Skip to main content
  • Review
  • Published:

ERp57/GRP58: A protein with multiple functions

Abstract

The protein ERp57/GRP58 is a stress-responsive protein and a component of the protein disulfide isomerase family. Its functions in the endoplasmic reticulum are well known, concerning mainly the proper folding and quality control of glycoproteins, and participation in the assembly of the major histocompatibility complex class 1. However, ERp57 is present in many other subcellular locations, where it is involved in a variety of functions, primarily suggested by its participation in complexes with other proteins and even with DNA. While in some instances these roles need to be confirmed by further studies, a great number of observations support the participation of ERp57 in signal transduction from the cell surface, in regulatory processes taking place in the nucleus, and in multimeric protein complexes involved in DNA repair.

Abbreviations

1α,25-(OH)2D3 :

1α,25-dihydroxycholecalciferol and calcitriol

APE/Ref-1:

apurinic (apyrimidinic) endonuclease/redox-factor 1

CRP:

C-reactive protein

ER:

endoplasmic reticulum

ERAD:

endoplasmic reticulum associated protein degradation

mTORC:

mammalian target of rapamycin complex

PDI:

protein disulfide isomerase

PKC:

protein kinases C

PLA2 :

phospholipases A2

Plc:

peptide loading complex

PLC:

phospholipase C

PrPSC :

scrapie prion protein (misfolded prions)

STAT:

signal transducer and activator of transcription

STAT3:

signal transducer and activator of transcription 3

SV40 virus:

simian virus 40

VDR:

vitamin D receptor

References

  1. Turano, C., Coppari, S., Altieri, F. and Ferraro, A. Proteins of the PDI family: unpredicted non-ER locations and functions. J. Cell. Physiol. 193 (2002) 154–163.

    Article  PubMed  CAS  Google Scholar 

  2. Khanal, R.C. and Nemere, I. The ERp57/GRp58/1,25D3-MARRS receptor: multiple functional roles in diverse cell systems. Curr. Med. Chem. 14 (2007) 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  3. Coe, H. and Michalak, M. ERp57, a multifunctional endoplasmic reticulum resident oxidoreductase. Int. J. Biochem. Cell Biol. 42 (2010) 796–799.

    Article  PubMed  CAS  Google Scholar 

  4. Bennett, C.F., Balcarek, J.M., Varrichio, A. and Crooke, S.T. Molecular cloning and complete amino-acid sequence of form-I phosphoinositidespecific phospholipase C. Nature 334 (1988) 268–270.

    Article  PubMed  CAS  Google Scholar 

  5. Lee, A.S. The accumulation of three specific proteins related to glucoseregulated proteins in a temperature-sensitive hamster mutant cell line K12. J. Cell. Physiol. 106 (1981) 119–125.

    Article  PubMed  CAS  Google Scholar 

  6. Ferrari, D.M., Söling, H.D. The protein disulphide-isomerase family: unravelling a string of folds. Biochem. J. 339 (1999) 1–10.

    Article  PubMed  CAS  Google Scholar 

  7. Silvennoinen, L., Myllyharju, J., Ruoppolo, M., Orrù, S., Caterino, M., Kivirikko, K.I. and Koivunen, P. Identification and characterization of structural domains of human ERp57: association with calreticulin requires several domains. J. Biol. Chem. 279 (2004) 13607–13615.

    Article  PubMed  CAS  Google Scholar 

  8. Russell, S.J., Ruddock, L.W., Salo, K.E., Oliver, J.D., Roebuck, Q.P., Llewellyn, D.H., Roderick, H.L., Koivunen, P., Myllyharju, J. and High, S. The primary substrate binding site in the b’ domain of ERp57 is adapted for endoplasmic reticulum lectin association. J. Biol. Chem. 279 (2004) 18861–18869.

    Article  PubMed  CAS  Google Scholar 

  9. Kozlov, G., Maattanen, P., Schrag, J.D., Pollock, S., Cygler, M., Nagar, B., Thomas, D.Y. and Gehring, K. Crystal structure of the bb’ domains of the protein disulfideisomerase ERp57. Structure 14 (2006) 1331–1339.

    Article  PubMed  CAS  Google Scholar 

  10. Klappa, P., Ruddock, L.W., Darby, N.J. and Freedman, R.B. The b′ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 17 (1998) 927–935.

    Article  PubMed  CAS  Google Scholar 

  11. Gaucci, E., Chichiarelli, S., Grillo, C., Del Vecchio, E., Eufemi, M. and Turano, C. The binding of antibiotics to ERp57/GRP58. J. Antibiot. (Tokyo) 61 (2008) 400–402.

    Article  CAS  Google Scholar 

  12. Dick, T.P., Bangia, N., Peaper, D.R. and Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 16 (2002) 87–98.

    Article  PubMed  CAS  Google Scholar 

  13. Grillo, C., D’Ambrosio, C., Scaloni, A., Maceroni, M., Merluzzi, S., Turano, C. and Altieri, F. Cooperative activity of Ref-1/APE and ERp57 in reductive activation of transcription factors. Free Radic. Biol. Med. 41 (2006) 1113–1123.

    Article  PubMed  CAS  Google Scholar 

  14. Donella-Deana, A., James, P., Staudenmann, W., Cesaro, L., Marin, O., Brunati, A.M., Ruzzene, M. and Pinna, L.A. Isolation from spleen of a 57-kDa protein substrate of the tyrosine kinase Lyn. Identification as a protein related to protein disulfide-isomerase and localisation of the phosphorylation sites. Eur. J. Biochem. 235 (1996) 18–25.

    Article  PubMed  CAS  Google Scholar 

  15. Kita, K., Okumura, N., Takao, T., Watanabe, M., Matsubara, T., Nishimura, O. and Nagai, K. Evidence for phosphorylation of rat liver glucose-regulated protein 58, GRP58/ERp57/ER-60, induced by fasting and leptin. FEBS Lett. 580 (2006) 199–205.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou, L., McKenzie, B.A., Eccleston, E.D. Jr, Srivastava, S.P., Chen, N., Erickson, R.R. and Holtzman, J.L. The covalent binding of [14C]acetaminophen to mouse hepatic microsomal proteins: the specific binding to calreticulin and the two forms of the thiol:protein disulfide oxidoreductases. Chem. Res. Toxicol. 9 (1996) 1176–1182.

    Article  PubMed  CAS  Google Scholar 

  17. Martin, J.L., Pumford, N.R., LaRosa, A.C., Martin, B.M., Gonzaga, H.M., Beaven, M.A. and Pohl, L.R. A metabolite of halothane covalently binds to an endoplasmic reticulum protein that is highly homologous to phosphatidylinositol-specific phospholipase C-alpha but has no activity. Biochem. Biophys. Res. Commun. 178 (1991) 679–685.

    Article  PubMed  CAS  Google Scholar 

  18. Laragione, T., Gianazza, E., Tonelli, R., Bigini, P., Mennini, T., Casoni, F., Massignan, T., Bonetto, V. and Ghezzi, P. Regulation of redox-sensitive exofacial protein thiols in CHO cells. Biol. Chem. 387 (2006) 1371–1376.

    Article  PubMed  CAS  Google Scholar 

  19. van der Vlies, D., Pap, E.H., Post, J.A., Celis, J.E. and Wirtz, K.W. Endoplasmic reticulum resident proteins of normal human dermal fibroblasts are the major targets for oxidative stress induced by hydrogen peroxide. Biochem. J. 366 (2002) 825–830.

    PubMed  Google Scholar 

  20. Grillo, C., D’Ambrosio, C., Consalvi, V., Chiaraluce, R., Scaloni, A., Maceroni, M., Eufemi, M. and Altieri, F. DNA-binding activity of the ERp57 C-terminal domain is related to a redox-dependent conformational change. J. Biol. Chem. 282 (2007) 10299–10310.

    Article  PubMed  CAS  Google Scholar 

  21. Freedman, R.B., Hirst, T.R. and Tuite, M.F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem. Sci. 19 (1994) 331–336.

    Article  PubMed  CAS  Google Scholar 

  22. Okudo, H., Kito, M., Moriyama, T., Ogawa, T. and Urade, R. Transglutaminase activity of human ER-60. Biosci. Biotechnol. Biochem. 66 (2002) 1423–1426.

    Article  PubMed  CAS  Google Scholar 

  23. Urade, R., Nasu, M., Moriyama, T., Wada, K. and Kito, M. Protein degradation by the phosphoinositide-specific phospholipase C-alpha family from rat liver endoplasmic reticulum. J. Biol. Chem. 267 (1992) 15152–15159.

    PubMed  CAS  Google Scholar 

  24. Murthy, M.S. and Pande, S.V. A stress-regulated protein, GRP58, a member of thioredoxin superfamily, is a carnitine palmitoyltransferase isoenzyme. Biochem. J. 304 (1994) 31–34.

    PubMed  CAS  Google Scholar 

  25. Oliver, J.D., van der Wal, F.J., Bulleid, N.J. and High, S. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275 (1997) 86–88.

    Article  PubMed  CAS  Google Scholar 

  26. Molinari, M. and Helenius, A. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature 402 (1999) 90–93.

    Article  PubMed  CAS  Google Scholar 

  27. Oliver, J.D., Roderick, H.L., Llewellyn, D.H. and High, S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell. 10 (1999) 2573–2582.

    PubMed  CAS  Google Scholar 

  28. Jessop, C.E., Chakravarthi, S., Garbi, N., Hämmerling, G.J., Lovell, S. and Bulleid, N.J. ERp57 is essential for efficient folding of glycoproteins sharing common structural domains. EMBO J. 26 (2007) 28–40

    Article  PubMed  CAS  Google Scholar 

  29. Lindquist, J.A., Jensen, O.N., Mann, M. and Hämmerling, G.J. ER-60, a chaperone with thiol-dependent reductase activity involved in MHC class I assembly. EMBO J. 17 (1998) 2186–2195.

    Article  PubMed  CAS  Google Scholar 

  30. Dick, T.P., Bangia, N., Peaper, D.R. and Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 16 (2002) 87–98.

    Article  PubMed  CAS  Google Scholar 

  31. Dong, G., Wearsch, P.A., Peaper, D.R., Cresswell, P. and Reinisch, K.M. Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thioloxidoreductase heterodimer. Immunity 30 (2009) 21–32.

    Article  PubMed  Google Scholar 

  32. Zhang, Y., Kozlov, G., Pocanschi, C.L., Brockmeier, U., Ireland, B.S., Maattanen, P., Howe, C., Elliott, T., Gehring, K. and Williams, D.B. ERp57 does not require interactions with calnexin and calreticulin to promote assembly of class I histocompatibility molecules, and it enhances peptide loading independently of its redox activity. J. Biol. Chem. 284 (2009) 10160–10173.

    Article  PubMed  CAS  Google Scholar 

  33. Peaper, D.R. and Cresswell, P. The redox activity of ERp57 is not essential for its functions in MHC class I peptide loading. Proc. Natl. Acad. Sci. USA 105 (2008) 10477–10482.

    Article  PubMed  CAS  Google Scholar 

  34. Garbi, N., Tanaka, S., Momburg, F., and Hammerling, G.J. Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nat. Immunol. 7 (2006) 93–102.

    Article  PubMed  CAS  Google Scholar 

  35. Li, Y. and Camacho, P. Ca2+-dependent redox modulation of SERCA 2b by ERpERp57. J. Cell Biol. 164 (2004) 35–46.

    Article  PubMed  CAS  Google Scholar 

  36. Schelhaas, M., Malmström, J., Pelkmans, L., Haugstetter, J., Ellgaard, L., Grünewald, K. and Helenius, A. Simian Virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131 (2007) 516–529.

    Article  PubMed  CAS  Google Scholar 

  37. Desjardins, M. ER-mediated phagocytosis: a new membrane for new functions. Nat. Rev. Immunol. 3 (2003) 280–291.

    Article  PubMed  CAS  Google Scholar 

  38. Frickel, E.M., Riek, R., Jelesarov, I., Helenius, A., Wuthrich, K. and Ellgaard, L. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA 99 (2002) 1954–1959.

    Article  PubMed  CAS  Google Scholar 

  39. Hirano, N., Shibasaki, F., Sakai, R., Tanaka, T., Nishida, J., Yazaki, Y., Takenawa, T. and Hirai, H. Molecular cloning of the human glucoseregulated protein ERp57/GRP58, a thiol-dependent reductase. Identification of its secretory form and inducible expression by the oncogenic transformation. Eur. J. Biochem. 234 (1995) 336–342.

    Article  PubMed  CAS  Google Scholar 

  40. Johnson, S., Michalak, M., Opas, M. and Eggleton, P. The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol. 11 (2001) 122–129.

    Article  PubMed  CAS  Google Scholar 

  41. Afshar, N., Black, B.E. and Paschal, B.M. Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol. Mol. Cell. Biol. 25 (2005) 8844–8853.

    Article  PubMed  CAS  Google Scholar 

  42. Ellerman, D.A., Myles, D.G. And Primakoff P. A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57. Dev. Cell. 10 (2006) 831–837.

    Article  PubMed  CAS  Google Scholar 

  43. Nemere, I., Farach-Carson, M.C., Rohe, B., Sterling, T.M., Norman, A.W., Boyan, B.D. and Safford, S.E. Ribozyme knockdown functionally links a 1,25(OH)2D3 membrane binding protein (1,25D3-MARRS) and phosphate uptake in intestinal cells. Proc. Natl. Acad. Sci. USA 101 (2004) 7392–7397.

    Article  PubMed  CAS  Google Scholar 

  44. Boyan, B.D., Wong, K.L., Fang, M. and Schwartz, Z. 1alpha,25(OH)2D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60 activated matrix vesicle metalloproteinases. J. Steroid. Biochem. Mol. Biol. 103 (2007) 467–472.

    Article  PubMed  CAS  Google Scholar 

  45. Chen, J., Olivares-Navarrete, R., Wang, Y., Herman, T.R., Boyan, B.D. and Schwartz, Z. Protein-disulfide isomerase-associated 3 (Pdia3) mediates the membrane response to 1,25-dihydroxyvitamin D3 in osteoblasts. J. Biol. Chem. 285 (2010) 37041–37050.

    Article  PubMed  CAS  Google Scholar 

  46. Tunsophon, S. and Nemere, I. Protein kinase C isotypes in signal transduction for the 1,25D3-MARRS receptor (ERp57/PDIA3) in steroid hormone-stimulated phosphate uptake. Steroids 75 (2010) 307–313.

    Article  PubMed  CAS  Google Scholar 

  47. Nemere, I., Garbi, N., Hämmerling, G.J. and Khanal, R.C. Intestinal cell calcium uptake and the targeted knockout of the 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) receptor/PDIA3/Erp57. J. Biol. Chem. 285 (2010) 31859–31866.

    Article  PubMed  CAS  Google Scholar 

  48. Richard, C.L., Farach-Carson, M.C., Rohe, B., Nemere, I. and Meckling, K.A. Involvement of 1,25D3-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells. Exp. Cell Res. 316 (2010) 695–703.

    Article  PubMed  CAS  Google Scholar 

  49. Wu, W., Beilhartz, G., Roy, Y., Richard, C.L., Curtin, M., Brown, L., Cadieux, D., Coppolino, M., Farach-Carson, M.C., Nemere, I. and Meckling, K.A. Nuclear translocation of the 1,25D3-MARRS (membrane associated rapid response to steroids) receptor protein and NFkappaB in differentiating NB4 leukemia cells. Exp. Cell Res. 316 (2010) 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  50. Mah, S.J., Ades, A.M., Mir, R., Siemens, I.R., Williamson, J.R. and Fluharty, S.J. Association of solubilized angiotensin II receptors with phospholipase C-alpha in murine neuroblastoma NIE-115 cells. Mol. Pharmacol. 42 (1992) 217–226.

    PubMed  CAS  Google Scholar 

  51. Aiyar, N., Bennett, C.F., Nambi, P., Valinski, W., Angioli, M., Minnich, M. and Crooke, S.T. Solubilization of rat liver vasopressin receptors as a complex with a guanine-nucleotide-binding protein and phosphoinositidespecific phospholipase C. Biochem. J. 261 (1989) 63–70.

    PubMed  CAS  Google Scholar 

  52. Altieri, F., Maras, B., Eufemi, M., Ferraro, A. and Turano, C. Purification of a 57kDa nuclear matrix protein associated with thiol:protein-disulfide oxidoreductase and phospholipase C activities. Biochem. Biophys. Res. Commun. 194 (1993) 992–1000.

    Article  PubMed  CAS  Google Scholar 

  53. Srivastava, S.P., Fuchs, J.A. and Holtzman, J.L. The reported cDNA sequence for phospholipase C alpha encodes protein disulfide isomerase, isozyme Q-2 and not phospholipase-C. Biochem. Biophys. Res. Commun. 193 (1993) 971–978.

    Article  PubMed  CAS  Google Scholar 

  54. Tokutomi, Y., Araki, N., Kataoka, K., Yamamoto, E. and Kim-Mitsuyama, S. Oxidation of Prx2 and phosphorylation of GRP58 by angiotensin II in human coronary smooth muscle cells identified by 2D-DIGE analysis. Biochem. Biophys. Res. Commun. 364 (2007) 822–830.

    Article  PubMed  CAS  Google Scholar 

  55. Zhu, L., Santos, N.C. and Kim, K.H. Disulfide isomerase glucose-regulated protein 58 is required for the nuclear localization and degradation of retinoic acid receptor alpha. Reproduction 139 (2010) 717–731.

    Article  PubMed  CAS  Google Scholar 

  56. Ndubuisi, M.I., Guo, G.G., Fried, V.A., Etlinger, J.D. and Sehgal, P.B. Cellular physiology of STAT3: Where’s the cytoplasmic monomer? J. Biol. Chem. 274 (1999) 25499–25509.

    Article  PubMed  CAS  Google Scholar 

  57. Sehgal, P.B., Guo, G.G., Shah, M., Kumar, V. and Patel, K. Cytokine signaling: STATS in plasma membrane rafts. J. Biol. Chem. 277 (2002) 12067–12074.

    Article  PubMed  CAS  Google Scholar 

  58. Guo, G.G., Patel, K., Kumar, V., Shah, M., Fried, V.A., Etlinger, J.D. and Sehgal, P.B. Association of the chaperone glucose-regulated protein 58 (GRP58/ER-60/ERp57) with Stat3 in cytosol and plasma membrane complexes. J. Interferon Cytokine Res. 22 (2002) 555–563.

    Article  PubMed  CAS  Google Scholar 

  59. Eufemi, M., Coppari, S., Altieri, F., Grillo, C., Ferraro, A. and Turano, C. ERp57 is present in STAT3-DNA complexes. Biochem. Biophys. Res. Commun. 323 (2004) 1306–1312.

    Article  PubMed  CAS  Google Scholar 

  60. Chichiarelli, S., Gaucci, E., Ferraro, A., Grillo, C., Altieri, F., Cocchiola, R., Arcangeli, V., Turano, C. and Eufemi, M. Role of ERp57 in the signaling and transcriptional activity of STAT3 in a melanoma cell line. Arch. Biochem. Biophys. 494 (2010) 178–183.

    Article  PubMed  CAS  Google Scholar 

  61. Wyse, B., Ali, N. and Ellison, D.H. Interaction with grp58 increases activity of the thiazide-sensitive Na-Cl cotransporter. Am. J. Physiol. Renal Physiol. 282 (2002) F424–430.

    PubMed  CAS  Google Scholar 

  62. Panaretakis, T., Joza, N., Modjtahedi, N., Tesniere, A., Vitale, I., Durchschlag, M., Fimia, G.M., Kepp, O., Piacentini, M., Froehlich, K.U., van Endert, P., Zitvogel, L., Madeo, F. and Kroemer, G. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ. 15 (2008) 1499–1509.

    Article  PubMed  CAS  Google Scholar 

  63. Obeid, M. ERP57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin. J. Immunol. 181 (2008) 2533–2543.

    PubMed  CAS  Google Scholar 

  64. Ramírez-Rangel, I., Bracho-Valdés, I., Vázquez-MacÍas, A., Carretero-Ortega, J., Reyes-Cruz, G. and Vázquez-Prado, J. Regulation of mTORC1 complex assembly and signaling by GRp58/ERp57. Mol. Cell. Biol. 31 (2011) 1657–1671.

    Article  PubMed  Google Scholar 

  65. Sarbassov, D.D. and Sabatini, D.M. Redox regulation of the nutrientsensitive raptor-mTOR pathway and complex. J. Biol. Chem. 280 (2005) 39505–39509.

    Article  PubMed  CAS  Google Scholar 

  66. Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L. and Elazar, Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26 (2007) 1749–1760.

    Article  PubMed  CAS  Google Scholar 

  67. Ohtani, H., Wakui, H., Ishino, T., Komatsuda, A. and Miura, A.B. An isoform of protein disulfide isomerase is expressed in the developing acrosome of spermatids during rat spermiogenesis and is transported into the nucleus of mature spermatids and epididymal spermatozoa. Histochemistry 100 (1993) 423–429.

    Article  PubMed  CAS  Google Scholar 

  68. Coppari, S., Altieri, F., Ferraro, A., Chichiarelli, S., Eufemi, M. and Turano, C. Nuclear localization and DNA interaction of protein disulfide isomerase ERp57 in mammalian cells. J. Cell. Biochem. 85 (2002) 325–333.

    Article  PubMed  CAS  Google Scholar 

  69. Krynetski, E.Y., Krynetskaia, N.F., Bianchi, M.E. and Evans, W.E. A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues. Cancer Res. 63 (2003) 100–106.

    PubMed  CAS  Google Scholar 

  70. Krynetskaia, N.F., Phadke, M.S., Jadhav, S.H. and Krynetskiy, E.Y. Chromatin-associated proteins HMGB1/2 and PDIA3 trigger cellular response to chemotherapy-induced DNA damage. Mol. Cancer Ther. 8 (2009) 864–872.

    Article  PubMed  CAS  Google Scholar 

  71. Cicchillitti, L., Di Michele, M., Urbani, A., Ferlini, C., Donat, M.B., Scambia, G. and Rotilio, D. Comparative proteomic analysis of paclitaxel sensitive A2780 epithelial ovarian cancer cell line and its resistant counterpart A2780TC1 by 2D-DIGE: the role of ERp57. J. Proteome Res. 8 (2009) 1902–1912.

    Article  PubMed  CAS  Google Scholar 

  72. Cicchillitti, L., Della Corte, A., Di Michele, M., Donati, M.B., Rotilio, D. and Scambia, G. Characterisation of a multimeric protein complex associated with ERp57 within the nucleus in paclitaxel-sensitive and -resistant epithelial ovarian cancer cells: the involvement of specific conformational states of beta-actin. Int. J. Oncol. 37 (2010) 445–454.

    Article  PubMed  CAS  Google Scholar 

  73. Ferraro, A., Altieri, F., Coppari, S., Eufemi, M., Chichiarelli, S. and Turano, C. Binding of the protein disulfide isomerase isoform ERp60 to the nuclear matrix-associated regions of DNA. J. Cell. Biochem. 72 (1999) 528–539.

    Article  PubMed  CAS  Google Scholar 

  74. Grillo, C., Coppari, S., Turano, C. and Altieri, F. The DNA-binding activity of protein disulfide isomerase ERp57 is associated with the a(′) domain. Biochem. Biophys. Res. Commun. 295 (2002) 67–73.

    Article  PubMed  CAS  Google Scholar 

  75. Chichiarelli, S., Ferraro, A., Altieri, F., Eufemi, M., Coppari, S., Grillo, C., Arcangeli, V. and Turano, C. The stress protein ERp57/GRP58 binds specific DNA sequences in HeLa cells. J. Cell. Physiol. 210 (2007) 343–351.

    Article  PubMed  CAS  Google Scholar 

  76. Schultz-Norton, J.R., McDonald, W.H., Yates, J.R. and Nardulli, A.M. Protein disulfide isomerase serves as a molecular chaperone to maintain estrogen receptor alpha structure and function. Mol. Endocrinol. 20 (2006) 1982–1995.

    Article  PubMed  CAS  Google Scholar 

  77. Coe, H., Jung, J., Groenendyk, J., Prins, D. and Michalak, M. ERp57 modulates STAT3 signaling from the lumen of the endoplasmic reticulum. J. Biol. Chem. 285 (2010) 6725–6738.

    Article  PubMed  CAS  Google Scholar 

  78. Sehgal, P.B. Plasma membrane rafts and chaperones in cytokine/STAT signaling. Acta Biochim. Pol. 50 (2003) 583–594.

    PubMed  CAS  Google Scholar 

  79. Markus, M. and Benezra, R. Two isoforms of protein disulfide isomerase alter the dimerization status of E2A proteins by a redox mechanism. J. Biol. Chem. 274 (1999) 1040–1049.

    Article  PubMed  CAS  Google Scholar 

  80. Ozaki, T., Yamashita, T. and Ishiguro, S. ERp57-associated mitochondrial micro-calpain truncates apoptosis-inducing factor. Biochim. Biophys. Acta 1783 (2008) 1955–1963.

    Article  PubMed  CAS  Google Scholar 

  81. Murray, J.I., Whitfield, M.L., Trinklein, N.D., Myers, R.M., Brown, P.O. and Botstein, D. Diverse and specific gene expression responses to stresses in cultured human cells. Mol. Biol. Cell 15 (2004) 2361–2374.

    Article  PubMed  CAS  Google Scholar 

  82. Rohe, B., Safford, S.E., Nemere, I., Farach-Carson, M.C. Regulation of expression of 1,25D3-MARRS/ERp57/PDIA3 in rat IEC-6 cells by TGF beta and 1,25(OH)2D3. Steroids 72 (2007) 144–150.

    Article  PubMed  CAS  Google Scholar 

  83. Corazzari, M., Lovat, P.E., Armstrong, J.L., Fimia, G.M., Hill, D.S., Birch-Machin, M., Redfern, C.P. and Piacentini, M. Targeting homeostatic mechanisms of endoplasmic reticulum stress to increase susceptibility of cancer cells to fenretinide-induced apoptosis: the role of stress proteins ERdj5 and ERp57. Br. J. Cancer 96 (2007) 1062–1071.

    Article  PubMed  CAS  Google Scholar 

  84. Lovat, P.E., Corazzari, M., Armstrong, J.L., Martin, S., Pagliarini, V., Hill, D., Brown, A.M., Piacentini, M., Birch-Machin, M.A. and Redfern, C.P. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress. Cancer Res. 68 (2008) 5363–5369.

    Article  PubMed  CAS  Google Scholar 

  85. Hetz, C., Russelakis-Carneiro, M., Wälchli, S., Carboni, S., Vial-Knecht, E., Maundrell, K., Castilla, J. and Soto, C. The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J. Neurosci. 25 (2005) 2793–2802.

    Article  PubMed  CAS  Google Scholar 

  86. Erickson, R.R., Dunning, L.M., Olson, D.A., Cohen, S.J., Davis, A.T., Wood, W.G., Kratzke, R.A. and Holtzman, J.L. In cerebrospinal fluid ER chaperones ERp57 and calreticulin bind beta-amyloid. Biochem. Biophys. Res. Commun. 332 (2005) 50–57.

    Article  PubMed  CAS  Google Scholar 

  87. Xu, D., Perez, R.E., Rezaiekhaligh, M.H., Bourdi, M. and Truog, W.E. Knockdown of ERp57 increases BiP/GRP78 induction and protects against hyperoxia and tunicamycin-induced apoptosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 297 (2009) L44–51.

    Article  PubMed  CAS  Google Scholar 

  88. Dukes, A.A., Van Laar, V.S., Cascio, M. and Hastings, T.G. Changes in endoplasmic reticulum stress proteins and aldolase A in cells exposed to dopamine. J. Neurochem. 106 (2008) 333–346.

    Article  PubMed  CAS  Google Scholar 

  89. Kim-Han, J.S. and O’Malley, K.L. Cell stress induced by the parkinsonian mimetic, 6-hydroxydopamine, is concurrent with oxidation of the chaperone, ERp57, and aggresome formation. Antioxid. Redox Signal. 9 (2007) 2255–2264.

    Article  PubMed  CAS  Google Scholar 

  90. Akazawa, Y.O., Saito, Y., Nishio, K., Horie, M., Kinumi, T., Masuo, Y., Yoshida, Y., Ashida, H. and Niki, E. Proteomic characterization of the striatum and midbrain treated with 6-hydroxydopamine: alteration of 58-kDa glucose-regulated protein and C/EBP homologous protein. Free Radic. Res. 44 (2010) 410–421.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Turano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turano, C., Gaucci, E., Grillo, C. et al. ERp57/GRP58: A protein with multiple functions. Cell Mol Biol Lett 16, 539 (2011). https://doi.org/10.2478/s11658-011-0022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.2478/s11658-011-0022-z

Key words