearce, M.J. and Darwin, K.H. Selfcompartmentalized bacterial proteases and pathogenesis. Mol. Microbiol. 60 (2006) 553–562.

    Article  PubMed  CAS  Google Scholar 

  78. Brötz-Oesterhelt, H., Beyer, D., Kroll, H.P., Endermann, R., Ladel, C., Schroeder, W., Hinzen, B., Raddatz, S., Paulsen, H., Henninger, K., Bandow, J.E., Sahl, H.G. and Labischinski, H. Disregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat. Med. 11 (2005) 1082–1087.

    Article  PubMed  Google Scholar 

  79. Spiess, C., Beil, A. and Ehrmann, M. A temperature-dependent switch from chaperon to protease in widely conserved heat shock protein. Cell 97 (1999) 339–347.

    Article  PubMed  CAS  Google Scholar 

  80. Clausen, T., Southan, C. and Ehrmann, M. The HrtA family of proteases: implications for protein coposition and cell fate. Mol. Cell 10 (2002) 443–455.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedykt WÅ‚adyka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Władyka, B., Pustelny, K. Regulation of bacterial protease activity. Cell Mol Biol Lett 13, 212–229 (2008). https://doi.org/10.2478/s11658-007-0048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-007-0048-4

Keywords