Skip to main content
  • Mini review
  • Published:

Proprotein convertase subtilisin/kexin type 9: A new target molecule for gene therapy

Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel target for controlling plasma levels of low-density lipoprotein cholesterol (LDL-C) and decreasing the risk of cardiovascular diseases. At present it is clear that the major classes of commonly prescribed lipid-lowering medications increase serum PCSK9 levels and fail to protect a significant percentage of patients from cardiovascular events. Therefore development of new LDL-C lowering medications that either do not increase circulating PCSK9 levels or work through inhibition of PCSK9 expression and protease activity is a highly desirable approach to overcome hypercholesterolemia. Since there are several agents which are being evaluated in human preclinical and clinical trials, this review summarizes current therapeutic strategies targeting PCSK9, including specific antibodies, antisense oligonucleotides, small interfering RNAs (siRNAs) and other small-molecule inhibitors.

Abbreviations

ApoER2:

apolipoprotein E receptor 2

ASO:

oligonucleotide inhibitors

CHD:

coronary heart disease

dsRNA:

double-stranded ribonucleic acid

EGF-A:

epidermal growth factor-like repeat

GOF:

gain of function

HDL-C:

highdensity lipoprotein cholesterol

HNF1:

hepatocyte nuclear factor 1

LDL-C:

low-density lipoprotein cholesterol

LDLR:

low-density lipoprotein receptor

LOF:

loss of function

mVLDLR:

mouse very low-density lipoprotein receptor

PCSK9:

proprotein convertase subtilisin kexin type 9

PPARα:

peroxisome proliferator activated receptor alpha

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

siRNA:

small interfering RNA

References

  1. Abifadel, M., Varret, M., Rabès, J.P., Allard, D., Ouguerram, K., Devillers, M., Cruaud, C., Benjannet, S., Wickham, L., Erlich, D., Derré, A., Villéger, L., Farnier, M., Beucler, I., Bruckert, E., Chambaz, J., Chanu, B., Lecerf, J.M., Luc, G., Moulin, P., Weissenbach, J., Prat, A., Krempf, M., Junien, C., Seidah, N.G. and Boileau, C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34 (2003) 154–156.

    Article  PubMed  CAS  Google Scholar 

  2. Cohen, J.C., Boerwinkle, E., Mosley, T.H. Jr. and Hobbs, H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 23 (2006) 1264–1272.

    Article  Google Scholar 

  3. Rashid, S., Curtis, D.E., Garuti, R., Anderson, N.N., Bashmakov, Y., Ho, Y.K., Hammer, R.E., Moon, Y.A. and Horton, J.D. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl. Acad. Sci. USA 12 (2005) 5374–5379.

    Article  Google Scholar 

  4. Zhao, Z., Tuakli-Wosornu, Y., Lagace, T.A., Kinch, L., Grishin, N.V., Horton, J.D., Cohen, J.C. and Hobbs, H.H. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet. 79 (2006) 514–523.

    Article  PubMed  CAS  Google Scholar 

  5. Hooper, A.J., Marais, A.D., Tanyanyiwa, D.M. and Burnett, J.R. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis 193 (2007) 445–448.

    Article  PubMed  CAS  Google Scholar 

  6. Cariou, B., Ouguerram, K., Zaïr, Y., Guerois, R., Langhi, C., Kourimate, S., Benoit, I., Le May, C., Gayet, C., Belabbas, K., Dufernez, F., Chétiveaux, M., Tarugi, P., Krempf, M., Benlian, P. and Costet, P. PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia. Arterioscler. Thromb. Vasc. Biol. 29 (2009) 2191–2197.

    Article  PubMed  CAS  Google Scholar 

  7. Kozłowski, D., Sominka, D., Kogut-Dębska, K. and Raczak, G. Statin use in the treatment of metabolic patient. Geriatria 2 (2008) 231–236.

    Google Scholar 

  8. Dubuc, G., Chamberland, A., Wassef, H., Davignon, J., Seidah, N.G., Bernier, L. and Prat, A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 24 (2004) 1454–1459.

    Article  PubMed  CAS  Google Scholar 

  9. Careskey, H.E., Davis, R.A., Alborn, W.E., Troutt, J.S., Cao, G. and Konrad, R.J. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J. Lipid Res. 49 (2008) 394–398.

    Article  PubMed  CAS  Google Scholar 

  10. Costet, P., Hoffmann, M.M., Cariou, B., Guyomarc'h Delasalle, B., Konrad, T. and Winkler, K. Plasma PCSK9 is increased by fenofibrate and atorvastatin in a non-additive fashion in diabetic patients. Atherosclerosis 212 (2010) 246–251.

    Article  PubMed  CAS  Google Scholar 

  11. Welder, G., Zineh, I., Pacanowski, M.A., Troutt, J.S., Cao, G. and Konrad, R.J. High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol. J. Lipid Res. 51 (2010).

  12. Grundy, S.M., Vega, G.L., Yuan, Z., Battisti, W.P., Brady, W.E. and Palmisano, J. Effectiveness and tolerability of simvastatin plus fenofibrate for combined hyperlipidemia (the SAFARI trial). Am. J. Cardiol. 95 (2005) 462–468.

    Article  PubMed  CAS  Google Scholar 

  13. Keating, G.M. and Croom K.F. Fenofibrate. A review of its use in primary dyslipidemia, the metabolic syndrome and type 2 diabetes mellitus. Drugs 67 (2007) 121–153.

    Article  PubMed  CAS  Google Scholar 

  14. Kourimate, S., Le, M.C., Langhi, C., Jarnoux, A.L., Ouguerram, K., Zair, Y., Nguyen, P., Krempf, M., Cariou, B. and Costet, P. Dual mechanisms for the fibrate-mediated repression of proprotein convertase subtilisin/kexin type 9. J. Biol. Chem. 283 (2008) 9666–9673.

    Article  PubMed  CAS  Google Scholar 

  15. Lambert, G., Jarnoux, A.L., Pineau, T., Pape, O., Chetiveaux, M., Laboisse, C., Krempf, M. and Costet, P. Fasting induces hyperlipidemia in mice overexpressing PCSK9: Lack of modulation of VLDL hepatic output by the LDLr. Endocrinology 22 (2006) 4985–4995.

    Article  Google Scholar 

  16. Troutt, J.S., Alborn, W.E., Cao, G. and Konrad, R.J. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J. Lipid Res. 51 (2010) 345–351.

    Article  PubMed  CAS  Google Scholar 

  17. Lambert G, Ancellin N, Charlton F, Comas, D., Pilot, J., Keech, A., Patel, S., Sullivan, D.R., Cohn, J.S., Rye, K.A. and Barter, P.J. Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin. Chem. 54 (2008) 1038–1045.

    Article  PubMed  CAS  Google Scholar 

  18. Mayne, J., Dewpura, T., Raymond, A., Cousins, M., Chaplin, A., Lahey, K.A., Lahaye, S.A., Mbikay, M., Ooi, T.C. and Chrétien, M. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health. Dis. 11 (2008) 7–22.

    Google Scholar 

  19. Jeu, L. and Cheng, J.W. Pharmacology and therapeutics of ezetimibe (SCH 58235), a cholesterol-absorption inhibitor. Clin. Ther. 25 (2003) 2352–2387.

    Article  PubMed  CAS  Google Scholar 

  20. Dubuc, G., Tremblay, M., Pare, G., Jacques, H., Hamelin, J., Benjannet, S., Boulet, L., Genest, J., Bernier, L., Seidah, N.G. and Davignon, J. A new method for measurement of total plasma PCSK9: clinical applications. J. Lipid Res. 51 (2010) 140–149.

    Article  PubMed  Google Scholar 

  21. Davignon, J. and Dubuc, G. Statins and ezetimibe modulate plasma proprotein convertase subtilisin kexin-9 (PCSK9) levels. Trans. Am. Clin. Climatol. Assoc. 120 (2009) 163–173.

    PubMed  Google Scholar 

  22. Ason, B., Tep, S., Davis, H.R. Jr., Xu, Y., Tetzloff, G., Galinski, B., Soriano, F., Dubinina, N., Zhu, L., Stefanni, A., Wong, K.K., Tadin-Strapps, M., Bartz, S.R., Hubbard, B., Ranalletta, M., Sachs, A.B., Flanagan, W.M., Strack, A. and Kuklin, N.A. Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9. J. Lipid Res. 52 (2011) 679–687.

    Article  PubMed  CAS  Google Scholar 

  23. Gouni-Berthold, I., Berthold, H.K., Gylling, H., Hallikainen, M., Giannakidou, E., Stier, S., Ko, Y., Patel, D., Soutar, A.K., Seedorf, U., Mantzoros, C.S., Plat, J. and Krone, W. Effects of ezetimibe and/or simvastatin on LDL receptor protein expression and on LDL receptor and HMG-CoA reductase gene expression: a randomized trial in healthy men. Atherosclerosis 198 (2008) 198–207.

    Article  PubMed  CAS  Google Scholar 

  24. Kong, W., Wei, J., Abidi, P., Lin, M., Inaba, S., Li, C., Wang, Y., Wang, Z., Si, S., Pan, H., Wang, S., Wu, J., Wang, Y., Li, Z., Liu, J. and Jiang, J.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med. 10 (2004) 1344–1351.

    Article  PubMed  CAS  Google Scholar 

  25. Cameron, J., Ranheim, T., Kulseth, M.A., Leren, T.P. and Berge, K.E. Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis 201 (2008) 266–273.

    Article  PubMed  CAS  Google Scholar 

  26. Li, H., Dong, B., Park, S.W., Lee, H.S., Chen, W. and Liu, J. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J. Biol. Chem. 284 (2009) 28885–28895.

    Article  PubMed  CAS  Google Scholar 

  27. Shan, L., Pang, L., Zhang, R., Murgolo, N.J., Lan, H. and Hedrick, J.A. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem. Biophys. Res. Commun. 10 (2008) 69–73.

    Article  Google Scholar 

  28. Ni, Y.G., Di Marco, S., Condra J.H., Peterson, L.B., Wang, W., Wang, F., Pandit, S., Hammond, H.A., Rosa, R., Cummings, R.T., Wood, D.D., Liu, X., Bottomley, M.J., Shen, X., Cubbon, R.M., Wang, S.P., Johns, D.G., Volpari, C., Hamuro, L., Chin, J., Huang, L., Zhao, J.Z., Vitelli, S., Haytko, P., Wisniewski, D., Mitnaul, L.J., Sparrow, C.P., Hubbard, B., Carfí, A. and Sitlani, A. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J. Lipid Res. 52 (2011) 78–86.

    Article  PubMed  CAS  Google Scholar 

  29. Chan, J.C., Piper, D.E., Cao, Q., Liu, D., King, C., Wang, W., Tang, J., Liu, Q., Higbee, J., Xia, Z., Di, Y., Shetterly, S., Arimura, Z., Salomonis, H., Romanow, W.G., Thibault, S.T., Zhang, R., Cao, P., Yang, X.P., Yu, T., Lu, M., Retter, M.W., Kwon, G., Henne, K., Pan, O., Tsai, M.M., Fuchslocher, B., Yang, E., Zhou, L., Lee, K.J., Daris, M., Sheng, J., Wang, Y., Shen, W.D., Yeh, W.C., Emery, M., Walker, N.P., Shan, B., Schwarz, M. and Jackson, S.M. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl. Acad. Sci. USA 16 (2009) 9820–9825.

    Article  Google Scholar 

  30. Information obtained from the web page: http://clinicaltrials.gov/ct2/show/NCT01375751?term=amg+145+phase+2&rank=3

  31. Information obtained from the web page http://clinicaltrials.gov/ct2/show/NCT01163851?term=RN316&rank=2

  32. Citi Investment Research Global Healthcare Conference, New York 2010.

  33. Information obtained from the web page http://clinicaltrials.gov/ct2/show/NCT01266876?term=REGN727+phase+2&rank=3

  34. Graham, M.J., Lemonidis, K.M., Whipple, C.P., Subramaniam, A., Monia, B.P., Crooke, S.T. and Crooke, R.M. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J. Lipid Res. 48 (2007) 763–767.

    Article  PubMed  CAS  Google Scholar 

  35. Gupta, N., Fisker, N., Asselin, M.C., Lindholm, M., Rosenbohm, C., Ørum, H., Elmén, J., Seidah, N.G. and Straarup, E.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One 17 (2010) e10682. DOI: 10.1371/journal.pone.0010682.

    Article  Google Scholar 

  36. PCSK9 Conference, Locked Nucleic Acid antisense oligonucleotide inhibition of PCSK9, March 11, 2010. Information obtained from the web page http://www.santaris.com/news/2011/05/04/santaris-pharma-advancesnew-cholesterol-lowering-drug-spc5001-inhibiting-exciting-n

  37. Information obtained from the web page http://clinicaltrials.gov/ct2/show/NCT01350960?term=SPC5001&rank=1

  38. Dykxhoorn, D.M., Novina, C.D. and Sharp, P.A. Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell. Biol. 4 (2003) 457–467.

    Article  PubMed  CAS  Google Scholar 

  39. Frank-Kamenetsky, M., Grefhorst, A., Anderson, N.N., Racie, T.S., Bramlage, B., Akinc, A., Butler, D., Charisse, K., Dorkin, R., Fan, Y., Gamba-Vitalo, C., Hadwiger, P., Jayaraman, M., John, M., Jayaprakash, K.N., Maier, M., Nechev, L., Rajeev, K.G., Read, T., Röhl, I., Soutschek, J., Tan, P., Wong, J., Wang, G., Zimmermann, T., de Fougerolles, A., Vornlocher, HP., Langer, R., Anderson, D.G., Manoharan, M., Koteliansky, V., Horton, J.D. and Fitzgerald, K. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA 19 (2008) 11915–119120.

    Article  Google Scholar 

  40. RNAi for Target Validation and as a Therapeutic, Keystone Symposium, Colorado 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Plewa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banaszewska, A., Piechota, M. & Plewa, R. Proprotein convertase subtilisin/kexin type 9: A new target molecule for gene therapy. Cell Mol Biol Lett 17, 228–239 (2012). https://doi.org/10.2478/s11658-012-0006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0006-7

Key words