Skip to main content
  • Research article
  • Published:

Switching p53-dependent growth arrest to apoptosis via the inhibition of DNA damage-activated kinases

Abstract

Cisplatin and doxorubicin are widely used anticancer drugs that cause DNA damage, which activates the ATM-Chk2-p53 pathway in cancer cells. This activation leads to cell cycle block or apoptosis, depending on the nature of the DNA damage. In an attempt to enhance the effects of these agents, we inhibited ATM/ATR and Chk2, which are known upstream regulators of p53. The cancer cell lines A2780 and ARN8, bearing the wild-type p53 protein, were used to study changes in p53 activation and trans-activation. Our results suggest that the G1-checkpoint, normally activated by DNA damage, is functionally overcome by the action of kinase inhibitors that sensitize cells to apoptosis. Both inhibitors show these effects, albeit with variable intensity in different cell lines, which is promising for other studies and theoretically for use in clinical practice.

Abbreviations

cisPt:

cisplatin

dox:

doxorubicin

DSB:

double-strand break

inh 1:

CGK733 inhibitor ATM/ATR

inh 2:

Chk2 inhibitor II

qRT-PCR:

quantitative real-time polymerase chain reaction

References

  1. Ko, L.J. and Prives, C. p53: puzzle and paradigm. Genes Dev. 10 (1996) 1054–1072.

    Article  CAS  PubMed  Google Scholar 

  2. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88 (1997) 323–331.

    Article  CAS  PubMed  Google Scholar 

  3. Barak, Y., Juven, T., Haffner, R. and Oren, M. mdm2 expression is induced by wild type p53 activity. EMBO J. 12 (1993) 461–468.

    CAS  PubMed  Google Scholar 

  4. Wu, X., Bayle, J.H., Olson, D. and Levine, A.J. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7 (1993) 1126–1132.

    Article  CAS  PubMed  Google Scholar 

  5. Lane, D.P. Cancer. p53, guardian of the genome. Nature 358 (1992) 15–16.

    Article  CAS  PubMed  Google Scholar 

  6. Saito, S., Goodarzi, A.A., Higashimoto, Y., Noda, Y., Lees-Miller, S.P., Appella, E. and Anderson, C.W. ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J. Biol. Chem. 277 (2002) 12491–12494.

    Article  CAS  PubMed  Google Scholar 

  7. Siliciano, J.D., Canman, C.E., Taya, Y., Sakaguchi, K., Appella, E. and Kastan, M.B. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11 (1997) 3471–3481.

    Article  CAS  PubMed  Google Scholar 

  8. Bartek, J. and Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 3 (2003) 421–429.

    Article  CAS  PubMed  Google Scholar 

  9. Fedier, A., Schlamminger, M., Schwarz, V.A., Haller, U., Howell, S.B. and Fink, D. Loss of atm sensitises p53-deficient cells to topoisomerase poisons and antimetabolites. Ann. Oncol. 14 (2003) 938–945.

    Article  CAS  PubMed  Google Scholar 

  10. Shiloh, Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci. 31 (2006) 402–410.

    Article  CAS  PubMed  Google Scholar 

  11. Canman, C.E., Wolff, A.C., Chen, C.Y., Fornace, A.J., Jr. and Kastan, M.B. The p53-dependent G1 cell cycle checkpoint pathway and ataxiatelangiectasia. Cancer Res. 54 (1994) 5054–5058.

    CAS  PubMed  Google Scholar 

  12. Canman, C.E., Lim, D.S., Cimprich, K.A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M.B. and Siliciano, J.D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281 (1998) 1677–1679.

    Article  CAS  PubMed  Google Scholar 

  13. Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C.W., Chessa, L., Smorodinsky, N.I., Prives, C., Reiss, Y., Shiloh, Y. and Ziv, Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281 (1998) 1674–1677.

    Article  CAS  PubMed  Google Scholar 

  14. Hirao, A., Kong, Y.Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., Liu, D., Elledge, S.J. and Mak, T.W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287 (2000) 1824–1827.

    Article  CAS  PubMed  Google Scholar 

  15. Lin, W.C., Lin, F.T. and Nevins, J.R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15 (2001) 1833–1844.

    CAS  PubMed  Google Scholar 

  16. Muller, P., Ceskova, P. and Vojtesek, B. Hsp90 is essential for restoring cellular functions of temperature-sensitive p53 mutant protein but not for stabilization and activation of wild-type p53: implications for cancer therapy. J. Biol. Chem. 280 (2005) 6682–6691.

    Article  PubMed  Google Scholar 

  17. Vojtesek, B., Bartek, J., Midgley, C.A. and Lane, D.P. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods 151 (1992) 237–244.

    Article  CAS  PubMed  Google Scholar 

  18. Blaydes, J.P. and Hupp, T.R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene 17 (1998) 1045–1052.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, J., Marechal, V. and Levine, A.J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell Biol. 13 (1993) 4107–4114.

    CAS  PubMed  Google Scholar 

  20. Sheard, M.A., Krammer, P.H. and Zaloudik, J. Fractionated gamma-irradiation renders tumour cells more responsive to apoptotic signals through CD95. Br. J. Cancer 80 (1999) 1689–1696.

    Article  CAS  PubMed  Google Scholar 

  21. Sheard, M.A., Vojtesek, B., Janakova, L., Kovarik, J. and Zaloudik, J. Upregulation of Fas (CD95) in human p53wild-type cancer cells treated with ionizing radiation. Int. J. Cancer 73 (1997) 757–762.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, D. and Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4 (2005) 307–320.

    Article  CAS  PubMed  Google Scholar 

  23. Siddik, Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22 (2003) 7265–7279.

    Article  CAS  PubMed  Google Scholar 

  24. Kurz, E.U., Douglas, P. and Lees-Miller, S.P. Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J. Biol. Chem. 279 (2004) 53272–53281.

    Article  CAS  PubMed  Google Scholar 

  25. McHugh, P.J., Spanswick, V.J. and Hartley, J.A. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2 (2001) 483–490.

    Article  CAS  PubMed  Google Scholar 

  26. Kartalou, M. and Essigmann, J.M. Recognition of cisplatin adducts by cellular proteins. Mutat. Res. 478 (2001) 1–21.

    CAS  PubMed  Google Scholar 

  27. Chaney, S.G., Campbell, S.L., Bassett, E. and Wu, Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev. Oncol. Hematol. 53 (2005) 3–11.

    Article  PubMed  Google Scholar 

  28. Dronkert, M.L. and Kanaar, R. Repair of DNA interstrand cross-links. Mutat. Res. 486 (2001) 217–247.

    CAS  PubMed  Google Scholar 

  29. Damia, G., Filiberti, L., Vikhanskaya, F., Carrassa, L., Taya, Y., D’Incalci, M. and Broggini, M. Cisplatinum and taxol induce different patterns of p53 phosphorylation. Neoplasia 3 (2001) 10–16.

    Article  CAS  PubMed  Google Scholar 

  30. Khanna, K.K., Keating, K.E., Kozlov, S., Scott, S., Gatei, M., Hobson, K., Taya, Y., Gabrielli, B., Chan, D., Lees-Miller, S.P. and Lavin, M.F. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat. Genet. 20 (1998) 398–400.

    Article  CAS  PubMed  Google Scholar 

  31. Lakin, N.D., Hann, B.C. and Jackson, S.P. The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 18 (1999) 3989–3995.

    Article  CAS  PubMed  Google Scholar 

  32. Tibbetts, R.S., Brumbaugh, K.M., Williams, J.M., Sarkaria, J.N., Cliby, W.A., Shieh, S.Y., Taya, Y., Prives, C. and Abraham, R.T. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13 (1999) 152–157.

    Article  CAS  PubMed  Google Scholar 

  33. Chehab, N.H., Malikzay, A., Appel, M. and Halazonetis, T.D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14 (2000) 278–288.

    CAS  PubMed  Google Scholar 

  34. Chehab, N.H., Malikzay, A., Stavridi, E.S. and Halazonetis, T.D. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 13777–13782.

    Article  CAS  PubMed  Google Scholar 

  35. Shieh, S.Y., Ikeda, M., Taya, Y. and Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91 (1997) 325–334.

    Article  CAS  PubMed  Google Scholar 

  36. Delia, D., Fontanella, E., Ferrario, C., Chessa, L. and Mizutani, S. DNA damage-induced cell-cycle phase regulation of p53 and p21waf1 in normal and ATM-defective cells. Oncogene 22 (2003) 7866–7869.

    Article  CAS  PubMed  Google Scholar 

  37. Hill, R., Bodzak, E., Blough, M.D. and Lee, P.W. p53 Binding to the p21 promoter is dependent on the nature of DNA damage. Cell Cycle 7 (2008) 2535–2543.

    CAS  PubMed  Google Scholar 

  38. Noda, A., Ning, Y., Venable, S.F., Pereira-Smith, O.M. and Smith, J.R. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 211 (1994) 90–98.

    Article  CAS  PubMed  Google Scholar 

  39. Lu, Y., Tatsuka, M., Takebe, H. and Yagi, T. Involvement of cyclin-dependent kinases in doxorubicin-induced apoptosis in human tumor cells. Mol. Carcinog. 29 (2000) 1–7.

    Article  PubMed  Google Scholar 

  40. Lu, Y., Yamagishi, N., Yagi, T. and Takebe, H. Mutated p21(WAF1/CIP1/SDI1) lacking CDK-inhibitory activity fails to prevent apoptosis in human colorectal carcinoma cells. Oncogene 16 (1998) 705–712.

    Article  CAS  PubMed  Google Scholar 

  41. Luo, Y., Hurwitz, J. and Massague, J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 375 (1995) 159–161.

    Article  CAS  PubMed  Google Scholar 

  42. Tang, J.J., Shen, C. and Lu, Y.J. Requirement for pre-existing of p21 to prevent doxorubicin-induced apoptosis through inhibition of caspase-3 activation. Mol. Cell Biochem. 291 (2006) 139–144.

    Article  CAS  PubMed  Google Scholar 

  43. Crescenzi, E., Palumbo, G., de Boer, J. and Brady, H.J. Ataxia telangiectasia mutated and p21CIP1 modulate cell survival of drug-induced senescent tumor cells: implications for chemotherapy. Clin. Cancer Res. 14 (2008) 1877–1887.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Hrstka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hublarova, P., Greplova, K., Holcakova, J. et al. Switching p53-dependent growth arrest to apoptosis via the inhibition of DNA damage-activated kinases. Cell Mol Biol Lett 15, 473–484 (2010). https://doi.org/10.2478/s11658-010-0021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0021-5

Key words