Skip to main content
  • Mini Review
  • Published:

Oral cyclosporine A - the current picture of its liposomal and other delivery systems

Abstract

The discovery of cyclosporine A was a milestone in organ transplantation and the treatment of autoimmune diseases. However, developing an efficient oral delivery system for this drug is complicated by its poor biopharmaceutical characteristics (low solubility and permeability) and the need to carefully monitor its levels in the blood. Current research is exploring various approaches, including those based on emulsions, microspheres, nanoparticles, and liposomes. Although progress has been made, none of the formulations is flawless. This review is a brief description of the main pharmaceutical systems and devices that have been described for the oral delivery of cyclosporine A in the context of the physicochemical properties of the drug and the character of its interactions with lipid membranes.

Abbreviations

CsA:

cyclosporine A

HIV:

human immunodeficiency virus

IL:

interleukin

NF-AT:

nuclear factor of activated T cells

P-gp:

P glycoprotein

PCL:

polycaprolactone

PEG:

polyethylene glycol

PLA:

polylactic acid

References

  1. O’Neal, M.J., Heckelman, P.E., Koch, C.B., Roman, K.J., Kenny, C.M. and D’Arecca, M.R. (Eds) The Merck Index - an encyclopedia of chemicals, drugs, and biologicals, 14th edition, Merck & Co., Inc., Whitehouse Station, NJ, USA, 2006, 2753.

    Google Scholar 

  2. Laven, A. Biosynthesis and mechanism of action of cyclosporins. Prog. Med. Chem. 33 (1996) 53–97.

    Article  Google Scholar 

  3. Wenger, R.M. Total synthesis of “cyclosporin A” and “cyclosporin H”, two fungal metabolites isolated from species Tolypocladium inflatum Gams. Helv. Chim. Acta 67 (1984) 503–515.

    Article  Google Scholar 

  4. Italia, J.L., Bhardwaj, V. and Kumar, M.N.V.R. Disease, destination, dose and delivery aspects of ciclosporin: the state of the art. Drug Discov. Today 11 (2006) 846–854.

    Article  PubMed  CAS  Google Scholar 

  5. Kallen, J., Mikol, V., Quesniaux, V.F.J., Walkinshaw, M.D., Schneider-Scherzer, E.S., Schorgendorfer, K., Weber, G. and Fliri, H.G. Cyclosporins: recent developments in biosynthesis, pharmacology and biology, and clinical applications. in: Biotechnology, a Multivolume Comprehensive Treatise (Rehm, H.J., Reed, G., Puhler, A. and vonDohren, H., Eds), Vol.7, VCH Verlagsgesellschaft, Weinheim, 1997, 535–591.

    Google Scholar 

  6. Borel, J.F. Pharmacology and Pharmacokinetics of cyclosporin A. Transpl. Clin. Immunol. 13 (1981) 3–6.

    Google Scholar 

  7. Schumacher, A. and Nordheim, A. Progress towards a molecular understanding of cyclosporine A-mediated immunosupression. Clin. Investig. 70 (1992) 773–779.

    Article  PubMed  CAS  Google Scholar 

  8. Ready, A. Experience with cyclosporine. Transplant. Proc. 36 (2004) 135S–138S.

    Article  PubMed  CAS  Google Scholar 

  9. Busauschina, A. Cyclosporine nephrotoxicity. Transplant. Proc. 36 (2004) 2295–2335.

    Article  Google Scholar 

  10. Durak, I., Karabacak, H.I., Buyukkocak, S., Cimen, M.Y., Kacmaz, M., Omeroglu, E. and Ozturk, H.S. Impaired antioxidant defense system in the kidney tissues from rabbits treated with cyclosporine. Protective effects of vitamins E and C. Nephron 78 (1998) 207–211.

    Article  PubMed  CAS  Google Scholar 

  11. Rezzani, R., Buffoli, B., Rodella, L., Stacchioti, A. and Bianchi, R. Protective role of melatonin in cyclosporine A-induced oxidative stress in rat liver. Int. Immunopharmacol. 5 (2005) 1397–1405.

    Article  PubMed  CAS  Google Scholar 

  12. Kahan, B.D. Therapeutic drug monitoring of cyclosporine: 20 years of progress. Transplant. Proc. 36 (2004) 378s–391s.

    Article  PubMed  CAS  Google Scholar 

  13. Petcher, T.J., Weber, H. and Ruegger, A. Crystal and molecular structure of an iodo-derivative of the cyclic undecapeptide cyclosporin A. Helv. Chim. Acta 59 (1976) p.

  14. El Tayar, N., Mark, A.E., Vallat, P., Brunne, R.M., Testa, B. and van Gunsteren, W.F. Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. J. Med. Chem. 36 (1993) 3757–3764.

    Article  PubMed  Google Scholar 

  15. Sigma. Product Information. Cyclosporin A. 1996 Sigma Chemical Co.

  16. Lechuga-Ballesteros, D., Abdul-Fattach, A., Stevenson, C.L. and Bennett, D.B. Properties and stability of a liquid crystal form of cyclosporine — the first reported naturally occurring peptide that exists as a thermotropic liquid crystal. J. Pharm. Sci. 92 (2003) 1821–1831.

    Article  PubMed  CAS  Google Scholar 

  17. Ismailos, G., Peppas, C., Dressman, J. and Macheras, P. Unusual solubility behavior of cyclosporin A in aqueous media. J. Pharm. Pharmacol. 43 (1991) 287–289.

    PubMed  CAS  Google Scholar 

  18. Schote, U., Ganz, P., Fahr, A. and Seelig, J. Interactions of cyclosporines with lipid membranes as studied by solid-state nuclear magnetic resonance spectroscopy and high-sensitivity titration calorimetry. J. Pharm. Sci. 91 (2002) 856–867.

    Article  PubMed  CAS  Google Scholar 

  19. Hasumi, H., Nishikawa, T. and Ohtani, H. Effect of temperature on molecular structure of cyclosporin A. Biochem. Mol. Biol. Int. 34 (1994) 505–511.

    PubMed  CAS  Google Scholar 

  20. Mueller, R.H., Runge, S., Ravelli, V., Mehnert, W., Thunemann, A.F. and Souto, E.B. Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN®) versus drug nanocrystals. Int. J. Pharm. 317 (2006) 82–89.

    Article  CAS  Google Scholar 

  21. Hamel, A.R., Hubler, F., Carrupt, A., Wenger, R.M. and Mutter, M. Cyclosporin A prodrugs: design, synthesis and biophysical properties. J. Peptide Res. 63 (2004) 147–154.

    Article  CAS  Google Scholar 

  22. Lallemand, F., Perottet, P., Felt-Baeyens, O., Kloeti, W., Philippoz, F., Marfurt, J., Besseghir, K. and Gurny, R. A water-soluble prodrug of cyclosporine A for ocular application: a stability study. Eur. J. Pharm. Sci. 26 (2005) 124–129.

    Article  PubMed  CAS  Google Scholar 

  23. Ran, Y., Zhao, L., Xu, Q. and Yalkowsky, S.H. Solubilization of Cyclosporin A. AAPS Pharm. Sci. Tech. 2 (2001) 2.

    Article  Google Scholar 

  24. Weber, C., Wider, G., von Freyberg, B., Traber, R., Braun, W., Widmer, H. and Wuthrich, K. The NMR structure of cyclosporin A bound to cyclophilin in aqueous solution. Biochemistry 30 (1991) 6563–6574.

    Article  PubMed  CAS  Google Scholar 

  25. Altschuh, D., Vix, O., Rees, B. and Thierry, J.C. A conformation of cyclosporin A in aqueous environment revealed by the X-ray structure of a cyclosporin-Fab complex. Science 256 (1992) 92–94.

    Article  PubMed  CAS  Google Scholar 

  26. Klages, J., Neubauer, C., Coles, M., Kessler, H. and Luy, B. Structure refinement of cyclosporin A in chloroform by using RDCs measured in a stretched PDMS-gel. Chembiochem 6 (2005) 1672–1678.

    Article  PubMed  CAS  Google Scholar 

  27. Kajitani, K., Fujihashi, M., Kobayashi, Y., Shimizu, S., Tsujimoto, Y. and Miki, K. Crystal structure of human cyclophilin D in complex with its inhibitor, cyclosporine A at 0.96-Å resolution. Proteins 70 (2008) 1635–1639.

    Article  PubMed  CAS  Google Scholar 

  28. Ouyang, C., Choice, E., Holland, J., Meloche, M. and Madden, T.D. Liposomal cyclosporine. Characterization of drug incorporation and interbilayer exchange. Transplantation 60 (1995) 999–1006.

    Article  PubMed  CAS  Google Scholar 

  29. Fahr, A. and Reiter, G. Biophysical characterisation of liposomal delivery systems for lipophilic drugs: Cyclosporin A as an example. Cell. Mol. Biol. Lett. 4 (1999) 611–623.

    CAS  Google Scholar 

  30. Fahr, A., Holz, M. and Fricker, G. Liposomal formulations of Cyclosporin A: influence of lipid type and dose on pharmacokinetics. Pharm. Res. 12 (1995) 1189–1197.

    Article  PubMed  CAS  Google Scholar 

  31. Fahr, A., Nimmerfall, F. and Wenger, R. Interactions of Cyclosporin A and some derivatives with model membranes: Binding and ion permeability changes. Transplant. Proc. 26 (1994) 2837–2841.

    PubMed  CAS  Google Scholar 

  32. Fahr, A., van Hoogevest, P., May, S., Bergstrand, N. and Leigh, M.L.S. Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. Eur. J. Pharm. Sci. 26 (2005) 251–265.

    Article  PubMed  CAS  Google Scholar 

  33. Lambros, M.P. and Rahman, Y.E. Effects of cyclosporin A on model lipid membranes. Chem. Phys. Lipids 131 (2004) 63–69.

    Article  PubMed  CAS  Google Scholar 

  34. Soderlund, T., Lehtonen, J.Y.A. and Kinnunen, P.K.J. Interactions of cyclosporin A with phospholipid membranes: effect of cholesterol. Mol. Pharmacol. 55 (1999) 32–38.

    PubMed  CAS  Google Scholar 

  35. Wiedmann, T.S., Trouard, T., Shekar, S.C., Polikandritou, M. and Rahman, Y.E. Interaction of cyclosporin A with dipalmitoylphosphatidylcholine. Biochim. Biophys. Acta 1023 (1990) 12–18.

    Article  PubMed  CAS  Google Scholar 

  36. Stuhne-Sekalec, L. and Stanacev, N.Z. Liposomes as cyclosporin A carriers: the influence of ordering of hydrocarbon chains of phosphatidylglycerol liposomes on the association with and topography of cyclosporin A. J. Microencapsul. 8 (1991) 283–294.

    Article  PubMed  CAS  Google Scholar 

  37. Freise, C.E., Liu, T., Hong, K.L., Osorio, R.W., Papahadjopoulos, D., Ferrell, L., Ascher, N.L. and Roberts, J.P. The increased efficacy and decreased nephrotoxicity of a cyclosporine liposome. Transplantation 57 (1994) 928–932.

    Article  PubMed  CAS  Google Scholar 

  38. Thiel, G., Hermle, M. and Brunner, F.P. Acutely impaired renal function during intravenous administration of cyclosporine A: a cremophor side-effect. Clin. Nephrol. 25 (1986) S40–S42.

    PubMed  CAS  Google Scholar 

  39. Alangary, A.A., Bayomi, M.A., Khidr, S.N., Almeshal, M.A. and Aldardiri, M. Characterization, stability and in vivo targeting of liposomal formulations containing cyclosporine. Int. J. Pharm. 114 (1995) 221–225.

    Article  CAS  Google Scholar 

  40. Amidon, G.L., Lennernas, H., Shah, V.P. and Crison, J.R. A theoretical basis for a biopharmaceutical drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12 (1995) 413–420.

    Article  PubMed  CAS  Google Scholar 

  41. Mithani, S.D., Bakatselou, V., TenHoor, C.N. and Dressman, J.B. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm. Res. 13 (1996) 163–167.

    Article  PubMed  CAS  Google Scholar 

  42. Wu, C.Y., Benet, L.Z., Hebert, M.F., Gupta, S.K., Rowland, M., Gomez, D.Y. and Wacher, V.J. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: Studies with cyclosporine. Clin. Pharmacol. Ther. 58 (1995) 492–497.

    Article  PubMed  CAS  Google Scholar 

  43. Kelly, P.A., Wang, H., Napoli, K.L., Kahan, B.D. and Strobel, H.W. Metabolism of cyclosporine by cytochromes P450 3A9 and 3A4. Eur. J. Drug Metab. Pharmacokinet. 24 (1999) 321–328.

    PubMed  CAS  Google Scholar 

  44. Hebert, M.F. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv. Drug. Deliv. Rev. 27 (1997) 201–214.

    Article  PubMed  CAS  Google Scholar 

  45. Fricker, G., Drewe, J., Huwyler, J., Gutmann, H. and Beglinger, C. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitro in vivo correlation. Br. J. Pharmacol. 118 (1996) 1841–1847.

    PubMed  CAS  Google Scholar 

  46. Lown, K.S., Mayo, R.R., Leichtman, A.B., Hsiao, H.L., Turgeon, D.K., Schmiedlin-Ren, P., Brown, M.B., Guo, W., Rossi, S.J., Benet, L.Z. and Watkins, P.B. Role of intestinal P- glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin. Pharmacol. Ther. 62 (1997) 248–260.

    Article  PubMed  CAS  Google Scholar 

  47. Johnston, A., Marsden, J.T., Hla, K.K., Henry, J.A. and Holt, D.W. The effect of vehicle on oral absorption of cyclosporin. Br. J. Clin. Pharmacol. 21 (1986) 331–333.

    PubMed  CAS  Google Scholar 

  48. Kovarik, J.M., Mueller, E.A., van Bree, J.B., Tetzloff, W. and Kutz, K. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J. Pharm. Sci. 83 (1994) 444–446.

    Article  PubMed  CAS  Google Scholar 

  49. Dunn, C.J., Wagstaff, A.J., Perry, C.M., Plosker, G.L. and Goa, K.L. Cyclosporin. An updated review of the pharmacokinetic properties, clinical efficiacy and tolerability of a microemulsion-based formulation (Neoral®) in organ transplantation. Drugs 61 (2001) 1957–2016.

    Article  PubMed  CAS  Google Scholar 

  50. Cattaneo, D., Perico, N. and Remuzzi, G. Generic cyclosporine formulations: more open questions than answers. Transpl. Int. 18 (2005) 371–378.

    Article  PubMed  CAS  Google Scholar 

  51. Pollard, S., Nashan, B., Johnston, A., Hoyer, P., Belitsky, P., Keown, P. and Helderman, H. A pharmacokinetic and clinical review of the potential clinical impact of using different formulations of cyclosporin A. Clin. Ther. 25 (2003) 1654–1669.

    Article  PubMed  CAS  Google Scholar 

  52. Venkataram, S., Awni, W.M., Jordan, K. and Rahman, Y.E. Pharmacokinetics of two alternative dosage forms for cyclosporine: liposomes and intralipid. J. Pharm. Sci. 79 (1990) 216–219.

    Article  PubMed  CAS  Google Scholar 

  53. Aramaki, Y., Tomizawa, H., Hara, T., Yachi, K., Kikuchi, H. and Tsuchiya, S. Stability of liposomes in vitro and their uptake by rat Peyer’s patches following oral administration. Pharm. Res. 10 (1993) 1228–1231.

    Article  PubMed  CAS  Google Scholar 

  54. Guo, J., Ping, Q. and Chen, Y. Pharmacokinetic behavior of cyclosporin A in rabbits by oral administration of lecithin vesicle and sandimmun neoral. Int. J. Pharm. 216 (2001) 17–21.

    Article  PubMed  CAS  Google Scholar 

  55. Shah, N.M., Parikh, J., Namdeo, A., Subramanian, N. and Bhowmick, S. Preparation, characterization and in vivo studies of proliposomes containing Cyclosporine A. J. Nanosci. Nanotechnol. 6 (2006) 2967–2973.

    Article  PubMed  CAS  Google Scholar 

  56. Al-Meshal, M.A., Khidr, S.H., Bayomi, M.A. and Al-Angary, A.A. Oral administration of liposomes containing cyclosporine: a pharmacokinetic study. Int. J. Pharm. 168 (1998) 163–168.

    Article  CAS  Google Scholar 

  57. Bravo Gonzalez, R.C., Huwyler, J., Walter, I., Mountfield, R. and Bittner, B. Improved oral bioavailability of cyclosporin A in male Wistar rats. Comparison of a Solutol HS 15 containing self-dispersing formulation and a microsuspension. Int. J. Pharm. 245 (2002) 143–151.

    Article  PubMed  CAS  Google Scholar 

  58. Murdan, S., Andrysek, T. and Son, D. Novel gels and their dispersions — oral drug delivery systems for ciclosporin. Int. J. Pharm. 300 (2005) 113–124.

    Google Scholar 

  59. Kim, S.J., Choi, H.K. and Lee, Y.B. Pharmacokinetic and pharmacodynamic evaluation of cyclosporin A O/W-emulsion in rats. Int. J. Pharm. 249 (2002) 149–156.

    Article  PubMed  CAS  Google Scholar 

  60. Kim, S.J., Choi, H.K., Suh, S.P. and Lee, Y.B. Pharmacokinetic and pharmacodynamic evaluation of cyclosporin A O/W-emulsion and microsphere formulations in rabbits. Eur. J. Pharm. Sci. 15 (2002) 497–502.

    Article  PubMed  CAS  Google Scholar 

  61. Woo, J.S., Piao, M.G., Li, D.X., Ryu, D.S., Choi, J.Y., Kim, J.A., Kim, J.H., Jin, S.G., Kim, D.D., Lyoo, W.S., Yong, C.S. and Choi, H.G. Development of cyclosporin A-loaded hyaluronic microsphere with enhanced oral bioavailability. Int. J. Pharm. 345 (2007) 134–141.

    Article  PubMed  CAS  Google Scholar 

  62. Lee, E.J., Lee, S.W., Choi, H.G. and Kim, C.K. Bioavailibility of cyclosporin A dispersed in sodium lauryl sulfate-dextrin based solid microspheres. Int. J. Pharm. 218 (2001) 125–131.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang, Q., Yie, G., Li, Y., Yang, Q. and Nagai, T. Studies on the cyclosporin A loaded stearic acid nanoparticles. Int. J. Pharm. 200 (2000) 153–159.

    Article  PubMed  CAS  Google Scholar 

  64. Francis, M.F., Cristea, M., Yang, Y. and Winnik, F.M. Engineering polysaccharide-based polymeric micelles to enhance permeability of cyclosporin A across Caco-2 cells. Pharm. Res. 22 (2005) 209–219.

    Article  PubMed  CAS  Google Scholar 

  65. Lee, W.K., Park, J.Y., Yang, E.H., Suh, H., Kim, S.H., Chung, D.S., Choi, K., Yang, C.W. and Park, J.S. Investigation of the factors influencing the release rates of cyclosporin A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. J. Control. Release 84 (2002) 115–123.

    Article  PubMed  CAS  Google Scholar 

  66. Italia, J.L., Bhatt, D.K., Bhardwaj, V., Tikoo, K. and Kumar, M.N. PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral. J. Control. Release 119 (2007) 197–206.

    Article  PubMed  CAS  Google Scholar 

  67. Gref, R., Quellec, P., Sanchez, A., Calvo, P., Dellacherie, E. and Alonso, M.J. Development and characterization of CyA-loaded poly(lactic acid)-poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Eur. J. Pharm. Biopharm. 51 (2001) 111–118.

    Article  PubMed  CAS  Google Scholar 

  68. Molpeceres, J., Chacón, M., Guzmán, M., Berges, L. and del Rosario Aberturas, M. A polycaprolactone nanoparticle formulation of cyclosporine improves the prediction of area under the curve using a limited sampling strategy. Int. J. Pharm. 187 (1999) 101–113.

    Article  PubMed  CAS  Google Scholar 

  69. Varela, M.C., Guzman, M., Molpeceres, J., del Rosario Aberturas, M., Rodriguez-Puyol, D. and Rodriguez-Puyol, M. Cyclosporine-loaded polycaprolactone nanoparticles: immunosuppression and nephrotoxicity in rats. Eur. J. Pharm. Sci. 12 (2001) 471–478.

    Article  PubMed  CAS  Google Scholar 

  70. Dai, J., Nagai, T., Wang, X., Zhang, T., Meng, M. and Zhang, Q. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int. J. Pharm. 280 (2004) 229–240.

    Article  PubMed  CAS  Google Scholar 

  71. Wang, X.Q., Huang, J., Dai, J.D., Zhang, T., Lu, W.L., Zhang, H., Zhang, X., Wang, J.C. and Zhang, Q. Long-term studies on the stability and oral bioavailibility of cyclosporine A nanoparticle colloid. Int. J. Pharm. 322 (2006) 146–153.

    Article  PubMed  CAS  Google Scholar 

  72. Wang, X.Q.W., Dai, J.D., Chen, Z., Zhang, T., Xia, G.M., Nagai, T. and Zhang, Q. Bioavailability and pharmacokinetics of cyclosporine A-loaded pH-sensitive nanoparticles for oral administration. J. Control Release 97 (2004) 421–429.

    PubMed  CAS  Google Scholar 

  73. El-Shabouri, M.H. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int. J. Pharm. 249 (2002) 101–108.

    Article  PubMed  CAS  Google Scholar 

  74. Cheng, W.P., Gray, A.I., Tetley, L., Hang Tle, B., Schätzlein, A.G. and Uchegbu, I.F. Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules 7 (2006) 1509–1520.

    Article  PubMed  CAS  Google Scholar 

  75. Liu, C., Zhu, S.J., Zhou, Y., Wei, Y.P. and Pei, Y.Y. Enhancement of dissolution of cyclosporine A using solid dispersions with polyoxyethylene (40) stearate. Pharmazie 61 (2006) 681–684.

    PubMed  CAS  Google Scholar 

  76. Liu, C., Wu, J., Shi, B., Zhang, Y., Gao, T. and Pei, Y. Enhancing the bioavailability of cyclosporine a using solid dispersion containing polyoxyethylene (40) stearate. Drug Dev. Ind. Pharm. 32 (2006) 115–123.

    Article  PubMed  CAS  Google Scholar 

  77. Mueller, R.H., Runge, S.A., Ravelli, V., Thunemann, A.F., Mehnert, W. and Souto, E.B. Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug-lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm. 68 (2008) 535–544.

    Article  CAS  Google Scholar 

  78. Bekerman, T., Golenser, J. and Domb, A. Cyclosporin nanoparticulate lipospheres for oral administration. J. Pharm. Sci. 93 (2004) 1264–1270.

    Article  PubMed  CAS  Google Scholar 

  79. Van Drooge, D.J., Hinrichs, W.L. and Frijlink, H.W. Incorporation of lipophilic drugs in sugar glasses by lyophilization using a mixture of water and tertiary butyl alcohol as solvent. J. Pharm. Sci. 93 (2004) 713–725.

    Article  PubMed  Google Scholar 

  80. Miyake, K., Arima, H., Irie, T., Hirayama, F. and Uekama, K. Enhanced absorption of cyclosporin A by complexation with dimethyl-beta-cyclodextrin in bile duct-cannulated and -noncannulated rats. Biol. Pharm. Bull. 22 (1999) 66–72.

    PubMed  CAS  Google Scholar 

  81. Sharma, P., Varma, M.V.S., Chwala, H.P.S. and Panchagnula, R. Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, cyclodextrins and bile salts as peroral absorption enhancers. Il Farmaco 60 (2005) 884–893.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Czogalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czogalla, A. Oral cyclosporine A - the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett 14, 139–152 (2009). https://doi.org/10.2478/s11658-008-0041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-008-0041-6

Key words