Skip to main content
  • Research Article
  • Published:

DU-145 prostate carcinoma cells that selectively transmigrate narrow obstacles express elevated levels of Cx43

Abstract

The formation of aqueous intercellular channels mediating gap junctional intercellular coupling (GJIC) is a canonical function of connexins (Cx). In contrast, mechanisms of GJIC-independent involvement of connexins in cancer formation and metastasis remain a matter of debate. Because of the role of Cx43 in the determination of carcinoma cell invasive potential, we addressed the problem of the possible Cx43 involvement in early prostate cancer invasion. For this purpose, we analysed Cx43-positive DU-145 cell subsets established from the progenies of the cells most readily transmigrating microporous membranes. These progenies displayed motile activity similar to the control DU-145 cells but were characterized by elevated Cx43 expression levels and GJIC intensity. Thus, apparent links exist between Cx43 expression and transmigration potential of DU-145 cells. Moreover, Cx43 expression profiles in the analysed DU-145 subsets were not affected by intercellular contacts and chemical inhibition of GJIC during the transmigration. Our observations indicate that neither cell motility nor GJIC determines the transmigration efficiency of DU-145 cells. However, we postulate that selective transmigration of prostate cancer cells expressing elevated levels of Cx43 expression may be crucial for the “leading front” formation during cancer invasion.

Abbreviations

AGA:

18-α-glycyrrhetinic acid

ARCD:

average rate of cell displacement

ASCM:

average speed of cell movement

Cr :

coupling ratio

Cx43:

connexin43

DMEM:

Dulbecco modified Eagle’s medium

FBS:

fetal bovine serum

GJIC:

gap junctional intercellular coupling

References

  1. Sohl, G. and Willecke, K. Gap junctions and the connexin protein family. Cardiovasc. Res. 62 (2004) 228–232.

    Article  PubMed  Google Scholar 

  2. Zhang, Y.W., Kaneda, M. and Morita, I. The gap junction-independent tumor-suppressing effect of connexin 43. J. Biol. Chem. 278 (2003) 44852–44856.

    Article  PubMed  CAS  Google Scholar 

  3. Omori, Y., Li, Q., Nishikawa, Y., Yoshioka, T., Yoshida, M., Nishimura, T. and Enomoto, K. Pathological significance of intracytoplasmic connexin proteins: implication in tumor progression. J. Membr. Biol. 218 (2007) 73–77.

    Article  PubMed  CAS  Google Scholar 

  4. Cronier, L., Crespin, S., Strale, P.O., Defamie, N. and Mesnil, M. Gap junctions and cancer: new functions for an old story. Antioxid. Redox. Signal. 11 (2009) 323–338.

    Article  PubMed  CAS  Google Scholar 

  5. Ionta, M., Ferreira, R.A., Pfister, S.C. and Machado-Santelli, G.M. Exogenous Cx43 expression decrease cell proliferation rate in rat hepatocarcinoma cells independently of functional gap junction. Cancer Cell Int. 9 (2009) 22.

    Article  PubMed  Google Scholar 

  6. Elias, L.A., Wang, D.D. and Kriegstein, A.R. Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448 (2007) 901–907.

    Article  PubMed  CAS  Google Scholar 

  7. Wiencken-Barger, A.E., Djukic, B., Casper, K.B. and McCarthy, K.D. A role for Connexin43 during neurodevelopment. Glia 55 (2007) 675–686.

    Article  PubMed  Google Scholar 

  8. Lin, J.H., Yang, J., Liu, S., Takano, T., Wang, X., Gao, Q., Willecke, K. and Nedergaard, M. Connexin mediates gap junction-independent resistance to cellular injury. J. Neurosci. 23 (2003) 430–441.

    PubMed  CAS  Google Scholar 

  9. Xu, X., Francis, R., Wei, C.J., Linask, K.L. and Lo, C.W. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development 133 (2006) 3629–3639.

    Article  PubMed  CAS  Google Scholar 

  10. Olk, S., Zoidl, G. and Dermietzel, R. Connexins, cell motility, and the cytoskeleton. Cell Motil. Cytoskeleton 66 (2009) 1000–1016.

    Article  PubMed  CAS  Google Scholar 

  11. Laird, D.W. Life cycle of connexins in health and disease. Biochem. J. 394 (2006) 527–543.

    Article  PubMed  CAS  Google Scholar 

  12. Trosko, J.E. Gap junctional intercellular communication as a biological “Rosetta stone” in understanding, in a systems biological manner, stem cell behavior, mechanisms of epigenetic toxicology, chemoprevention and chemotherapy. J. Membr. Biol. 218 (2007) 93–100.

    Article  PubMed  CAS  Google Scholar 

  13. Miekus, K., Czernik, M., Sroka, J., Czyz, J. and Madeja, Z. Contact stimulation of prostate cancer cell migration: the role of gap junctional coupling and migration stimulated by heterotypic cell-to-cell contacts in determination of the metastatic phenotype of Dunning rat prostate cancer cells. Biol. Cell 97 (2005) 893–903.

    Article  PubMed  CAS  Google Scholar 

  14. Bates, D.C., Sin, W.C., Aftab, Q. and Naus, C.C. Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus. Glia 55 (2007) 1554–1564.

    Article  PubMed  Google Scholar 

  15. Czyz, J. The stage-specific function of gap junctions during tumourigenesis. Cell Mol. Biol. Lett. 13 (2008) 92–102.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang, W., DeMattia, J.A., Song, H. and Couldwell, W.T. Communication between malignant glioma cells and vascular endothelial cells through gap junctions. J. Neurosurg. 98 (2003) 846–853.

    Article  PubMed  Google Scholar 

  17. Pollmann, M.A., Shao, Q., Laird, D.W. and Sandig, M. Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture. Breast Cancer Res. 7 (2005) R522–R534.

    Article  PubMed  CAS  Google Scholar 

  18. Prochnow, N. and Dermietzel, R. Connexons and cell adhesion: a romantic phase. Histochem. Cell Biol. 130 (2008) 71–77.

    Article  PubMed  CAS  Google Scholar 

  19. Boiko, A.D., Razorenova, O.V., van de, R.M., Swetter, S.M., Johnson, D.L., Ly, D.P., Butler, P.D., Yang, G.P., Joshua, B., Kaplan, M.J., Longaker, M.T. and Weissman, I.L. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466 (2010) 133–137.

    Article  PubMed  CAS  Google Scholar 

  20. Visvader, J.E. Cells of origin in cancer. Nature 469 (2011) 314–322.

    Article  PubMed  CAS  Google Scholar 

  21. Wysoczynski, M., Miekus, K., Jankowski, K., Wanzeck, J., Bertolone, S., Janowska-Wieczorek, A., Ratajczak, J. and Ratajczak, M. Z. Leukemia inhibitory factor: a newly identified metastatic factor in rhabdomyosarcomas. Cancer Res. 67 (2007) 2131–2140.

    Article  PubMed  CAS  Google Scholar 

  22. Sroka, J., Kaminski, R., Michalik, M., Madeja, Z., Przestalski, S. and Korohoda, W. The effect of triethyllead on the motile activity of walker 256 carcinosarcoma cells. Cell Mol. Biol. Lett. 9 (2004) 15–30.

    PubMed  CAS  Google Scholar 

  23. Sroka, J., Antosik, A., Czyz, J., Nalvarte, I., Olsson, J.M., Spyrou, G. and Madeja, Z. Overexpression of thioredoxin reductase 1 inhibits migration of HEK-293 cells. Biol. Cell 99 (2007) 677–687.

    Article  PubMed  CAS  Google Scholar 

  24. Czyz, J., Guan, K., Zeng, Q., and Wobus, A.M. Loss of beta1 integrin function results in upregulation of connexin expression in embryonic stem cell-derived cardiomyocytes. Int. J. Dev. Biol. 49 (2005) 33–41.

    Article  PubMed  CAS  Google Scholar 

  25. Daniel-Wojcik, A., Misztal, K., Bechyne, I., Sroka, J., Miekus, K., Madeja, Z. and Czyz, J. Cell motility affects the intensity of gap junctional coupling in prostate carcinoma and melanoma cell populations. Int. J. Oncol. 33 (2008) 309–315.

    PubMed  CAS  Google Scholar 

  26. Czyz, J., Irmer, U., Schulz, G., Mindermann, A. and Hulser, D.F. Gap-junctional coupling measured by flow cytometry. Exp. Cell Res. 255 (2000) 40–46.

    Article  PubMed  CAS  Google Scholar 

  27. Sottoriva, A., Verhoeff, J.J., Borovski, T., McWeeney, S.K., Naumov, L., Medema, J.P., Sloot, P.M. and Vermeulen, L. Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res. 70 (2010) 46–56.

    Article  PubMed  CAS  Google Scholar 

  28. Baran, B., Bechyne, I., Siedlar, M., Szpak, K., Mytar, B., Sroka, J., Laczna, E., Madeja, Z., Zembala, M. and Czyz, J. Blood monocytes stimulate migration of human pancreatic carcinoma cells in vitro: the role of tumour necrosis factor — alpha. Eur. J. Cell Biol. 88 (2009) 743–752.

    Article  PubMed  CAS  Google Scholar 

  29. Kumar, S. and Weaver, V.M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28 (2009) 113–127.

    Article  PubMed  Google Scholar 

  30. Friedl, P. and Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Exp. Med. 207 (2010) 11–19.

    Article  Google Scholar 

  31. Gupta, G.P. and Massague, J. Cancer metastasis: building a framework. Cell 127 (2006) 679–695.

    Article  PubMed  CAS  Google Scholar 

  32. Langley, R.R. and Fidler, I.J. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev. 28 (2007) 297–321.

    Article  PubMed  CAS  Google Scholar 

  33. Watanabe, N., Dickinson, D.A., Krzywanski, D.M., Iles, K.E., Zhang, H., Venglarik, C.J., and Forman, H.J. A549 subclones demonstrate heterogeneity in toxicological sensitivity and antioxidant profile. Am. J. Physiol Lung Cell Mol. Physiol 283 (2002) L726–L736.

    PubMed  CAS  Google Scholar 

  34. Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M.E., Neve, R.M. and Thompson, E.W. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin. Exp. Metastasis 25 (2008) 629–642.

    Article  PubMed  CAS  Google Scholar 

  35. Ito, A., Katoh, F., Kataoka, T.R., Okada, M., Tsubota, N., Asada, H., Yoshikawa, K., Maeda, S., Kitamura, Y., Yamasaki, H. and Nojima, H. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J. Clin. Invest. 105 (2000) 1189–1197.

    Article  PubMed  CAS  Google Scholar 

  36. Huang, S. and Ingber, D.E. Cell tension, matrix mechanics, and cancer development. Cancer Cell 8 (2005) 175–176.

    Article  PubMed  CAS  Google Scholar 

  37. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3 (2007) 413–438.

    Article  PubMed  Google Scholar 

  38. Kanczuga-Koda, L., Sulkowski, S., Lenczewski, A., Koda, M., Wincewicz, A., Baltaziak, M. and Sulkowska, M. Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J. Clin. Pathol. 59 (2006) 429–433.

    Article  PubMed  CAS  Google Scholar 

  39. Iwasaki, H. and Suda, T. Cancer stem cells and their niche. Cancer Sci. 100 (2009) 1166–1172.

    Article  PubMed  CAS  Google Scholar 

  40. Voog, J. and Jones, D.L. Stem cells and the niche: a dynamic duo. Cell Stem Cell 6 (2010) 103–115.

    Article  PubMed  CAS  Google Scholar 

  41. Friedl, P., Hegerfeldt, Y. and Tusch, M. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol. 48 (2004) 441–449.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Czyż.

Additional information

Contributed equally

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szpak, K., Wybieralska, E., Niedziałkowska, E. et al. DU-145 prostate carcinoma cells that selectively transmigrate narrow obstacles express elevated levels of Cx43. Cell Mol Biol Lett 16, 625 (2011). https://doi.org/10.2478/s11658-011-0027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.2478/s11658-011-0027-7

Key words