Skip to main content
  • Research Article
  • Published:

The effect of calnexin deletion on the expression level of binding protein (BiP) under heat stress conditions in Saccharomyces cerevisiae

Abstract

In order to investigate the effect of calnexin deletion on the induction of the main ER molecular chaperone BiP, we cultured the wild-type and calnexin-disrupted Saccharomyces cerevisiae strains under normal and stressed conditions. The growth rate of the calnexin-disrupted yeast was almost the same as that of the wild-type yeast under those conditions. However, the induced level of BiP mRNA in the ER was evidently higher in calnexin-disrupted S. cerevisiae than in the wild-type at 37°C, but was almost the same in the two strains under normal conditions. The Western blot analysis results for BiP protein expression in the ER showed a parallel in the mRNA levels in the two strains. It is suggested that under heat stress conditions, the induction of BiP in the ER might recover part of the function of calnexin in calnexin-disrupted yeast, and result in the same growth rate as in wild-type yeast.

Abbreviations

ER:

endoplasmic reticulum

PAGE:

polyacrylamide gel electrophoresis

PDI:

protein disulfide isomerase

RT-PCR:

reverse transcriptase-polymerase chain reaction

UPR:

unfolding protein response

References

  1. Ou, W.J., Cameron, P.H., Thomas, D.Y. and Bergeron, J.J.M. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364 (1993) 771–776.

    Article  PubMed  CAS  Google Scholar 

  2. Bergeron, J.J.M., Brenner, M.B., Thomas, D.Y. and Williams, D.B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19 (1994) 124–128.

    Article  PubMed  CAS  Google Scholar 

  3. Letourneur, O., Sechi, S., Willete-Brown, J., Robertson, M.W. and Kinet J.P. Glycosylation of human truncated Fc epsilon RI alpha chain is necessary for efficient folding in the endoplasmic reticulum. J. Biol. Chem. 270 (1995) 8249–8256.

    Article  PubMed  CAS  Google Scholar 

  4. Degen, E., Cohen-Doyle, M.F. and Williams, D.B. Efficient dissociation of the p88 chaperone from major histocompatibility complex class I molecules requires both beta 2-microglobulin and peptide. J. Exp. Med. 175 (1992) 1653–1661.

    Article  PubMed  CAS  Google Scholar 

  5. Hammond, C., Braakman, I. and Helenius, A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91 (1994) 913–917.

    Article  PubMed  CAS  Google Scholar 

  6. Jackson, M.R., Cohen-Doyle, M.F., Peterson, P. A. and Williams, D.B. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263 (1994) 384–387.

    Article  PubMed  CAS  Google Scholar 

  7. Ware, F.E., Vassilakos, A., Peterson, P.A., Jackson, M.R., Lehrman, M.A. and Williams, D.B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270 (1995) 4697–4704.

    Article  PubMed  CAS  Google Scholar 

  8. Parlati, F., Dominguez, M., Bergeron, J.M. and Thomas, D.Y. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J. Biol. Chem. 270 (1995) 244–253.

    Article  PubMed  CAS  Google Scholar 

  9. Jakob, C.A., Burda, P. S., te Heesen, S., Aebi, M. and Roth, J. Genetic tailoring of N-linked oligosaccharides: the role of glucose residues in glycoprotein processing of Saccharomyces cerevisiae in vivo. Glycobiology 8 (1998) 155–164.

    Article  PubMed  CAS  Google Scholar 

  10. Mori, K., Ogawa, N., Kawahara, T., Yanagi, H. and Yura, T. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J. Biol. Chem. 273 (1998) 9912–9920.

    Article  PubMed  CAS  Google Scholar 

  11. Shahinian, S., Dijkgraaf, G.J.P., Sdicu, A.M., Thomas, D.Y., Jakob, C.A., Aebi, M., and Bussey, H. Involvement of Protein N-Glycosyl Chain Glucosylation and Processing in the Biosynthesis of Cell Wall-1,6-Glucan of Saccharomyces cerevisiae. Genetics 149 (1998) 843–856.

    PubMed  CAS  Google Scholar 

  12. Denzel, A., Molinari, M., Trigueros, C., Martin, J.E., Velmurgan, S., Brown, S., Stamp, G. and Owen, M.J. Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. Mol. Cell Biol. 22 (2002) 7398–7404.

    Article  PubMed  CAS  Google Scholar 

  13. Song, Y., Sata, J., Saito, A., Usui, M., Azakami, H. and Akio, K. Effects of calnexin deletion in Saccharomyces cerevisiae on the secretion of glycosylated lysozymes. J. Biochem. 130 (2001) 757–764.

    PubMed  CAS  Google Scholar 

  14. Zhang, H., He, J., Ji, Y., Kato, A. and Song, Y. The effect of calnexin deletion on the expression level of PDI in Saccharomyces cerevisiae under heat stress conditions. Cell Mol. Biol. Lett. 13 (2007) 38–48.

    Article  PubMed  CAS  Google Scholar 

  15. Stronge, V.S., Saito, Y., Ihara, Y. and Williams, D.B. Relationship between calnexin and BiP in duppressing aggregation and promoting refolding of protein and glycoprotein substrates. J. Biol. Chem. 276 (2001) 39779–39787.

    Article  PubMed  CAS  Google Scholar 

  16. Choukhi, A.L., Ung, S., Wychowski, C. and Dubuisson, J. Involvement of endoplasmic reticulum chaperones in the folding of hepatitis c virus glycoproteins. J. Virol. 72 (1998) 3851–3858.

    PubMed  CAS  Google Scholar 

  17. Lith, M.V., Karala, A.R., Bown, D., Gatehouse, J.A., Ruddock, L.W., Saunders, PTK, and Benham., A.M. A developmentally regulated chaperone complex for the endoplasmic reticulum of male haploid germ cells. Mol. Biol. Cell. 18 (2007) 2795–2804.

    Article  PubMed  Google Scholar 

  18. Fourn, V.L., Fernandez, S.S., Ferrand, M. and Franc, J.L. Competition between calnexin and BiP in the endoplasmic reticulum can lead to the folding or degradation of human thyroperoxidase. Biochemistry 45 (2006) 7380–7388.

    Article  PubMed  Google Scholar 

  19. Lee, W., Kim, K.R., Singaravelu, G., Park, B-J., Kim, D.H., Ahnn, J. and Yoo, Y.J. Alternative chaperone machinery may compensate for calreticulin/calnexin deficiency in Caenorhabditis elegans. Proteomics 6 (2006) 1329–1339.

    Article  PubMed  CAS  Google Scholar 

  20. Siebert, P.D. and Larrick, J.W. Competitive PCR. Nature 359 (1992) 557–558.

    Article  PubMed  CAS  Google Scholar 

  21. Rose, M.D., Misra, L.M. and Vogel, J.P. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57 (1989) 1211–1221.

    Article  PubMed  CAS  Google Scholar 

  22. Lamantia, M., Miura, T., Tachikawa, H., Kaplan, H.A., Lennarz, W.J. and Mizunaga, T. Glycosylation site binding protein and protein disulfide isomerase are identical and essential for cell viability in yeast. Proc. Natl. Acad. Sci. USA 88 (1991) 4453–4457.

    Article  PubMed  CAS  Google Scholar 

  23. Arima, H., Kinoshita, T., Ibrahim H.R., Azakami, H. and Kato, A. Enhanced secretion of hydrophobic peptide fused lysozyme by the introduction of N-glycosylation signal and the disruption of calnexin gene in Saccharomyces cerevisiae. FEBS Lett. 440 (1998) 89–92.

    Article  PubMed  CAS  Google Scholar 

  24. Brodsky, J.L. and Schekman, R. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Plainview, N.Y. (Marimoto RI, Tissieres A and Georgopoulos C), (1994) pp. 85–109.

    Google Scholar 

  25. MinHee, K.K. and EunDuck, P.K. Differential interaction of molecular chaperones with procollagen I and type IV collagen in corneal endothelial cells. Mol. Vis. 8 (2002) 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youtao Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Hu, B., Ji, Y. et al. The effect of calnexin deletion on the expression level of binding protein (BiP) under heat stress conditions in Saccharomyces cerevisiae . Cell Mol Biol Lett 13, 621–631 (2008). https://doi.org/10.2478/s11658-008-0026-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-008-0026-5

Key words