Skip to main content
  • Research Article
  • Published:

Protective effect of intermedin on myocardial cell in a rat model of severe acute pancreatitis

Abstract

Severe acute pancreatitis (SAP) is a common disease with a poor prognosis. Heart failure is one cause of SAP patient death. Intermedin (IMD) is a potent endogenous cardio-protective substance. Administration of exogenous IMD showed beneficial effects in cardiovascular diseases. The aim of this study was to investigate the myocardial damage in SAP and to determine the therapeutic potential of IMD for SAP. Using an SAP rat model, we examined endogenous IMD expression following SAP induction, and determined the effect of IMD on myocardial function, histological morphology, apoptosis-related gene expression, and prognosis. Our results indicated that the cardiac function and histological structure were significantly disrupted in SAP rats. Infusion of exogenous IMD significantly preserved cardiac function and ameliorated myocardial damage. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) revealed that myocardial apoptosis was extensively present in SAP rats, and IMD infusion led to increased expression of the prosurvival factor Bcl-2, but decreased pro-apoptotic factors Bax and caspase-3. In addition, IMD infusion also reversed the change of IMD receptor systems in SAP rat heart tissue. Furthermore, we found that IMD infusion greatly decreased mortality of SAP rats. In conclusion, administration of SAP produced therapeutic effects in SAP through modulating apoptotic and pro-survival gene expression, inhibiting myocardial apoptosis, preserving cardiac function, and a useful therapeutic agent for SAP, and provides us an insight for a clinical trial of IMD for treating human severe acute pancreatitis.

Abbreviations

ADM:

adrenomedullin

CGRP:

calcitonin gene-related peptide

CL:

calcitonin receptor-like receptor

IMD:

intermedin

MODS:

multiple organ dysfunction syndrome

RAMP:

receptor-activity-modifying protein

SAP:

severe acute pancreatitis

TUNEL:

terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

References

  1. Waldthaler, A. Schutte, K. and Malfertheiner, P. Causes and mechanisms in acute pancreatitis. Dig. Dis. 28 (2010) 364–372.

    Article  PubMed  CAS  Google Scholar 

  2. Harper, S.J. and Cheslyn-Curtis, S. Acute pancreatitis. Ann. Clin. Biochem. 48 (2011) 23–37.

    Article  PubMed  CAS  Google Scholar 

  3. McKay, C.J. and Imrie, C.W. The continuing challenge of early mortality in acute pancreatitis. Brit. J. Surg. 91 (2004) 1243–1244.

    Article  PubMed  CAS  Google Scholar 

  4. Gravante, G., Garcea, G., Ong, S.L., Metcalfe, M.S., Berry, D.P., Lloyd, D.M. and Dennison, A.R. Prediction of mortality in acute pancreatitis: a systematic review of the published evidence. Pancreatology 9 (2009) 601–614.

    Article  PubMed  CAS  Google Scholar 

  5. Isenmann, R., Rau, B. and Beger, H.G. Bacterial infection and extent of necrosis are determinants of organ failure in patients with acute necrotizing pancreatitis. Brit. J. Surg. 86 (1999) 1020–1024.

    Article  PubMed  CAS  Google Scholar 

  6. Takeda, K., Matsuno, S., Sunamura, M. and Kobari, M. Surgical aspects and management of acute necrotizing pancreatitis: recent results of a cooperative national survey in Japan. Pancreas 16 (1998) 316–322.

    Article  PubMed  CAS  Google Scholar 

  7. Pandol, S.J., Saluja, A.K., Imrie, C.W. and Banks, P.A. Acute pancreatitis: bench to the bedside. Gastroenterology 132 (2007) 1127–1151.

    Article  PubMed  CAS  Google Scholar 

  8. Darvas, K., Futo, J., Okros, I., Gondos, T., Csomos, A. and Kupcsulik, P. [Principles of intensive care in severe acute pancreatitis in 2008]. Orv. Hetil. 149 (2008) 2211–2220.

    Article  PubMed  Google Scholar 

  9. Yegneswaran, B., Kostis, J.B. and Pitchumoni, C.S. Cardiovascular manifestations of acute pancreatitis. J. Crit. Care 26 (2011) 225.e11–8.

    Article  Google Scholar 

  10. Chang, C.L., Roh, J. and Hsu, S.Y. Intermedin, a novel calcitonin family peptide that exists in teleosts as well as in mammals: a comparison with other calcitonin/intermedin family peptides in vertebrates. Peptides 25 (2004) 1633–1642.

    Article  PubMed  CAS  Google Scholar 

  11. Takei, Y., Hyodo, S., Katafuchi, T. and Minamino, N. Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides 25 (2004) 1643–1656.

    Article  PubMed  CAS  Google Scholar 

  12. Takei, Y., Inoue, K., Ogoshi, M., Kawahara, T., Bannai, H. and Miyano, S. Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator. FEBS Lett. 556 (2004) 53–58.

    Article  PubMed  CAS  Google Scholar 

  13. Roh, J., Chang, C.L., Bhalla, A., Klein, C. and Hsu, S.Y. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J. Biol. Chem. 279 (2004) 7264–7274.

    Article  PubMed  CAS  Google Scholar 

  14. Mizunuma T, K.S. and Kishino Y. Effects of injecting excess arginine on rat pancreas. J. Nutr. 114 (1984) 467–471.

    PubMed  CAS  Google Scholar 

  15. Hegyi, P., Rakonczay, Z., Jr., Sari, R., Gog, C., Lonovics, J., Takacs, T. and Czako, L. L-arginine-induced experimental pancreatitis. World J. Gastroenterol. 10 (2004) 2003–2009.

    PubMed  CAS  Google Scholar 

  16. Ren, Y.S., Yang, J.H., Zhang, J., Pan, C.S., Yang, J., Zhao, J., Pang, Y.Z., Tang, C.S. and Qi, Y.F. Intermedin 1–53 in central nervous system elevates arterial blood pressure in rats. Peptides 27 (2006) 74–79.

    Article  PubMed  CAS  Google Scholar 

  17. Bell, D. and McDermott, B.J. Intermedin (adrenomedullin-2): a novel counterregulatory peptide in the cardiovascular and renal systems. Br. J. Pharmacol. 153Suppl 1 (2008) S247–262.

    PubMed  CAS  Google Scholar 

  18. Zhao, Y., Bell, D., Smith, L.R., Zhao, L., Devine, A.B., McHenry, E.M. Nicholls, D.P., and McDermott, B.J. Differential expression of components of the cardiomyocyte adrenomedullin/intermedin receptor system following blood pressure reduction in nitric oxide-deficient hypertension. J. Pharmacol. Exp. Ther. 316 (2006) 1269–1281.

    Article  PubMed  CAS  Google Scholar 

  19. Cobelens, P.M., van Putte, B.P., Kavelaars, A., Heijnen, C.J. and Kesecioglu, J. Inflammatory consequences of lung ischemia-reperfusion injury and lowpressure ventilation. J. Surg. Res. 153 (2009) 295–301.

    Article  PubMed  Google Scholar 

  20. Yang, K.M., Pyo, J.O., Kim, G.Y., Yu, R., Han, I.S., Ju, S.A., Kim, W.H. and Kim, B.S. Capsaicin induces apoptosis by generating reactive oxygen species and disrupting mitochondrial transmembrane potential in human colon cancer cell lines. Cell. Mol. Biol. Lett. 14 (2009) 497–510.

    Article  PubMed  CAS  Google Scholar 

  21. Nagae, T., Mukoyama, M., Sugawara, A., Mori, K., Yahata, K., Kasahara, M., Suganami, T., Makino, H., Fujinaga, Y., Yoshioka, T., Tanaka, I. and Nakao, K. Rat receptor-activity-modifying proteins (RAMPs) for adrenomedullin/CGRP receptor: cloning and upregulation in obstructive nephropathy. Biochem. Biophys. Res. Commun. 270 (2000) 89–93.

    Article  PubMed  CAS  Google Scholar 

  22. Jia, Y.X., Yang, J.H., Pan, C.S., Geng, B., Zhang, J., Xiao, Y., Zhao, J., Gerns, H., Yang, J., Chang, J.K., Wen, J.K., Tang, C.S. and Qi, Y.F. Intermedin 1–53 protects the heart against isoproterenol-induced ischemic injury in rats. Eur. J. Pharmacol. 549 (2006) 117–123.

    Article  PubMed  CAS  Google Scholar 

  23. Gottlieb, R.A., Burleson, K.O., Kloner, R.A., Babior, B.M. and Engler, R.L. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J. Clin. Invest. 94 (1994) 1621–1628.

    Article  PubMed  CAS  Google Scholar 

  24. Sargent, S. Pathophysiology, diagnosis and management of acute pancreatitis. Br. J. Nurs. 15 (2006) 999–1005.

    PubMed  Google Scholar 

  25. Yang, J.H., Jia, Y.X., Pan, C.S., Zhao, J., Ouyang, M., Yang, J., Chang, J.K., Tang, C.S. and Qi, Y.F. Effects of intermedin(1–53) on cardiac function and ischemia/reperfusion injury in isolated rat hearts. Biochem. Biophys. Res. Commun. 327 (2005) 713–719.

    Article  PubMed  CAS  Google Scholar 

  26. Holleyman, C.R. and Larson, D.F. Apoptosis in the ischemic reperfused myocardium. Perfusion 16 (2001) 491–502.

    PubMed  CAS  Google Scholar 

  27. Pan, C.S., Yang, J.H., Cai, D.Y., Zhao, J., Gerns, H., Yang, J., Chang, J.K., Tang, C.S. and Qi, Y.F. Cardiovascular effects of newly discovered peptide intermedin/adrenomedullin 2. Peptides 26 (2005) 1640–1646.

    Article  PubMed  CAS  Google Scholar 

  28. Grossini, E., Molinari, C., Mary, D.A., Uberti, F., Caimmi, P.P. and Vacca, G. Intracoronary intermedin 1–47 augments cardiac perfusion and function in anesthetized pigs: role of calcitonin receptors and beta-adrenoreceptor-mediated nitric oxide release. J. Appl. Physiol. 107 (2009) 1037–1050.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Zeng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, X., Cao, Y., Xue, P. et al. Protective effect of intermedin on myocardial cell in a rat model of severe acute pancreatitis. Cell Mol Biol Lett 16, 462–476 (2011). https://doi.org/10.2478/s11658-011-0020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-011-0020-1

Key words