Skip to main content
  • Research Article
  • Published:

In Vitro evaluation of the cytotoxic and anti-proliferative properties of resveratrol and several of its analogs

Abstract

Resveratrol (RES), a component of red wine, possesses anti-inflammatory properties. The studies described in the present work were aimed at evaluating the potential for RES and related stilbene analogs (piceatannol, PIC; pterostilbene, TPS; trans-stilbene, TS; and trans-stilbene oxide, TSO) to exhibit toxicity towards RAW 264.7 mouse macrophages. The effect of TS, TSO, RES and TPS on RAW 264.7 macrophage viability was determined by two standard methods: (a) the MTT assay and (b) the trypan blue dye exclusion test. Whereas macrophages were more sensitive to PIC (LC50 trypan 1.3 μM) and to TPS (LC50 trypan 4.0 μM and LC50 MTT 8.3 μM) than to RES (LC50 trypan 8.9 μM and LC50 MTT 29.0 μM), they were relatively resistant to TSO (LC50 trypan 61.0 μM and LC50 MTT > 100 μM) and to TS (LC50 trypan ≥ 5.0 μM and LC50 MTT ≥ 5.0 μM). The ability of selected stilbenes (RES, TPS and PIC) to exhibit growth inhibitory effects was also examined. Although RES and TPS were observed to inhibit cell proliferation in macrophages (IC50 ≤ 25 μM), these cells were resistant to growth inhibition by PIC (IC50 ≥ 50 μM). The data obtained in the present analysis demonstrate that substituted stilbene compounds such as RES have the capacity to exhibit cytotoxic and anti-proliferative activities in macrophages.

Abbreviations

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PIC:

trans-piceatannol

RES:

trans-resveratrol

TPS:

trans-pterostilbene

TS:

trans-stilbene

TSO:

trans-stilbene oxide

References

  1. Howard, A., Chopra, M., Thurnham, D., Strain, J., Fuhrman, B. and Aviram, M. Red wine consumption and inhibition of LDL oxidation: What are the important components? Med. Hypotheses 59 (2002) 101–104.

    Article  PubMed  CAS  Google Scholar 

  2. Ray, P.S., Maulik, G., Cordis, G.A., Bertelli, A.A., Bertelli, A. and Das, D.K. The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free. Radic. Biol. Med. 27 (1999) 160–169.

    Article  PubMed  CAS  Google Scholar 

  3. Hung, L.M., Chen, J.K., Huang, S.S., Lee, R.S. and Su, M.J. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc. Res. 47 (2000) 549–555.

    Article  PubMed  CAS  Google Scholar 

  4. Mokni, M., Limam, F., Elkahoui, S., Amri, M. and Aouani, E. Strong cardioprotective effect of resveratrol, a red wine polyphenol, on isolated rat hearts after ischemia/reperfusion injury. Arch. Biochem. Biophys. 457 (2007) 1–6.

    Article  PubMed  CAS  Google Scholar 

  5. Constant, J. Alcohol, ischemic heart disease, and the French paradox. Coron. Artery Dis. 8 (1997) 645–649.

    Article  PubMed  CAS  Google Scholar 

  6. Jang, D.S., Kang, B.S., Ryu, S.Y., Chang, I.M., Min, K.R. and Kim, Y. Inhibitory effects of resveratrol analogs on unopsonized zymosan-induced oxygen radical production. Biochem. Pharmacol. 57 (1999) 705–712.

    Article  PubMed  CAS  Google Scholar 

  7. Cao, Z. and Li, Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur. J. Pharmacol. 489 (2004) 39–48.

    Article  PubMed  CAS  Google Scholar 

  8. Murias, M., Handler, N., Erker, T., Pleban, K., Ecker, G., Saiko, P., Szekeres, T. and Jager, W. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure-activity relationship. Bioorg. Med. Chem. 12 (2004) 5571–5578.

    Article  PubMed  CAS  Google Scholar 

  9. Pervaiz, S. Resveratrol: from grapevines to mammalian biology. FASEB J. 17 (2003) 1975–1985.

    Article  PubMed  CAS  Google Scholar 

  10. Jeandet, P., Douillet-Breuil, A.C., Bessis, R., Debord, S., Sbaghi, M. and Adrian, M. Phytoalexins from the vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 50 (2002) 2731–2741.

    Article  PubMed  CAS  Google Scholar 

  11. Murias, M., Jager, W., Handler, N., Erker, T., Horvath, Z., Szekeres, T., Nohl, H. and Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem. Pharmacol. 69 (2005) 903–912.

    Article  PubMed  CAS  Google Scholar 

  12. Kageura, T., Matsuda, H., Morikawa, T., Toguchida, I., Harima, S., Oda, M. and Yoshikawa, M. Inhibitors from rhubarb on lipopolysaccharide-induced nitric oxide production in macrophages: structural requirements of stilbenes for the activity. Bioorg. Med. Chem. 9 (2001) 1887–1893.

    Article  PubMed  CAS  Google Scholar 

  13. Rimando, A.M., Cuendet, M., Desmarchelier, C., Mehta, R.G., Pezzuto, J.M. and Duke, S.O. Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J. Agric. Food Chem. 50 (2002) 3453–3457.

    Article  PubMed  CAS  Google Scholar 

  14. Tolomeo, M., Grimaudo, S., Di Cristina, A., Roberti, M., Pizzirani, D., Meli, M., Dusonchet, L., Gebbia, N., Abbadessa, V., Crosta, L., Barucchello, R., Grisolia, G., Invidiata, F. and Simoni, D. Pterostilbene and 3′-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int. J. Biochem. Cell Biol. 37 (2005) 1709–1726.

    Article  PubMed  CAS  Google Scholar 

  15. Wolter, F., Clausnitzer, A., Akoglu, B. and Stein, J. Piceatannol, a natural analog of resveratrol, inhibits progression through the S phase of the cell cycle in colorectal cancer cell lines. J. Nutr. 132 (2002) 298–302.

    PubMed  CAS  Google Scholar 

  16. Larrosa, M., Tomas-Barberan, F.A. and Espin, JC. Grape polyphenol resveratrol and the related molecule 4-hydroxystilbene induce growth inhibition, apoptosis, S-phase arrest, and upregulation of cyclins A, E, and B1 in human SK-Mel-28 melanoma cells. J. Agric. Food Chem. 51 (2003) 4576–4584.

    Article  PubMed  CAS  Google Scholar 

  17. Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H. G., Daniel, P. T. and Henze, G. Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia 15 (2001) 1735–1742.

    PubMed  CAS  Google Scholar 

  18. Radkar, V., Hardej, D., Lau-Cam, C. and Billack, B. Evaluation of resveratrol and piceatannol cytotoxicity in macrophages, T cells, and skin cells. Arh. Hig. Rada. Toksikol. 58 (2007) 293–304.

    PubMed  CAS  Google Scholar 

  19. Crowell, J.A., Korytko, P.J., Morrissey, R.L., Booth, T.D. and Levine, B.S. Resveratrol-associated renal toxicity. Toxicol. Sci. 82 (2004) 614–619.

    Article  PubMed  CAS  Google Scholar 

  20. Ferry-Dumazet, H., Garnier, O., Mamani-Matsuda, M., Vercauteren, J., Belloc, F., Billiard, C., Dupouy, M., Thiolat, D., Kolb, J. P., Marit, G., Reiffers, J. and Mossalayi, M. D. Resveratrol inhibits the growth and induces the apoptosis of both normal and leukemic hematopoietic cells. Carcinogenesis 23 (2002) 1327–1333.

    Article  PubMed  CAS  Google Scholar 

  21. Azmi, A.S., Bhat, S.H., Hanif, S. and Hadi, S.M. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett. 580 (2006) 533–538.

    Article  PubMed  CAS  Google Scholar 

  22. Hebbar, V., Shen, G., Hu, R., Kim, B.R., Chen, C., Korytko, P.J., Crowell, J.A., Levine, B.S. and Kong, A.N. Toxicogenomics of resveratrol in rat liver. Life Sci. 76 (2005) 2299–2314.

    Article  PubMed  CAS  Google Scholar 

  23. Schmitt, E., Lehmann, L., Metzler, M. and Stopper, H. Hormonal and genotoxic activity of resveratrol. Toxicol. Lett. 136 (2002) 133–142.

    Article  PubMed  CAS  Google Scholar 

  24. Djoko, B., Chiou, R.Y., Shee, J.J. and Liu, Y.W. Characterization of immunological activities of peanut stilbenoids, arachidin-1, piceatannol, and resveratrol on lipopolysaccharide-induced inflammation of RAW 264.7 macrophages. J. Agric. Food Chem. 55 (2007) 2376–2383.

    Article  PubMed  CAS  Google Scholar 

  25. Sanoh, S., Kitamura, S., Sugihara, K. and Ohta, S. Cytochrome P450 1A1/2 mediated metabolism of trans-stilbene in rats and humans. Biol. Pharm. Bull. 25 (2002) 397–400.

    Article  PubMed  CAS  Google Scholar 

  26. Sanoh, S., Kitamura, S., Sugihara, K., Kohta, R., Ohta, S. and Watanabe, H. Effects of stilbene and related compounds on reproductive organs in B6C3F1/Crj mouse. J. Health Sci. 52 (2006) 613–622.

    Article  CAS  Google Scholar 

  27. Grohs, B.M. and Kunz, B. Fungitoxicity of chemical analogs with heartwood toxins. Curr. Microbiol. 37 (1998) 67–69.

    Article  PubMed  CAS  Google Scholar 

  28. Meijer, J., DePierre, J.W., Wang, P.P. and Guengerich, F.P. Purification and characterization of the major microsomal cytochrome P-450 form induced by trans-stilbene oxide in rat liver. Biochim. Biophys. Acta. 789 (1984) 1–9.

    PubMed  CAS  Google Scholar 

  29. Bucker, M., Golan, M., Schmassmann, H.U., Glatt, H.R., Stasiecki, P. and Oesch, F. The epoxide hydratase inducer trans-stilbene oxide shifts the metabolic epoxidation of benzo(a)pyrene from the bay-to the K-region and reduces its mutagenicity. Mol. Pharmacol. 16 (1979) 656–666.

    PubMed  CAS  Google Scholar 

  30. Williams, J.B., Wang, R., Lu, A.Y. and Pickett, C.B. Rat liver DT-diaphorase: Regulation of functional mRNA levels by 3-methylcholanthrene, trans-stilbene oxide, and phenobarbital. Arch. Biochem. Biophys. 232 (1984) 408–413.

    Article  PubMed  CAS  Google Scholar 

  31. Raschke, W.C., Baird, S., Ralph, P. and Nakoinz, I. Functional macrophage cell lines transformed by abelson leukemia virus. Cell 15 (1978) 261–267.

    Article  PubMed  CAS  Google Scholar 

  32. Giard, D.J., Aaronson, S.A., Todaro, G.J., Arnstein, P., Kersey, J.H., Dosik, H. and Parks, W.P. In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51 (1973) 1417–1423.

    PubMed  CAS  Google Scholar 

  33. Lorenz, E., Patel, D.D., Hartung, T. and Schwartz, D.A. Toll-like receptor 4 (TLR4)-deficient murine macrophage cell line as an in vitro assay system to show TLR4-independent signaling of bacteroides fragilis lipopolysaccharide. Infect. Immun. 70 (2002) 4892–4896.

    Article  PubMed  CAS  Google Scholar 

  34. Foley, G.E., Lazarus, H., Farber, S., Uzman, B.G., Boone, B.A and McCarthy, RE. Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia. Cancer 18 (1965) 522–529.

    Article  PubMed  CAS  Google Scholar 

  35. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983) 55–63.

    Article  PubMed  CAS  Google Scholar 

  36. Shah, Y.M., Al-Dhaheri, M., Dong, Y., Ip, C., Jones, F.E. and Rowan, B.G. Selenium disrupts estrogen receptor (alpha) signaling and potentiates tamoxifen antagonism in endometrial cancer cells and tamoxifen-resistant breast cancer cells. Mol. Cancer Ther. 4 (2005) 1239–1249.

    Article  PubMed  CAS  Google Scholar 

  37. Bruggisser, R., von Daeniken, K., Jundt, G., Schaffner, W. and Tullberg-Reinert, H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med. 68 (2002) 445–448.

    Article  PubMed  CAS  Google Scholar 

  38. Ovesna, Z., Kozics, K., Bader, Y., Saiko, P., Handler, N., Erker, T. and Szekeres, T. Antioxidant activity of resveratrol, piceatannol and 3,3′,4,4′,5,5′-hexahydroxy-trans-stilbene in three leukemia cell lines. Oncol. Rep. 16 (2006) 617–624.

    PubMed  CAS  Google Scholar 

  39. Potter, G.A., Patterson, L.H., Wanogho, E., Perry, P.J., Butler, P.C., Ijaz, T., Ruparelia, K.C., Lamb, J.H., Farmer, P.B., Stanley, L.A. and Burke, M.D. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer 86 (2002) 774–778.

    Article  PubMed  CAS  Google Scholar 

  40. Piver, B., Fer, M., Vitrac, X., Merillon, J.M., Dreano, Y., Berthou, F. and Lucas, D. Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem. Pharmacol. 68 (2004) 773–782.

    Article  PubMed  CAS  Google Scholar 

  41. Zheng, L.F., Wei, Q.Y., Cai, Y.J., Fang, J.G., Zhou, B., Yang, L. and Liu, Z.L. DNA damage induced by resveratrol and its synthetic analogues in the presence of cu (II) ions: mechanism and structure-activity relationship. Free Radic. Biol. Med. 41 (2006) 1807–1816.

    Article  PubMed  CAS  Google Scholar 

  42. Huang, X.F., Ruan, B.F., Wang, X.T., Xu, C., Ge, H.M., Zhu, H.L. and Tan, R.X. Synthesis and cytotoxic evaluation of a series of resveratrol derivatives modified in C2 position. Eur. J. Med. Chem. 42 (2007) 263–267.

    Article  PubMed  CAS  Google Scholar 

  43. Roberti, M., Pizzirani, D., Simoni, D., Rondanin, R., Baruchello, R., Bonora, C., Buscemi, F., Grimaudo, S. and Tolomeo, M. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J. Med. Chem. 46 (2003) 3546–3554.

    Article  PubMed  CAS  Google Scholar 

  44. Matsuoka, A., Takeshita, K., Furuta, A., Ozaki, M., Fukuhara, K. and Miyata, N. The 4′-hydroxy group is responsible for the in vitro cytogenetic activity of resveratrol. Mutat. Res. 521(2002) 29–35.

    PubMed  CAS  Google Scholar 

  45. Fukuhara, K., Nagakawa, M., Nakanishi, I., Ohkubo, K., Imai, K., Urano, S., Fukuzumi, S., Ozawa, T., Ikota, N., Mochizuki, M., Miyata, N. and Okuda, H. Structural basis for DNA-cleaving activity of resveratrol in the presence of cu(II). Bioorg. Med. Chem. 14 (2006) 1437–1443.

    Article  PubMed  CAS  Google Scholar 

  46. Cadenas, E. Antioxidant and prooxidant functions of DT-diaphorase in quinone metabolism. Biochem. Pharmacol. 49 (1995) 127–140.

    Article  PubMed  CAS  Google Scholar 

  47. Galati, G. and O’Brien, P.J. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Rad. Biol. Med. 37 (2004) 287–303.

    Article  PubMed  CAS  Google Scholar 

  48. Bernhard, D., Tinhofer, I., Tonko, M., Hubl, H., Ausserlechner, M.J., Greil, R., Kofler, R. and Csordas, A. Resveratrol causes arrest in the S-phase prior to fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death Differ. 7 (2000) 834–842.

    Article  PubMed  CAS  Google Scholar 

  49. Tsan, M.F., White, J.E., Maheshwari, J.G. and Chikkappa, G. Anti-leukemia effect of resveratrol. Leuk. Lymphoma 43 (2002) 983–987.

    PubMed  CAS  Google Scholar 

  50. Zunino, S.J. and Storms, D. H. Resveratrol-induced apoptosis is enhanced in acute lymphoblastic leukemia cells by modulation of the mitochondrial permeability transition pore. Cancer Lett. 240 (2006) 123–134.

    Article  PubMed  CAS  Google Scholar 

  51. Wu, S.L., Yu, L., Pan, C.E., Jiao, X.Y., Lv, Y., Fu, J. and Meng, K.W. Apoptosis of lymphocytes in allograft in a rat liver transplantation model induced by resveratrol. Pharmacol. Res. 54 (2006) 19–23.

    Article  PubMed  CAS  Google Scholar 

  52. Mizutani, K., Ikeda, K., Kawai, Y. and Yamori, Y. Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 253 (1998) 859–863.

    Article  PubMed  CAS  Google Scholar 

  53. Dai, Z., Li, Y., Quarles, L.D., Song, T., Pan, W., Zhou, H. and Xiao, Z. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomed. 14 (2007) 806–814.

    Article  CAS  Google Scholar 

  54. Inoue, K. and Creveling, C.R. Immunocytochemical localization of catechol-O-methyltransferase in the oviduct and in macrophages in corpora lutea of rat. Cell Tissue Res. 245 (1986) 623–628.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blase Billack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billack, B., Radkar, V. & Adiabouah, C. In Vitro evaluation of the cytotoxic and anti-proliferative properties of resveratrol and several of its analogs. Cell Mol Biol Lett 13, 553–569 (2008). https://doi.org/10.2478/s11658-008-0022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-008-0022-9

Key words