Skip to main content
  • Research Article
  • Published:

The intrabody targeting of hTERT attenuates the immortality of cancer cells

Abstract

hTERT (human telomerase reverse transcriptase) plays a key role in the process of cell immortalization. Overexpression of hTERT has been implicated in 85% of malignant tumors and offers a specific target for cancer therapy. In this paper, we describe an effective approach using a single-chain variable fragment (scFv) intrabody derived from monoclonal hybridoma directed against hTERT to attenuate the immortalization of human uterine cervix and hepatoma cells. The scFv we constructed had a high affinity to hTERT, and specifically neutralized over 70% of telomere synthesis activity, thereby inhibiting the viability and proliferation of the cancer cells. Our results indicate that this anti-hTERT intrabody is a promising tool to target hTERT and intervene in the immortalization process of cancer cells.

Abbreviations

DAPI:

diamidino-phenyl-indole

ECL:

enhanced chemiluminescence

ELISA:

enzyme linked immunosorbent assay

FITC:

fluorescein isothiocyanate

HRP:

horseradish peroxidase

mAb:

monoclonal antibody

MIFs:

mouse intraperitoneal fluid

MTT:

monotetrazolium

PI:

propidium iodide

References

  1. Morin, G.B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 3 (1989) 521–529.

    Article  Google Scholar 

  2. Blackburn, E.H. Structure and function of telomeres. Nature 6319 (1991) 569–573.

    Article  Google Scholar 

  3. Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L. and Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science 5193 (1994) 2011–2015.

    Article  Google Scholar 

  4. Meeker, A.K., Hicks, J.L., Platz, E.A., March, G.E., Bennett, C.J., Delannoy, M.J. and De Marzo, A.M. Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res. 22 (2002) 6405–6409.

    Google Scholar 

  5. van Heek, N.T., Meeker, A.K., Kern, S.E., Yeo, C.J., Lillemoe, K.D., Cameron, J L., Offerhaus, G.J., Hicks, J.L., Wilentz, R.E., Goggins, M.G., De Marzo, A.M., Hruban, R.H. and Maitra, A. Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am. J. Pathol. 5 (2002) 1541–1547.

    Google Scholar 

  6. Meeker, A.K., Hicks, J.L., Gabrielson, E., Strauss, W.M., De Marzo, A.M. and Argani, P. Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am. J. Pathol. 3 (2004) 925–935.

    Google Scholar 

  7. Minev, B., Hipp, J., Firat, H., Schmidt, J.D., Langlade-Demoyen, P. and Zanetti, M. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc. Natl. Acad. Sci. U.S.A. 9 (2000) 4796–4801.

    Article  Google Scholar 

  8. Hytiroglou, P. and Theise, N.D. Telomerase activation in human hepatocarcinogenesis. Am. J. Gastroenterol. 4 (2006) 839–841.

    Article  Google Scholar 

  9. Harrington, L., Zhou, W., McPhail, T., Oulton, R., Yeung, D.S., Mar, V., Bass, M.B. and Robinson, M.O. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev. 23 (1997) 3109–3115.

    Article  Google Scholar 

  10. Weinrich, S.L., Pruzan, R., Ma, L., Ouellette, M., Tesmer, V.M., Holt, S.E., Bodnar, A.G., Lichtsteiner, S., Kim, N.W., Trager, J.B., Taylor, R.D., Carlos, R., Andrews, W.H., Wright, W.E., Shay, J.W., Harley, C.B. and Morin, G.B. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 4 (1997) 498–502.

    Article  Google Scholar 

  11. Vonderheide, R.H., Hahn, W.C., Schultze, J.L. and Nadler, L.M. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 6 (1999) 673–679.

    Article  Google Scholar 

  12. Meyerson, M., Counter, C.M., Eaton, E.N., Ellisen, L.W., Steiner, P., Caddle, S.D., Ziaugra, L., Beijersbergen, R.L., Davidoff, M.J., Liu, Q., Bacchetti, S., Haber, D.A. and Weinberg, R.A. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 4 (1997) 785–795.

    Article  Google Scholar 

  13. Graessmann, A., Graessmann, M. and Mueller, C. Microinjection of early SV40 DNA fragments and T antigen. Methods Enzymol. 1 (1980) 816–825.

    Article  Google Scholar 

  14. Morgan, D.O. and Roth, R.A. Analysis of intracellular protein function by antibody injection. Immunol. Today 3 (1988) 84–88.

    Article  Google Scholar 

  15. Valle, G., Jones, E.A. and Colman, A. Anti-ovalbumin monoclonal antibodies interact with their antigen in internal membranes of Xenopus oocytes. Nature 5887 (1982) 71–74.

    Article  Google Scholar 

  16. Burke, B. and Warren, G. Microinjection of mRNA coding for an anti-Golgi antibody inhibits intracellular transport of a viral membrane protein. Cell 4 (1984) 847–856.

    Article  Google Scholar 

  17. Marasco, W.A. Intrabodies as antiviral agents. Curr. Top. Microbiol. Immunol. (2001) 247–270.

  18. Marasco, W.A. Intrabodies: turning the humoral immune system outside in for intracellular immunization. Gene Ther. 1 (1997) 11–15.

    Article  Google Scholar 

  19. Williams, B.R. and Zhu, Z. Intrabody-based approaches to cancer therapy: status and prospects. Curr. Med. Chem. 12 (2006) 1473–1480.

    Article  Google Scholar 

  20. Biocca, S., Pierandrei-Amaldi, P. and Cattaneo, A. Intracellular expression of anti-p21ras single chain Fv fragments inhibits meiotic maturation of xenopus oocytes. Biochem. Biophys. Res. Commun. 2 (1993) 422–427.

    Article  Google Scholar 

  21. Biocca, S., Pierandrei-Amaldi, P., Campioni, N. and Cattaneo, A. Intracellular immunization with cytosolic recombinant antibodies. Biotechnology (N. Y.) 4 (1994) 396–399.

    Article  Google Scholar 

  22. Duan, L., Bagasra, O., Laughlin, M.A., Oakes, J.W. and Pomerantz, R.J. Potent inhibition of human immunodeficiency virus type 1 replication by an intracellular anti-Rev single-chain antibody. Proc. Natl. Acad. Sci. U.S.A. 11 (1994) 5075–5079.

    Article  Google Scholar 

  23. Mhashilkar, A.M., Bagley, J., Chen, S.Y., Szilvay, A.M., Helland, D.G. and Marasco, W A. Inhibition of HIV-1 Tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain intrabodies. EMBO J. 7 (1995) 1542–1551.

    Google Scholar 

  24. Marasco, W.A., Haseltine, W.A. and Chen, S.Y. Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody. Proc. Natl. Acad. Sci. U.S.A. 16 (1993) 7889–7893.

    Article  Google Scholar 

  25. Plumb, J.A., Bilsland, A., Kakani, R., Zhao, J., Glasspool, R.M., Knox, R.J., Evans, T.R. and Keith, W.N. Telomerase-specific suicide gene therapy vectors expressing bacterial nitroreductase sensitize human cancer cells to the pro-drug CB1954. Oncogene 53 (2001) 7797–7803.

    Article  Google Scholar 

  26. Xiong, Y. and Eickbush, T.H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 10 (1990) 3353–3362.

    Google Scholar 

  27. Kalderon, D., Roberts, B.L., Richardson, W.D. and Smith, A.E. A short amino acid sequence able to specify nuclear location. Cell 3 Pt 2 (1984) 499–509.

    Article  Google Scholar 

  28. Savre-Train, I., Gollahon, L.S. and Holt, S.E. Clonal heterogeneity in telomerase activity and telomere length in tumor-derived cell lines. Proc. Soc. Exp. Biol. Med. 4 (2000) 379–388.

    Article  Google Scholar 

  29. Yang, N., Zhu, X., Chen, L., Li, S. and Ren, D. Oral administration of attenuated S. typhimurium carrying shRNA-expressing vectors as a cancer therapeutic. Cancer Biol. Ther. 1 (2008) 145–151.

    Google Scholar 

  30. Fu, W., Chu, L., Han, X., Liu, X. and Ren, D. Synergistic antitumoral effects of human telomerase reverse transcriptase-mediated dual-apoptosis-related gene vector delivered by orally attenuated Salmonella enterica Serovar Typhimurium in murine tumor models. J. Gene Med. 6 (2008) 690–701.

    Article  Google Scholar 

  31. Strahl, C. and Blackburn, E.H. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol. Cell. Biol. 1 (1996) 53–65.

    Google Scholar 

  32. Seay, T.M., Peretsman, S.J. and Dixon, P.S. Inhibition of human transitional cell carcinoma in vitro proliferation by fluoroquinolone antibiotics. J. Urol. 2 (1996) 757–762.

    Google Scholar 

  33. Zhang, P.H., Zou, L. and Tu, Z.G. RNAi-hTERT inhibition hepatocellular carcinoma cell proliferation via decreasing telomerase activity. J. Surg. Res. 1 (2006) 143–149.

    Article  Google Scholar 

  34. Holt, S.E., Aisner, D.L., Shay, J.W. and Wright, W.E. Lack of cell cycle regulation of telomerase activity in human cells. Proc. Natl. Acad. Sci. U.S.A. 20 (1997) 10687–10692.

    Article  Google Scholar 

  35. Bonnin, E., Gruel, N., Moutel, S., Mantegazza, A.R., Barrio, M.M., Mordoh, J. and Teillaud, J.L. Generation of functional scFv intrabodies for triggering anti-tumor immunity. Methods 2 (2004) 225–232.

    Article  Google Scholar 

  36. Cardinale, A., Lener, M., Messina, S., Cattaneo, A. and Biocca, S. The mode of action of Y13-259 scFv fragment intracellularly expressed in mammalian cells. FEBS Lett. 3 (1998) 197–202.

    Article  Google Scholar 

  37. Strazisar, M., Mlakar, V. and Glavac, D. The expression of COX-2, hTERT, MDM2, LATS2 and S100A2 in different types of non-small cell lung cancer (NSCLC). Cell. Mol. Biol. Lett. 3 (2009) 442–456.

    Article  Google Scholar 

  38. Harley, C.B. Telomere loss: mitotic clock or genetic time bomb? Mutat. Res. 2–6 (1991) 271–282.

    Google Scholar 

  39. Blackburn, E.H. Telomere states and cell fates. Nature 6808 (2000) 53–56.

    Article  Google Scholar 

  40. Kelland, L.R. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics-current status and future prospects. Eur. J. Cancer 7 (2005) 971–979.

    Article  Google Scholar 

  41. Chang, J.T., Lu, Y.C., Chen, Y.J., Tseng, C.P., Chen, Y.L., Fang, C.W. and Cheng, A.J. hTERT phosphorylation by PKC is essential for telomerase holoprotein integrity and enzyme activity in head neck cancer cells. Br. J. Cancer 6 (2006) 870–878.

    Article  Google Scholar 

  42. Wu, P., Meng, L., Wang, H., Zhou, J., Xu, G., Wang, S., Xi, L., Chen, G., Wang, B., Zhu, T., Lu, Y. and Ma, D. Role of hTERT in apoptosis of cervical cancer induced by histone deacetylase inhibitor. Biochem. Biophys. Res. Commun. 1 (2005) 36–44.

    Article  Google Scholar 

  43. Ahmed, A. and Tollefsbol, T. Telomeres, telomerase, and telomerase inhibition: clinical implications for cancer. J. Am. Geriatr. Soc. 1 (2003) 116–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daming Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Yang, N., Cai, J. et al. The intrabody targeting of hTERT attenuates the immortality of cancer cells. Cell Mol Biol Lett 15, 32–45 (2010). https://doi.org/10.2478/s11658-009-0032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-009-0032-2

Key words