Skip to main content
  • Research Article
  • Published:

On the role of ball and chain interactions in recovery from the inactivation of the shaker potassium channel

Abstract

We describe a new factor in the recovery from inactivation in the ball and chain model. We propose a model in which the tension from the chain may help pull the ball away from its binding site, reducing the duration of the inactivation period. A corresponding model was built and analysed.

Abbreviations

kT:

Boltzmann constant times environment temperature

RHS:

right-hand side

References

  1. Armstrong, C.M. and Bezanilla F. Inactivation of the sodium channel, part II-gating current experiments. J. Gen. Physiol. 70 (1977) 567–590.

    Article  PubMed  CAS  Google Scholar 

  2. Goldin, A.L. Mechanisms of sodium channel inactivation. Curr. Op. Neurobiol. 13 (2003) 284–290.

    Article  PubMed  CAS  Google Scholar 

  3. Hoshi T., Zagotta, W.N. and Aldrich, R.W. Biophysical and molecular mechanisms of shaker potassium channel inactivation. Science 250 (1990) 533–538.

    Article  PubMed  CAS  Google Scholar 

  4. Zagotta, W.N., Hoshi, T. and Aldrich, R.W. Restoration of inactivation in mutants of shaker potassium channels by a peptide derived from ShB. Science 250 (1990) 568–571.

    Article  PubMed  CAS  Google Scholar 

  5. Murrell-Lagnado, R.D. and Aldrich, R.W. Interactions of amino terminal domains of shaker K channels with a pore blocking site studied with synthetic peptides. J. Gen. Physiol. 102 (1993) 949–975.

    Article  PubMed  CAS  Google Scholar 

  6. Demo, S.D. and Yellen, G. The inactivation gate of the shaker K+ channel behaves like an open-channel blocker. Neuron 7 (1991) 743–753.

    Article  PubMed  CAS  Google Scholar 

  7. Gomez-Lagunas, F. and Armstrong, C.M. The Relation between ion permeation and recovery from inactivation of ShakerB K+ channels. Biophys. J. 67 (1994) 1806–1815.

    PubMed  CAS  Google Scholar 

  8. Haak, R.A., Kleinhans, F.W. and Ochs, S. The viscosity of mammalian nerve axoplasm measured by electron spin resonance. J. Physiol. 263 (1976) 115–137.

    PubMed  CAS  Google Scholar 

  9. Collins, R.M.W. Physics of potassium ion channel inactivation in neurons. Am. J. Undergr. Res. 3 (2004) 27–35.

    Google Scholar 

  10. Małysiak, K., Borys, P. and Grzywna, Z.J. On the ball and chain model by simple and hyperbolic diffusion-an analytical approach. Acta Phys. Pol. B 38 (2007) 1865–1879.

    Google Scholar 

  11. Krasilnikov, O.V., Rodrigues, C.G. and Bezrukov, S.M. Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Phys. Rev. Lett. 97 (2006) 018301-1–018301-4, DOI:10.1103/PhysRevLett.97.018301.

    Article  CAS  Google Scholar 

  12. Rubinstein, M. and Colby, R.H. Polymer Physics, Oxford University Press, New York, 2003, 49–331.

    Google Scholar 

  13. Gedde, U.W. Polymer Physics, Kuwler Academic Publishers, Dordrecht, 2001, 107–108.

    Google Scholar 

  14. Ermak, D.L. and McCammon, J.A. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69 (1978) 1352–1360.

    Article  CAS  Google Scholar 

  15. Dickinson, E. Brownian dynamics with hydrodynamic interactions: The application to protein diffusional problems. Chem. Soc. Rev. 14 (1985) 421–443.

    Article  CAS  Google Scholar 

  16. Liebovitch, L.S., Selector, L.Y. and Kline, R.P. Statistical properties predicted by the ball and chain model of channel inactivation. Biophys. J. 63 (1992) 1579–1585.

    PubMed  CAS  Google Scholar 

  17. Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H. and Zehfus, M.H. Hydrophobicity of amino acid residues in globular proteins. Science 229 (1985) 834–838.

    Article  PubMed  CAS  Google Scholar 

  18. Chung, S.H., Allen, T.W., Hoyles, M. and Kuyucak, S. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys. J. 77 (1999) 2517–2533.

    Article  PubMed  CAS  Google Scholar 

  19. Buscaglia, M., Lapidus, L.J., Eaton, W.A. and Hofrichter, J. Effects of denaturants on the dynamics of loop formation in polypeptides. Biophys. J. 91 (2006) 276–288.

    Article  PubMed  CAS  Google Scholar 

  20. Marko, J.F. and Siggia, E.D. Stretching DNA. Macromolecules 28 (1995) 8759–8770.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Borys.

Additional information

Paper authored by participants of the international conference: International Workshop on Ionic Channels, Szczyrk, Poland, May 27 – June 01, 2007. Publication cost was covered by the organisers of this meeting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borys, P., Grzywna, Z.J. On the role of ball and chain interactions in recovery from the inactivation of the shaker potassium channel. Cell Mol Biol Lett 13, 526–534 (2008). https://doi.org/10.2478/s11658-008-0018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-008-0018-5

Key words