Skip to main content
  • Research Article
  • Published:

The transcriptional regulation of Podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism

Abstract

Podocin (NPHS2) is a component of the glomerular slit membrane with major regulatory functions in the renal permeability of proteins. A loss of podocin and a decrease in its resynthesis can influence the outcome of renal diseases with nephrotic syndrome, such as minimal change glomerulonephritis, focal segmental glomerulosclerosis (FSGS) and membranous nephropathy. The transcriptional regulation of podocin may play a major role in these processes. We defined the transcriptional regulation of the human podocin gene and the influence of single nucleotide polymorphisms (SNPs) within its promoter region in the podocytes using reporter gene constructs and gel shift analysis. In addition, we took genomic DNA from healthy Caucasian blood donors and from biopsies of kidneys with defined renal diseases and screened it for podocin promoter SNPs. Our data shows that the transcription of podocin is mainly regulated by the transcription factor Lmx1b, which binds to a FLAT-F element and displays enhancer function. With the SNP variant −116T, there was a significant reduction in luciferase activity, and nuclear protein binding was observed, while the SNP −670C/T did not display functionality. The allelic distribution of −116C/T in patients with kidney diseases leading to nephrotic syndrome was not significantly different from that in the control group. Our data indicates that among other factors, podocin is specifically regulated by the transcription factor Lmx1b and by the functional polymorphism -116C/T. However, there is no association between −116C/T and susceptibility to minimal change glomerulonephritis, focal segmental glomerulosclerosis or membranous nephropathy.

Abbreviations

DNA:

deoxyribonucleic acid

EMSA:

electrophoretic mobility shift assay

FSGS:

focal segmental glomerulosclerosis

INF-γ:

interferon-γ

PCR:

polymerase chain reaction

SNP:

single nucleotide chain reaction

References

  1. Mundel, P. and Shankland, S.J. Podocyte biology and response to injury. J. Am. Soc. Nephrol. 13 (2002) 3005–3015.

    Article  PubMed  Google Scholar 

  2. Roselli, S., Gribouval, O., Boute, N., Sich, M., Benessy, F., Attie, T., Gubler, M.C. and Antignac, C. Podocin localizes in the kidney to the slit diaphragm area. Am J. Pathol. 160 (2002) 131–139.

    PubMed  CAS  Google Scholar 

  3. Boute, N., Gribouval, O., Roselli, S., Benessy, F., Lee, H., Fuchshuber, A., Dahan, K., Gubler, M.C., Niaudet, P. and Antignac, C. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24 (2000) 349–354.

    Article  PubMed  CAS  Google Scholar 

  4. Caridi, G., Bertelli, R., Di Duca, M., Dagnino, M., Emma, F., Onetti Muda, A., Scolari, F., Miglietti, N., Mazzucco, G., Murer, L., Carrea, A., Massella, L., Rizzoni, G., Perfumo, F. and Ghiggeri, G.M. Broadening the spectrum of diseases related to podocin mutations. J. Am. Soc. Nephrol. 14 (2003) 1278–1286.

    Article  PubMed  CAS  Google Scholar 

  5. Caridi, G., Bertelli, R., Scolari, F., Sanna-Cherchi, S., Di Duca, M. and Ghiggeri, G.M. Podocin mutations in sporadic focal-segmental glomerulosclerosis occurring in adulthood. Kidney Int. 64 (2003) 365.

    Article  PubMed  CAS  Google Scholar 

  6. Ruf, R.G., Lichtenberger, A., Karle, S.M., Haas, J.P., Anacleto, F.E., Schultheiss, M., Zalewski, I., Imm, A., Ruf, E.M., Mucha, B., Bagga, A., Neuhaus, R., Fuchshuber, A., Bakkaloglu, A. and Hildebrandt, F. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J. Am. Soc. Nephrol. 15 (2004) 722–732.

    Article  PubMed  Google Scholar 

  7. Guan, N., Ding, J., Zhang, J. and Yang, J. Expression of nephrin, podocin, alpha-actinin, and WT1 in children with nephrotic syndrome. Pediatr. Nephrol. 18 (2003) 1122–1127.

    Article  PubMed  Google Scholar 

  8. Koop, K., Eikmans, M., Baelde, H.J., Kawachi, H., De Heer, E., Paul, L.X. and Bruijn, J.A. Expression of podocyte-associated molecules in acquired human kidney diseases. J. Am. Soc. Nephrol. 14 (2003) 2063–2071.

    Article  PubMed  CAS  Google Scholar 

  9. Schmid, H., Henger, A., Cohen, C.D., Frach, K., Gröne, H.J., Schlöndorff, D. and Kretzler, M. Gene expression profiles of pococyte-associated molecules as diagnostic markers in acquired proteinuric diseases. J. Am. Soc. Nephrol. 14 (2003) 2958–2966.

    Article  PubMed  CAS  Google Scholar 

  10. Huber, T.B., Simons, M., Hartleben, B., Sernetz, L., Schmidts, M., Gundlach, E., Saleem, M.A., Walz, G. and Benzing, T. Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum. Mol. Genet. 12 (2003) 3397–3405.

    Article  PubMed  CAS  Google Scholar 

  11. Nishibori, Y., Liu, L., Hosoyamada, M., Endou, H., Hudo, A., Takenaka, H., Higashihara, E., Bessho, F., Takahashi, S., Kershaw, D., Ruotsalainen, V., Tryggvason, K., Khoshnoodi, J. and Yan, K. Disease-causing missense mutations in NPHS2 gene alter normal nephrin trafficking to the plasma membrane. Kidney Int. 66 (2004) 1755–1765.

    Article  PubMed  CAS  Google Scholar 

  12. Oleggini, R., Bertelli, R., Di Donato, A., Di Duca, M., Caridi, G., Sanna-Cherchi, S., Scolari, F., Murer, L., Perfumo, F. and Ghiggeri G.M. Rare functional variants of podocin (NPHS2) promoter in patients with nephrotic syndrome. Gene Expr. 13 (2006) 59–66.

    Article  PubMed  CAS  Google Scholar 

  13. Di Duca, M., Oleggini, R., Sanna-Cherchi, S., Pasquali, L., Di Donato, A., Parodi, S., Bertelli, R., Caridi, G., Frasca, G., Cerullo, G., Amoroso, A., Schena, F.P., Scolari, F., Ghiggeri, G.M. and European IgA Nephropathy Consortium. Cis and trans regulatory elements in NPHS2 promoter: implications in poteinuria and progression of renal diseases. Kidney Int. 70 (2006) 1332–1341.

    Article  PubMed  Google Scholar 

  14. Miner, J.H., Morello, R., Andrews, K.L., Li, C., Antignac, C., Shaw, A.S. and Lee, B. Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocytes differentiation. J. Clin. Invest. 109 (2001) 1065–1072.

    Google Scholar 

  15. Rohr, C., Prestel, J., Heidet, L., Hosser, H., Kriz, W., Johnson, R.L., Antignac, C. and Witzgall, R. The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes. J. Clin. Invest. 109 (2002) 1073–1082.

    PubMed  CAS  Google Scholar 

  16. Dreyer, S.D., Zhou, G., Baldini, A., Winterpracht, A., Zabel, B., Cole, W., Johnson, R.L. and Lee, B. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat. Genet. 19 (1998) 47–50.

    Article  PubMed  CAS  Google Scholar 

  17. Boussif, O., Lezoualc’h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B. and Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92 (1995) 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  18. Brasier, A.R., Tate, J.E. and Habener, J.F. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques 7 (1989) 1116–1122.

    PubMed  CAS  Google Scholar 

  19. Rosenthal N. Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol. 152 (1987) 704–720.

    Article  PubMed  CAS  Google Scholar 

  20. Dignam, J.D., Lebovitz, R.M. and Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 111 (1983) 475–489.

    Google Scholar 

  21. German, M.S., Moss, L.G., Wang, J.and Rutter W.J. The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical β-cell nuclear complexes. Mol. Cell. Biol. 12 (1992) 1777–1788.

    PubMed  CAS  Google Scholar 

  22. German, M.S., Wang, J., Chadwick, R.B. and Rutter W.J. Synergistic activation of the insulin gene by a LIM-homeo domain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex. Genes & Dev. 6 (1992) 2165–2176.

    Article  CAS  Google Scholar 

  23. Roselli, S., Heidet, L., Sich, M., Henger, A., Kretzler, M., Gubler, M.C. and Antignac, C. Early glomerular filtration defect and severe renal disease in podocin-deficient mice. Mol. Cell. Biol. 24 (2004) 550–560.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, H., Lun, Y., Ovchinnikov, D., Kokuo, H., Oberg, K.C., Pepicelli, C.V., Gan, L., Lee, B. and Jonson, R.L. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat. Genet. 19 (1998) 51–55.

    Article  PubMed  Google Scholar 

  25. Dunston, J.A., Hamlington, J.D., Zaveri, J., Sweeney, E., Sibbring, J., Tran, C., Malbroux, M., O’Neill, J.P., Mountford, R. and McIntosh, I. The human LMX1B gene: transcription unit, promoter, and pathogenic mutations. Genomics 84 (2004) 565–576.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Harendza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harendza, S., Stahl, R.A. & Schneider, A. The transcriptional regulation of Podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism. Cell Mol Biol Lett 14, 679–691 (2009). https://doi.org/10.2478/s11658-009-0026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-009-0026-0

Key words