Skip to main content
  • Research Article
  • Published:

The domain structure of Entamoeba α-actinin2

Abstract

Entamoeba histolytica, a major agent of human amoebiasis, expresses two distinct forms of α-actinin, a ubiquitous actin-binding protein that is present in most eukaryotic organisms. In contrast to all metazoan α-actinins, in both isoforms the intervening rod domain that connects the N-terminal actin-binding domain with the C-terminal EF-hands is much shorter. It is suggested that these α-actinins may be involved in amoeboid motility and phagocytosis, so we cloned and characterised each domain of one of these α-actinins to better understand their functional role. The results clearly showed that the domains have properties very similar to those of conventional α-actinins.

Abbreviations

ABD:

actin-binding domain

EF:

EF-hand calcium-binding domain

ROD:

rod domain

SH3:

src homology domain 3

References

  1. Vanacova, S., Liston, D.R., Tachezy, J. and Johnson, P.J. Molecular biology of the amitochondriate parasites, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. Int. J. Parasitol. 33 (2003) 235–255.

    Article  CAS  PubMed  Google Scholar 

  2. WHO/PAHO/UNESCO. WHO/PAHO/UNESCO report. A consultation with experts on amoebiasis. Mexico City, Mexico 28–29 January, 1997. Epidemiol. Bull. 18 (1997) 13–14.

    Google Scholar 

  3. Haque, R., Huston, C.D., Hughes, M., Houpt, E. and Petri, W.A., Jr. Amebiasis. N. Engl. J. Med. 348 (2003) 1565–1573.

    Article  PubMed  Google Scholar 

  4. Stanley, S.L., Jr. Amoebiasis. Lancet 361 (2003) 1025–1034.

    Article  CAS  PubMed  Google Scholar 

  5. Espinosa-Cantellano, M. and Martinez-Palomo, A. Pathogenesis of intestinal amebiasis: from molecules to disease. Clin. Microbiol. Rev. 13 (2000) 318–331.

    Article  CAS  PubMed  Google Scholar 

  6. Santi-Rocca, J., Rigothier, M.C. and Guillen, N. Host-microbe interactions and defense mechanisms in the development of amoebic liver abscesses. Clin. Microbiol. Rev. 22 (2009) 65–75.

    Article  CAS  PubMed  Google Scholar 

  7. Guillen, N. Role of signalling and cytoskeletal rearrangements in the pathogenesis of Entamoeba histolytica. Trends Microbiol. 4 (1996) 191–197.

    Article  CAS  PubMed  Google Scholar 

  8. Meza, I., Talamas-Rohana, P. and Vargas, M.A. The cytoskeleton of Entamoeba histolytica: structure, function, and regulation by signaling pathways. Arch. Med. Res. 37 (2006) 234–243.

    Article  CAS  PubMed  Google Scholar 

  9. Vargas, M., Sansonetti, P. and Guillen, N. Identification and cellular localization of the actin-binding protein ABP-120 from Entamoeba histolytica. Mol. Microbiol. 22 (1996) 849–857.

    Article  CAS  PubMed  Google Scholar 

  10. Ebert, F., Guillen, N., Leippe, M. and Tannich, E. Molecular cloning and cellular localization of an unusual bipartite Entamoeba histolytica polypeptide with similarity to actin binding proteins. Mol. Biochem. Parasitol. 111 (2000) 459–464.

    Article  CAS  PubMed  Google Scholar 

  11. Bailey, G.B., Shen, P.S., Beanan, M.J. and McCoomer, N.E. Actin associated proteins of Entamoeba histolytica. Arch. Med. Res. 23 (1992) 129–132.

    CAS  PubMed  Google Scholar 

  12. Coudrier, E., Amblard, F., Zimmer, C., Roux, P., Olivo-Marin, J.C., Rigothier, M.C. and Guillen, N. Myosin II and the Gal-GalNAc lectin play a crucial role in tissue invasion by Entamoeba histolytica. Cell. Microbiol. 7 (2005) 19–27.

    Article  CAS  PubMed  Google Scholar 

  13. Sahoo, N., Labruyere, E., Bhattacharya, S., Sen, P., Guillen, N. and Bhattacharya, A. Calcium binding protein 1 of the protozoan parasite Entamoeba histolytica interacts with actin and is involved in cytoskeleton dynamics. J. Cell Sci. 117 (2004) 3625–3634.

    Article  CAS  PubMed  Google Scholar 

  14. Vargas, M., Voigt, H., Sansonetti, P. and Guillen, N. Molecular characterization of myosin IB from the lower eukaryote Entamoeba histolytica, a human parasite. Mol. Biochem. Parasitol. 86 (1997) 61–73.

    CAS  PubMed  Google Scholar 

  15. Jain, R., Santi-Rocca, J., Padhan, N., Bhattacharya, S., Guillen, N. and Bhattacharya, A. Calcium-binding protein 1 of Entamoeba histolytica transiently associates with phagocytic cups in a calcium-independent manner. Cell. Microbiol. 10 (2008) 1373–89.

    Article  CAS  PubMed  Google Scholar 

  16. Loftus, B., Anderson, I., Davies, R., Alsmark, U.C., Samuelson, J., Amedeo, P., Roncaglia, P., Berriman, M., Hirt, R.P., Mann, B.J., Nozaki, T., Suh, B., Pop, M., Duchene, M., Ackers, J., Tannich, E., Leippe, M., Hofer, M., Bruchhaus, I., Willhoeft, U., Bhattacharya, A., Chillingworth, T., Churcher, C., Hance, Z., Harris, B., Harris, D., Jagels, K., Moule, S., Mungall, K., Ormond, D., Squares, R., Whitehead, S., Quail, M.A., Rabbinowitsch, E., Norbertczak, H., Price, C., Wang, Z., Guillen, N., Gilchrist, C., Stroup, S.E., Bhattacharya, S., Lohia, A., Foster, P.G., Sicheritz-Ponten, T., Weber, C., Singh, U., Mukherjee, C., El-Sayed, N.M., Petri, W.A., Jr., Clark, C.G., Embley, T.M., Barrell, B., Fraser, C.M. and Hall, N. The genome of the protist parasite Entamoeba histolytica. Nature 433 (2005) 865–868.

    Article  CAS  PubMed  Google Scholar 

  17. Clark, C.G., Alsmark, U.C., Tazreiter, M., Saito-Nakano, Y., Ali, V., Marion, S., Weber, C., Mukherjee, C., Bruchhaus, I., Tannich, E., Leippe, M., Sicheritz-Ponten, T., Foster, P.G., Samuelson, J., Noel, C.J., Hirt, R.P., Embley, T.M., Gilchrist, C.A., Mann, B.J., Singh, U., Ackers, J.P., Bhattacharya, S., Bhattacharya, A., Lohia, A., Guillen, N., Duchene, M., Nozaki, T. and Hall, N. Structure and content of the Entamoeba histolytica genome. Adv. Parasitol. 65 (2007) 51–190.

    Article  CAS  PubMed  Google Scholar 

  18. Blazquez, S., Rigothier, M.C., Huerre, M. and Guillen, N. Initiation of inflammation and cell death during liver abscess formation by Entamoeba histolytica depends on activity of the galactose/N-acetyl-D-galactosamine lectin. Int. J. Parasitol. 37 (2007) 425–433.

    Article  CAS  PubMed  Google Scholar 

  19. Que, X. and Reed, S.L. Cysteine proteinases and the pathogenesis of amebiasis. Clin. Microbiol. Rev. 13 (2000) 196–206.

    Article  CAS  PubMed  Google Scholar 

  20. Moncada, D., Keller, K., Ankri, S., Mirelman, D. and Chadee, K. Antisense inhibition of Entamoeba histolytica cysteine proteases inhibits colonic mucus degradation. Gastroenterology 130 (2006) 721–730.

    Article  CAS  PubMed  Google Scholar 

  21. Tavares, P., Rigothier, M.C., Khun, H., Roux, P., Huerre, M. and Guillen, N. Roles of cell adhesion and cytoskeleton activity in Entamoeba histolytica pathogenesis: a delicate balance. Infect. Immun. 73 (2005) 1771–1778.

    Article  CAS  PubMed  Google Scholar 

  22. Marion, S., Laurent, C. and Guillen, N. Signalization and cytoskeleton activity through myosin IB during the early steps of phagocytosis in Entamoeba histolytica: a proteomic approach. Cell. Microbiol. 7 (2005) 1504–1518.

    Article  CAS  PubMed  Google Scholar 

  23. Santi-Rocca, J., Weber, C., Guigon, G., Sismeiro, O., Coppee, J.Y. and Guillen, N. The lysine- and glutamic acid-rich protein KERP1 plays a role in Entamoeba histolytica liver abscess pathogenesis. Cell. Microbiol. 10 (2008) 202–217.

    CAS  PubMed  Google Scholar 

  24. Seigneur, M., Mounier, J., Prevost, M.C. and Guillen, N. A lysine- and glutamic acid-rich protein, KERP1, from Entamoeba histolytica binds to human enterocytes. Cell. Microbiol. 7 (2005) 569–579.

    Article  CAS  PubMed  Google Scholar 

  25. Sjöblom, B., Salmazo, A. and Djinovic-Carugo, K. Alpha-actinin structure and regulation. Cell Mol Life Sci 65 (2008) 2688–2701.

    Article  PubMed  Google Scholar 

  26. Blanchard, A., Ohanian, V. and Critchley, D. The structure and function of α-actinin. J. Muscle Res. Cell Motil. 10 (1989) 280–289.

    Article  CAS  PubMed  Google Scholar 

  27. Otey, C.A. and Carpen, O. α-actinin revisited: a fresh look at an old player. Cell Motil. Cytoskeleton 58 (2004) 104–111.

    Article  CAS  PubMed  Google Scholar 

  28. Virel, A., Addario, B. and Backman, L. Characterization of Entamoeba histolytica α-actinin2. Mol. Biochem. Parasitol. 154 (2007) 82–89.

    Article  CAS  PubMed  Google Scholar 

  29. Virel, A. and Backman, L. Characterization of Entamoeba histolytica α-actinin. Mol. Biochem. Parasitol. 145 (2006) 11–17.

    Article  CAS  PubMed  Google Scholar 

  30. Virel, A. and Backman, L. A comparative and phylogenetic analysis of the α-actinin rod domain. Mol. Biol. Evol. 24 (2007) 2254–2265.

    Article  CAS  PubMed  Google Scholar 

  31. Gill, S.C. and von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182 (1989) 319–326.

    Article  CAS  PubMed  Google Scholar 

  32. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 (1970) 680–685.

    Article  CAS  PubMed  Google Scholar 

  33. Spudich, J.A. and Watt, S. The regulation of rabbit skeletal muscle contraction. Biochemical studies of the interaction of the tropomyosintroponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246 (1971) 4866–4871.

    CAS  PubMed  Google Scholar 

  34. Petzold, K., Ohman, A. and Backman, L. Folding of the αII-spectrin SH3 domain under physiological salt conditions. Arch. Biochem. Biophys. 474 (2008) 39–47.

    Article  CAS  PubMed  Google Scholar 

  35. Guermeur, Y., Geourjon, C., Gallinari, P. and Deleage, G. Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics 15 (1999) 413–421.

    Article  CAS  PubMed  Google Scholar 

  36. Morrow, J.A., Segall, M.L., Lund-Katz, S., Phillips, M.C., Knapp, M., Rupp, B. and Weisgraber, K.H. Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry 39 (2000) 11657–11666.

    Article  CAS  PubMed  Google Scholar 

  37. Böhm, G., Muhr, R. and Jaenicke, R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 5 (1992) 191–195.

    Article  PubMed  Google Scholar 

  38. Wilson, C.G., Magliery, T.J. and Regan, L. Detecting protein-protein interactions with GFP-fragment reassembly. Nat. Methods 1 (2004) 255–262.

    Article  CAS  PubMed  Google Scholar 

  39. Mabuchi, I., Hamaguchi, Y., Kobayashi, T., Hosoya, H. and Tsukita, S. Alpha-actinin from sea urchin eggs: biochemical properties, interaction with actin, and distribution in the cell during fertilization and cleavage. J. Cell Biol. 100 (1985) 375–383.

    Article  CAS  PubMed  Google Scholar 

  40. Wachsstock, D.H., Schwarz, W.H. and Pollard, T.D. Cross-linker dynamics determine the mechanical properties of actin gels. Biophys. J. 66 (1994) 801–809.

    Article  CAS  PubMed  Google Scholar 

  41. Menhart, N., Mitchell, T., Lusitani, D., Topouzian, N. and Fung, L.W.M. Peptides with more than one 106-amino acid sequence motif are needed to mimic the structural stability of spectrin. J. Biol. Chem. 271 (1996) 30410–30416.

    Article  CAS  PubMed  Google Scholar 

  42. An, X., Guo, X., Zhang, X., Baines, A.J., Debnath, G., Moyo, M., Salomao, M., Bhasin, N., Johnson, C., Discher, D., Gratzer, W.B. and Mohandas, N. Conformational stabilities of the structural repeats of erythroid spectrin and their functional implications. J. Biol. Chem. 281 (2006) 10527–10532.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Backman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Addario, B., Backman, L. The domain structure of Entamoeba α-actinin2. Cell Mol Biol Lett 15, 665–678 (2010). https://doi.org/10.2478/s11658-010-0035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0035-z

Key words