Skip to main content
  • Short Communication
  • Published:

The effects of disodium pamidronate on human polymorphonuclear leukocytes and platelets: An in vitro study

Abstract

Recent reports have indicated that, as well as having antiresorptive effects, bisphosphonates could have an application as anti-inflammatory drugs. Our aim was to investigate whether this anti-inflammatory action could be mediated by the nitric oxide (NO) released by the leukocytes migrating to the site of inflammation. In particular, we investigated in vitro the intracellular calcium concentration ([Ca2+]i), the level of NO released by PMN and platelets, and the PMN myeloperoxidase activity after incubation with disodium pamidronate, since there was a postulated modulatory effect of this aminosubstituted bisphosphonate on leukocytes both in vitro and in vivo. Our data shows that the pamidronate treatment provoked a significant increase in the [Ca2+]i parallel to the enhancement in NO release, suggesting a possible activation of constitutive nitric oxide synthase, while the myeloperoxidase activity was significantly reduced. In conclusion, we hypothesized that treatment with pamidronate could stimulate NO-production by cells present near the bone compartment, thus constituting a protective mechanism against bone resorption occurring during inflammation. In addition, PMN- and platelet-derived NO could act as a negative feed-back signal to restrict the inflammatory processes.

Abbreviations

APD:

disodium pamidronate

BP:

bisphosphonates

[Ca2+]i :

intracellular calcium concentration

MPO:

myeloperoxidase

PMN:

polymorphonuclear leukocytes

ROS:

reactive oxygen species

References

  1. Fleisch, H. Bisphosphonates: mechanisms of action. Endocr. Rev. 19 (1998) 80–100.

    Article  PubMed  CAS  Google Scholar 

  2. Parfitt, A.M., Mundy, G.R., Roodman, G.D., Hughes, D.E. and Boyce, B.F. A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J. Bone Miner. Res. 11 (1996) 150–159.

    PubMed  CAS  Google Scholar 

  3. Rodan, G.A. and Fleisch, H.A. Bisphosphonates: mechanisms of action. J. Clin. Invest. 97 (1996) 692–2696.

    Article  Google Scholar 

  4. Menezes, A.M., Rocha, F.A., Chaves, H.V., Carvalho, C.B., Ribeiro, R.A. and Brito, G.A.Effect of sodium aledronate on alveolar bone resorption in experimental periodontitis in rats. J. Periodontol. 76 (2005) 901–1909.

    Article  Google Scholar 

  5. Bukowski, J.F., Dascher, C.C. and Das, H.Alternative bisphosphonate targets and mechanisms of action. Biochem. Biophys. Res. Commun. 328 (2005) 46–750.

    Article  CAS  Google Scholar 

  6. Corrado, A., Santoro, N. and Cantatore, F.P.Extra-skeletal effects of bisphosphonates. Joint Bone Spine 74 (2007) 32–38.

    Article  PubMed  CAS  Google Scholar 

  7. Guignard, S., Job-Deslandre, C., Sayag-Boukris, V. and Kahan, A.Pamidronate treatment in SAPHO syndrome. Joint Bone Spine. 69 (2002) 92–396.

    Article  Google Scholar 

  8. Garrett, I.R., Boyce, B.F., Oreffo, R.O., Bonewald, L., Poser, J. and Mundy, G.R.Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Invest. 85 (1990) 32–639.

    Article  Google Scholar 

  9. Ries, W.L., Key, L.L. Jr. and Rodriguiz. R.M.Nitroblue tetrazolium reduction and bone resorption by osteoclasts in vitro inhibited by a manganese-based superoxide dismutase mimic. J. Bone Miner. Res. 7 (1992) 31–939.

    Article  Google Scholar 

  10. Collin-Osdoby, P., Nickols, G.A. and Osdoby, P.Bone cell function, regulation, and communication: a role for nitric oxide. J. Cell. Biochem. 57 (1995) 99–408.

    Article  Google Scholar 

  11. Wright, C.D., Mülsch, A., Busse, R. and Osswald, H.Generation of nitric oxide by human neutrophils. Biochem. Biophys. Res. Commun. 160 (1989) 13–819.

    Article  Google Scholar 

  12. Nicolini, F.A. and Mehta, J.L.Inhibitory effect of unstimulated neutrophils on platelet aggregation by release of a factor similar to endothelium-derived relaxing factor (EDRF). Biochem. Pharmacol. 40 (1990) 265–2269.

    Article  Google Scholar 

  13. Paul-Clark, M., Del Soldato, P., Fiorucci, S., Flower, R.J. and Perretti, M.21-NO-prednisolone is a novel nitric oxide-releasing derivative of prednisolone with enhanced anti-inflammatory properties. Br. J. Pharmacol. 131 (2000) 345-1354.

    Article  Google Scholar 

  14. Persson, J., Ekelund, U. and Grände, P.O.Endogenous nitric oxide reduces microvascular permeability and tissue oedema during exercise in cat skeletal muscle. J. Vasc. Res. 40 (2003) 38–546.

    Article  Google Scholar 

  15. Pennanen, N., Lapinjoki, S., Urtti, A. and Mönkkönen, J.Effect of liposomal and free bisphosphonates on the IL-1 beta, IL-6 and TNF alpha secretion from RAW 264 cells in vitro. Pharm. Res. 12 (1995) 16–922.

    Article  Google Scholar 

  16. Brown, K.K., Henson, P.M., Maclouf, J., Moyle, M., Ely, J.A. and Worthen, G.S. Neutrophil-platelet adhesion: relative roles of platelet P-selectin and neutrophil beta2 (CD18) integrins. Am. J. Respir. Cell. Mol. Biol. 18 (1998) 00–110.

    Google Scholar 

  17. Liao, C.H., Hsiech, Y.J. and Lin, Y.C.Celecoxib stimulates respiratory burst through pertussis toxin-sensitive G-protein, a possible signal for β2 -integrin expression on human neutrophils. Eur. J. Pharmacol. 484 (2004) 9–39.

    Article  CAS  Google Scholar 

  18. Rao, G.H.Measurement of ionized calcium in normal human blood platelets. Anal. Biochem. 169 (1988) 00–404.

    Article  CAS  Google Scholar 

  19. Mazzanti, L., Rabini, RA, Fumelli, P., Martarelli, D., Staffolani, R., Salvolini, E. and Curatola, G.Altered platelet membrane dynamic properties in type 1 diabetes. Diabetes. 46 (1997) 069–2074.

    Article  Google Scholar 

  20. Reid, I.R., Katz, J.M., Ibbertson, H.K. and Gray, D.H.The effects of hydrocortisone, parathyroid hormone and the bisphosphonate, APD, on bone resorption in neonatal mouse calvaria. Calcif. Tissue Int. 38 (1986) 8–43.

    Google Scholar 

  21. Grynkiewicz, G., Poenie, M. and Tsien, R.Y.A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260 (1985) 440–3450.

    Google Scholar 

  22. Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S. and Tannenbaum, S.R.Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. Biochem. 126 (1982) 31–138.

    Article  Google Scholar 

  23. Bradford, M.M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976) 48–254.

    Article  Google Scholar 

  24. Suzuki, K., Ota, H., Sasagawa, S., Sakatani, T. and Fujikura, T.Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal. Biochem. 132 (1983) 45–352.

    Article  Google Scholar 

  25. Fitton, A. and McTavish, D.Pamidronate: a review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs. 41 (1991) 89-318.

    Google Scholar 

  26. Van Offel, J.F., Schuerwegh, A.J., Bridts, C.H., Bracke, P.G., Stevens, W.J. and De Clerck, L.S.Influence of cyclic intravenous pamidronate on proinflammatory monocytic cytokine profiles and bone density in rheumatoid arthritis treated with low dose prednisolone and methotrexate. Clin. Exp. Rheumatol. 19 (2001) 3–20.

    Google Scholar 

  27. Pietschmann, P., Stohlawetz, P., Brosch, S., Steiner, G., Smolen, J.S. and Peterlik, M.The effect of aledronate on cytokine production, adhesion molecule expression, and transendothelial migration of human peripheral blood mononuclear cells. Calcif. Tissue Int. 63 (1998) 25–330.

    Article  Google Scholar 

  28. Chen, L.Y. and Mehta, J.L.Variable effects of L-arginine analogs on L-arginine-nitric oxide pathway in human neutrophils and platelets may relate to different nitric oxide synthase isoforms. J. Pharmacol. Exp. Ther. 276 (1996) 53–257.

    Google Scholar 

  29. Sethi, S. and Dikshit, M.Modulation of polymorphonuclear leokocytes function by nitric oxide. Thromb. Res. 100 (2000) 23–247.

    Article  Google Scholar 

  30. De La Cruz, J.P., Blanco, E. and Sanchez de la Cuesta, F.Effect of dipyridamole and aspirin on the platelet-neutrophil interaction via the nitric oxide pathway. Eur. J. Pharmacol. 397 (2000) 5–41.

    Article  Google Scholar 

  31. Moilanen, E., Vuorinen, P., Kankaanranta, H., Metsä-Ketelä, T. and Vapaatalo, H. Inhibition by nitric oxide-donors of human polymorphonuclear leukocyte functions. Br. J. Pharmacol. 109 (1993) 52–858.

    Google Scholar 

  32. Wallace, J.L.Nitric oxide as a regulator of inflammatory processes. Mem. Inst. Oswaldo Cruz 100suppl.1 (2005) 5–9.

    PubMed  CAS  Google Scholar 

  33. Casini, A., Ceni, E., Salzano, R., Biondi, P., Parola, M., Galli, A., Foschi, M., Caligiuri, A., Pinzani, M. and Surrenti, C.Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology. 25 (1997) 61–367.

    Article  Google Scholar 

  34. Ziche, M., Morbidelli, L., Choudhuri, R., Zhang, H.T., Donnini, S., Granger, H.J. and Bicknell, R.Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblastic growth factorinduced angiogenesis. J. Clin. Invest. 99 (1997) 625–2634.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Salvolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvolini, E., Orciani, M., Vignini, A. et al. The effects of disodium pamidronate on human polymorphonuclear leukocytes and platelets: An in vitro study. Cell Mol Biol Lett 14, 457–465 (2009). https://doi.org/10.2478/s11658-009-0012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-009-0012-6

Key words