Skip to main content
  • Research Article
  • Published:

Maintenance of rat hepatocytes under inflammation by coculture with human orbital fat-derived stem cells

Abstract

Preservation of hepatocyte functions in vitro will undoubtedly help the management of acute liver failure. The coculture system may be able to prevent functional decline of hepatocytes. It has already been shown that hepatocytes, when cocultured with bone marrow mesenchymal stem cells, could undergo long-term culture in vitro without loss of functions. In this study, human orbital fat-derived stem cells were isolated and cocultured with rat hepatocytes. When treated with serum from an acute liver failure patient, rat hepatocyte monoculture showed reduction of cell viability and loss of liverspecific functions. However, rat hepatocytes in the coculture system were still able to secret albumin and synthesize urea. IL-6 was significantly elevated in the coculture of rat hepatocyte with orbital fat-derived stem cells, and it might be the key immunoregulator which protects rat hepatocytes against inflammation. Our data confirmed that orbital fat-derived stem cells, or other adipose tissue-derived stem cells, are an ideal candidate to support rat hepatocyte functions in vitro.

Abbreviations

ALF:

acute liver failure

ADSCs:

adipose tissue-derived stem cells

ALB:

albumin

CK32:

connexin 32

CYP3A4:

cytochrome P450 subtype 3A4

IDO:

indoleamine 2,3-dioxygenase

IFN:

interferon

IL:

interleukin

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

MSCs:

mesenchymal stem cells

OFSCs:

orbital fat-derived stem cells

PAS:

periodic acid-Schiff

TDO2:

tryptophan 2,3-dioxygenase

TNF:

tumor necrotic factor

References

  1. Bernal, W., Auzinger, G., Dhawan, A. and Wendon, J. Acute liver failure. Lancet 376 (2010) 190–201.

    Article  PubMed  Google Scholar 

  2. Dhawan, A., Puppi, J., Hughes, R.D. and Mitry, R.R. Human hepatocyte transplantation: current experience and future challenges. Nat. Rev. Gastroenterol. Hepatol. 7 (2010) 288–298.

    Article  PubMed  Google Scholar 

  3. Phua, J. and Lee, K.H. Liver support devices. Curr. Opin. Crit. Care 14 (2008) 208–215.

    Article  PubMed  Google Scholar 

  4. Elaut, G., Henkens, T., Papeleu, P., Snykers, S., Vinken, M., Vanhaecke, T. and Rogiers, V. Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. Curr. Drug Metab. 7 (2006) 629–660.

    Article  PubMed  CAS  Google Scholar 

  5. Kaihara, S., Kim, S., Kim, B.S., Mooney, D.J., Tanaka, K. and Vacanti, J.P. Survival and function of rat hepatocytes cocultured with nonparenchymal cells or sinusoidal endothelial cells on biodegradable polymers under flow conditions. J. Pediatr. Surg. 35 (2000) 1287–1290.

    Article  PubMed  CAS  Google Scholar 

  6. Mizuguchi, T., Palm, K., Hui, T., Aoki, T., Mochizuki, Y., Mitaka, T., Demetriou, A.A. and Rozga, J. Effects of bone marrow stromal cells on the structural and functional polarity of primary rat hepatocytes. In Vitro Cell Dev. Biol. Anim. 38 (2002) 62–65.

    Article  PubMed  Google Scholar 

  7. Isoda, K., Kojima, M., Takeda, M., Higashiyama, S., Kawase, M. and Yagi, K. Maintenance of hepatocyte functions by coculture with bone marrow stromal cells. J. Biosci. Bioeng. 97 (2004) 343–346.

    PubMed  CAS  Google Scholar 

  8. Ijima, H., Murakami, S., Matsuo, T., Takei, T., Ono, T. and Kawakami, K. Enhancement of liver-specific functions of primary rat hepatocytes cocultured with bone marrow cells on tissue culture-treated polystyrene surfaces. J. Artif. Organs 8 (2005) 104–109.

    Article  PubMed  CAS  Google Scholar 

  9. Gu, J., Shi, X., Chu, X., Zhang, Y. and Ding, Y. Contribution of bone marrow mesenchymal stem cells to porcine hepatocyte culture in vitro. Biochem. Cell Biol. 87 (2009) 595–604.

    Article  PubMed  CAS  Google Scholar 

  10. Takeda, M., Yamamoto, M., Isoda, K., Higashiyama, S., Hirose, M., Ohgushi, H., Kawase, M. and Yagi, K. Availability of bone marrow stromal cells in three-dimensional coculture with hepatocytes and transplantation into liver-damaged mice. J. Biosci. Bioeng. 100 (2005) 77–81.

    Article  PubMed  CAS  Google Scholar 

  11. Yagi, H., Parekkadan, B., Suganuma, K., Soto-Gutierrez, A., Tompkins, R.G., Tilles, A.W. and Yarmush, M.L. Long-term superior performance of a stem cell/hepatocyte device for the treatment of acute liver failure. Tissue Eng. Part A 15 (2009) 3377–3388.

    Article  PubMed  CAS  Google Scholar 

  12. Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. and Hedrick, M.H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7 (2001) 211–228.

    Article  PubMed  CAS  Google Scholar 

  13. Ho, J.H., Ma, W.H., Tseng, T.C., Chen, Y.F., Chen, M.H. and Lee, O.K. Isolation and characterization of multi-potent stem cells from human orbital fat tissues. Tissue Eng. Part A 17 (2011) 255–266.

    Article  PubMed  CAS  Google Scholar 

  14. Tanaka, K., Soto-Gutierrez, A., Navarro-Alvarez, N., Rivas-Carrillo, J.D., Jun, H.S. and Kobayashi, N. Functional hepatocyte culture and its application to cell therapies. Cell Transplant. 15 (2006) 855–864.

    Article  PubMed  Google Scholar 

  15. Wu, Z., Han, M., Chen, T., Yan, W. and Ning, Q. Acute liver failure: mechanisms of immune-mediated liver injury. Liver Int. 30 (2010) 782–794.

    Article  PubMed  CAS  Google Scholar 

  16. Ishikawa, T., Banas, A., Hagiwara, K., Iwaguro, H. and Ochiya, T. Stem cells for hepatic regeneration: the role of adipose tissue derived mesenchymal stem cells. Curr. Stem Cell Res. Ther. 5 (2010) 182–189.

    Article  PubMed  CAS  Google Scholar 

  17. Yanez, R., Lamana, M.L., Garcia-Castro, J., Colmenero, I., Ramirez, M. and Bueren, J.A. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versushost disease. Stem Cells 24 (2006) 2582–2591.

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez, M.A., Gonzalez-Rey, E., Rico, L., Buscher, D. and Delgado, M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 60 (2009) 1006–1019.

    Article  PubMed  CAS  Google Scholar 

  19. Salgado, A.J., Reis, R.L., Sousa, N.J. and Gimble, J.M. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr. Stem Cell Res. Ther. 5 (2010) 103–110.

    Article  PubMed  CAS  Google Scholar 

  20. Horras, C.J., Lamb, C.L. and Mitchell, K.A. Regulation of hepatocyte fate by interferon-gamma. Cytokine Growth Factor Rev. 22 (2011) 35–43.

    Article  PubMed  CAS  Google Scholar 

  21. Mao, R, Zhang, J., Jiang, D., Cai, D., Levy, J.M., Cuconati, A., Block, T.M., Guo, J.T. and Guo, H. Indoleamine 2,3-dioxygenase mediates the antiviral effect of gamma interferon against hepatitis B virus in human hepatocyte-derived cells. J. Virol. 85 (2011) 1048–1057.

    Article  PubMed  CAS  Google Scholar 

  22. Yuceturk, H., Yagmurdur, M.C., Gur, G., Demirbilek, M., Bilezikci, B., Turan, M., Karakayali, H. and Haberal, M. Role of heparin on TNF-α and IL-6 levels in liver regeneration after partial hepatic resection. Eur. Surg. Res. 39 (2007) 216–221.

    Article  PubMed  CAS  Google Scholar 

  23. Lin, Y.C., Goto, S., Tateno, C., Nakano, T., Cheng, Y.F., Jawan, B., Kao, Y.H., Hsu, L.W., Lai, C.Y., Yoshizato, K. and Chen, C.L. Induction of indoleamine 2,3-dioxygenase in livers following hepatectomy prolongs survival of allogeneic hepatocytes after transplantation. Transplant. Proc. 40 (2008) 2706–2708.

    Article  PubMed  CAS  Google Scholar 

  24. Kishimoto, T. IL-6: from its discovery to clinical applications. Int. Immunol. 22 (2010) 347–352.

    Article  PubMed  CAS  Google Scholar 

  25. Tiberio, L., Tiberio, G.A., Bardella, L., Cervi, E., Cerea, K., Dreano, M., Garotta, G., Fra, A., Montani, N., Ferrari-Bravo, A., Callea, F., Grigolato, P., Giulini, S.M. and Schiaffonati, L. Mechanisms of interleukin-6 protection against ischemia-reperfusion injury in rat liver. Cytokine 34 (2006) 131–142.

    Article  PubMed  CAS  Google Scholar 

  26. Banas, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., Quinn, G., Okochi, H. and Ochiya, T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46 (2007) 219–228.

    Article  PubMed  CAS  Google Scholar 

  27. Talens-Visconti, R., Bonora, A., Jover, R., Mirabet, V., Carbonell, F., Castell, J.V. and Gómez-Lechón, M.J. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J. Gastroenterol. 12 (2006) 5834–5845.

    PubMed  CAS  Google Scholar 

  28. Banas, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., Osaki, M., Kato, T., Okochi, H. and Ochiya, T. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J. Gastroenterol. Hepatol. 24 (2009) 70–77.

    Article  PubMed  CAS  Google Scholar 

  29. Banas, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., Osaki, M., Kawamata, M., Kato, T., Okochi, H. and Ochiya, T. IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells 26 (2008) 2705–2712.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Zhang, S., Liu, T. et al. Maintenance of rat hepatocytes under inflammation by coculture with human orbital fat-derived stem cells. Cell Mol Biol Lett 17, 182–195 (2012). https://doi.org/10.2478/s11658-012-0004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0004-9

Key words