Skip to main content
  • Research Article
  • Published:

Modulation of physiological and pathological activities of lysozyme by biological membranes

Abstract

The molecular details of interactions between lipid membranes and lysozyme (Lz), a small polycationic protein with a wide range of biological activities, have long been the focus of numerous studies. The biological consequences of this process are considered to embrace at least two aspects: i) correlation between antimicrobial and membranotropic properties of this protein, and ii) lipid-mediated Lz amyloidogenesis. The mechanisms underlying the lipid-assisted protein fibrillogenesis and membrane disruption exerted by Lz in bacterial cells are believed to be similar. The present investigation was undertaken to gain further insight into Lz-lipid interactions and explore the routes by which Lz exerts its antimicrobial and amyloidogenic actions. Binding and Förster resonance energy transfer studies revealed that upon increasing the content of anionic lipids in lipid vesicles, Lz forms aggregates in a membrane environment. Total internal reflection fluorescence microscopy and pyrene excimerization reaction were employed to study the effect of Lz on the structural and dynamic properties of lipid bilayers. It was found that Lz induces lipid demixing and reduction of bilayer free volume, the magnitude of this effect being much more pronounced for oligomeric protein.

Abbreviations

CD:

circular dichroism

CL:

cardiolipin

DTT:

dithiothreitol

DyL549 :

DyLight 549

E/M:

pyrene excimer-to-monomer intensity ratio

ESR:

electron spin resonance

Fl:

fluorescein

FRET:

Förster resonance energy transfer

G+:

Gram positive bacteria

G−:

Gram-negative bacteria

HLH:

helix-loop-helix domain

IR:

infrared

LPS:

lipopolysaccharide

LUV:

large unilamellar vesicles

Lz:

lysozyme

PBS:

phosphate buffered saline

PIE:

pulse interleaved excitation

PC:

phosphatidylcholine

PG:

phosphatidylglycerol

PS:

phosphatidylserine

SeTau647 :

SeTau-647-di-NHS

SLB:

supported lipid bilayer

TIRFM:

total internal reflection fluorescence microscopy

tr-FRET:

time-resolved FRET

References

  1. Walsh, M.A., Schneider, T.R., Sieker, L.C., Dauter, Z., Lamzin, V.S. and Wilson, K.S. Refinement of triclinic hen-egg white lysozyme at atomic resolution. Acta Cryst. D54 (1998) 522–546.

    CAS  Google Scholar 

  2. Wertz, C.F. and Santore, M. Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces. Langmuir 18 (2002) 1190–1199.

    Article  CAS  Google Scholar 

  3. Kimelberg, H.K. Protein-liposome interactions and their relevance to the structure and function of cell membranes. Mol. Cell. Biochem. 10 (1976) 171–190.

    Article  PubMed  CAS  Google Scholar 

  4. Zschornig, O., Paasche, G., Thieme, C., Korb, N., Fahrwald, A. and Arnold, K. Association of lysozyme with phospholipid vesicles is accompanied by membrane surface dehydration. Gen. Physiol. Biophys. 19 (2000) 85–101.

    PubMed  CAS  Google Scholar 

  5. Zschornig, O., Paasche, G., Thieme, C., Korb, N. and Arnold, K. Modulation of lysozyme charge influences interaction with phospholipid vesicles. Colloids Surf. B Biointerfaces 42 (2005) 69–78.

    Article  PubMed  Google Scholar 

  6. de Arcuri, B.F., Vechetti, G.F., Chehin, R.N., Goni, F.M. and Morero, R.D. Protein-induced fusion of phospholipid vesicles of heterogeneous sizes. Biochem. Biophys. Res. Commun. 262 (1999) 586–590.

    Article  PubMed  Google Scholar 

  7. Posse, E., de Arcuri, B.F. and Morero, R.D. Lysozyme interactions with phospholipid vesicles: relationships with fusion and release of aqueous content. Biochim. Biophys. Acta 1193 (1994) 101–106.

    Article  PubMed  CAS  Google Scholar 

  8. Merlini, G. and Bellotti, V. Lysozyme: a paragmatic molecule for the investigation of protein structure, function and misfolding. Clin. Chim. Acta 357 (2005) 168–172.

    Article  PubMed  CAS  Google Scholar 

  9. Frare, E., Polverino de Laureto, P., Zurdo, J., Dobson, C. and Fontana, A. A highly amyloidogenic region of hen lysozyme. J. Mol. Biol. 340 (2004) 1153–1165.

    Article  PubMed  CAS  Google Scholar 

  10. Sato, T., Mattison, K.W., Dubin, P.L., Kamachi, M. and Morishima, Y. Effect of protein aggregation on the binding of lysozyme to pyrene-labeled polyanions. Langmuir 14 (1998) 5430–5437.

    Article  CAS  Google Scholar 

  11. Tsunoda, T., Imura, T., Kadota, M., Yamazaki, T., Yamauchi, H., Kwon, O., Yokoyama, S., Sakai, H. and Abe, M. Effects of lysozyme and bovine serum albumin on membrane characteristics of dipalmitoylphosphatidylglycerol liposomes. Colloids Surf. B Biointerfaces 20 (2001) 155–163.

    Article  PubMed  CAS  Google Scholar 

  12. Dimitrova, M.N., Matsumura, H., Terezova, N. and Neytchev, V. Binding of globular proteins to lipid membranes studied by isothermal titration calorimetry and fluorescence. Colloids Surf. B Biointerfaces 24 (2002) 53–61.

    Article  CAS  Google Scholar 

  13. Ioffe, V.M. and Gorbenko, G.P. Lysozyme effect on structural state of model membranes as revealed by pyrene excimerization studies. Biophys. Chem. 114 (2005) 199–204.

    Article  PubMed  CAS  Google Scholar 

  14. Ioffe, V.M., Gorbenko, G.P., Deligeorgiev, T., Gadjev, N. and Vasilev, A. Fluorescence study of protein-lipid complexes with a new symmetric squarylium probe. Biophys. Chem. 128 (2007) 75–86.

    Article  PubMed  CAS  Google Scholar 

  15. Bergers, J.J., Vingerhoeds, M.H., van Bloois, L., Herron, J.N., Jassen, L.H., Fisher, M.J. and Crommeli, D. The role of protein charge in protein-lipid interactions. pH-dependent changes of the electrophoretic mobility of liposomes through adsorption of watersoluble, globular proteins. Biochemistry 32 (1993) 4641–4649.

    Article  PubMed  CAS  Google Scholar 

  16. Mastromatteo, M., Lucera, A., Siniqaqlia, M. and Corbo, M.R. Synergetic antimicrobial activity of lysozyme, nisin, and EDTA against Listeria monocytigenes in ostrich meat patties. J. Food Sci. 75 (2010) M422–M429.

    Article  PubMed  CAS  Google Scholar 

  17. Yan, H. and Hancock, R.E.W. Synergistic interactions of mammalian antimicrobial defense peptides. Antimicrob. Agents Chemother. 45 (2001) 1558–1560.

    Article  PubMed  CAS  Google Scholar 

  18. Kasprzewska, A. Plant chitinases — regulation and function. Cell. Mol. Biol. Lett. 8 (2003) 809–824.

    PubMed  CAS  Google Scholar 

  19. Salton, M.R.J. The properties of lysozyme and its action on microorganisms. Microbiol. Mol. Biol. Rev. 21 (1957) 82–99.

    CAS  Google Scholar 

  20. Benkerroum, N. Antimicrobial activity of lysozyme with special relevance to milk. Afr. J. Biotechnol. 7 (2008) 4856–4867.

    CAS  Google Scholar 

  21. Masschalck, B., Deckers, D. and Michiels, C.W. Lytic and nonlytic mechanism of inactivation of gram-positive bacteria by lysozyme. J. Food Prot. 65 (2002) 1916–1923.

    PubMed  CAS  Google Scholar 

  22. Bera, A., Biswas, R., Herbert, S., Kulauzovic, E., Weidenmaier, C., Peschel, A. and Götz, F. Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J. Bact. 189 (2007) 280–283.

    Article  PubMed  CAS  Google Scholar 

  23. Hunter, H.N., Jing, W., Schibli, D.J., Trinha, T., Park, Y., Kim, S.C. and Vogel, H.J. The interactions of antimicrobial peptides derived from lysozyme with model membrane systems. Biochim. Biophys. Acta 1668 (2005) 175–189.

    Article  PubMed  CAS  Google Scholar 

  24. Ibrahim, H.R., Thomas, U. and Pellegrini, A. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J. Biol. Chem. 276 (2001) 43767–43774.

    Article  PubMed  CAS  Google Scholar 

  25. Ellison, R.T. and Giehl, T.J. Killing of gram-negative bacteria by lactoferrin and lysozyme. J. Clin. Invest. 88 (1991) 1080–1091.

    Article  PubMed  CAS  Google Scholar 

  26. Hancock, R.E.W. and Chapple, D.S. Peptide antibiotics Antimicrob. Agents Chemother. 43 (1999) 1317–1323.

    CAS  Google Scholar 

  27. Keller, R.C.A. The prediction of novel multiple lipid-binding regions in protein translocation motor proteins: a possible general feature. Cell. Mol. Biol. Lett. 16 (2011) 40–54.

    Article  PubMed  CAS  Google Scholar 

  28. Pellegrini, A., Thomas, U., Bramaz, N., Klauser, S., Hunziker, P. and von Fellenberg, R. Identification and isolation of a bactericidal domain in chicken egg white lysozyme. J. Appl. Microbiol. 82 (1997) 372–378.

    Article  PubMed  CAS  Google Scholar 

  29. Silvestro, L. and Axelsen, P.H. Membrane-induced folding of cecropin A. Biophys. J. 79 (2000) 1465–1477.

    Article  PubMed  CAS  Google Scholar 

  30. Lindeberg, M., Zakharov, S.D. and Cramer, W.A. Unfolding pathway of the colicin E1 channel protein on a membrane surface. J. Mol. Biol. 295 (2000) 679–692.

    Article  PubMed  CAS  Google Scholar 

  31. Hancock, R.E.W. Peptide antibiotics. Lancet 349 (1997) 418–422.

    Article  PubMed  CAS  Google Scholar 

  32. Dobson, C.M. The structural basis of protein folding and its links with human disease. Philos. Trans. Soc. Lond. Ser. B 356 (2001) 133–145.

    Article  CAS  Google Scholar 

  33. Pepys, M.B., Hawkins, P.N., Booth, D.R., Vigushin, D.M., Tennent, G.A., Soutar, A.K., Totty, N., Nguyen, O., Blake, C.C.F, Terry, C.J., Feest, T.G., Zalin, A.M. and Hsuan, J.J. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 362 (1993) 553–557.

    Article  PubMed  CAS  Google Scholar 

  34. Cao, A., Hu, D. and Lai, L. Formation of amyloid fibrils from fully reduced hen egg white lysozyme. Protein Sci. 13 (2004) 319–324.

    Article  PubMed  CAS  Google Scholar 

  35. Gorbenko, G.P. and Kinnunen, P.K.J. The role of lipid-protein interactions in amyloid-type protein fibril formation. Chem. Phys. Lipids. 141 (2006) 72–82.

    Article  PubMed  CAS  Google Scholar 

  36. McLaurin, J., Yang, D.S., Yip, C.M. and Fraser, P.E. Rewiew: modulating factors in amyloid-β-fibril formation. J. Struct. Biol. 100 (2000) 259–270.

    Article  Google Scholar 

  37. Aisenbrey, C., Borowik, T., Byström, R., Bokvist, M., Lindström, F., Misiak, H., Sani, M. and Gröbner, G. How is protein aggregation in amyloidogenic diseases modulated by biological membranes? Eur. Biophys. J. 37 (2008) 247–255.

    Article  PubMed  CAS  Google Scholar 

  38. Zerovnik, E. Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease. Eur. J. Biochem. 269 (2002) 3362–3371.

    Article  PubMed  CAS  Google Scholar 

  39. Butterfield, S.M. and Lashuel, H.A. Amyloidogenic protein — membrane interactions: mechanistic insight from model systems. Angew. Chem. Int. Ed. 49 (2010) 5628–5654.

    Article  CAS  Google Scholar 

  40. Sparr, E., Engel, M.F.M., Sakharov, D., Sprong, M., Jacobs, J., de Kruijf, B., Hoppener, J.W.M. and Killian, J.A. Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett. 577 (2004) 117–120.

    Article  PubMed  CAS  Google Scholar 

  41. Arispe, N., Rojas, E. and Pollard, H. Alzheimer’s disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminium. Proc. Natl. Acad. Sci. USA 89 (2003) 10940–10944.

    Google Scholar 

  42. Domanov, Y.A. and Kinnunen, P.K.J. Antimicrobial peptides temporins B and L induce formation of tubular lipid protrusions from supported phospholipid bilayers. Biophys. J. 91 (2006) 4427–4439.

    Article  PubMed  CAS  Google Scholar 

  43. Lippert, J.L., Lindsay, R.M. and Schultz, R. Laser-Raman investigation of lysozyme-phospholipid interactions. Biochim. Biophys. Acta 599 (1980) 32–41.

    Article  PubMed  CAS  Google Scholar 

  44. Trusova, V.M., Gorbenko, G.P., Sarkar, P., Luchowski, R., Akopova, I., Patsenker, L.D., Klochko, O., Tatarets, A.L., Kudriavtseva, Yu.O., Terpetschnig, E.A., Gryczynski, I. and Gryczynski Z. Forster resonance energy transfer evidence for lysozyme oligomerization in lipid environment. J. Phys. Chem. B. 114 (2010) 16773–16782.

    Article  PubMed  CAS  Google Scholar 

  45. Trusova, V.M., Gorbenko, G.P., Akopova, I., Molotkovsky, J.G., Gryczynski, I., Borejdo, J. and Gryczynski Z. Morphological changes of supported lipid bilayers induced by lysozyme: planar domain formation vs. multilayer stacking. Colloids Surf. B. 80 (2010) 219–226.

    Article  CAS  Google Scholar 

  46. Gorbenko, G.P. and Trusova, V.M. Effects of oligomeric lysozyme on structural state of model membranes. Biophys. Chem. 154 (2011) 73–81.

    Article  PubMed  CAS  Google Scholar 

  47. Sankaram, M. and Marsh. D. Protein-lipid interactions with peripheral membrane proteins. In: Protein-lipid interactions, Elsevier, 1993, 127–162.

  48. Filgueiras, M.H. and Op den Kamp, J.A. Cardiolipin, a major phospholipid of Gram-positive bacteria that is not readily extractable, Biochim. Biophys. Acta 620 (1980) 332–337.

    PubMed  CAS  Google Scholar 

  49. Teuber, M. and Bader, J. Action of polymyxin B on bacterial membranes: phosphatidylglycerol- and cardiolipin-induced susceptibility to polymyxin B in Acholeplasma laidlawii B. Antimicrob. Agents Chemother. 9 (1976) 26–35.

    PubMed  CAS  Google Scholar 

  50. Boldyrev, I.A., Zhai, X., Momsen, M.M., Brockman, H.L., Brown, R.E. and Molotkovsky, J.G. New BODIPY lipid probes for fluorescence studies of membranes. J. Lipid Res. 48 (2007) 1518–1532.

    Article  PubMed  CAS  Google Scholar 

  51. Mui, B., Chow, L. and Hope, M. Extrusion technique to generate liposomes of defined size. Meth. Enzymol. 367 (2003) 3–14.

    Article  PubMed  CAS  Google Scholar 

  52. Richter, R., Mukhopadhyay, A. and Brisson, A. Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys. J. 85 (2003) 3035–3047.

    Article  PubMed  CAS  Google Scholar 

  53. Holley, M., Eginton, C., Schaefer, D. and Brown, L.R. Characterization of amyloidogenesis of hen lysozyme in concentrated ethanol solution. Biochem. Biophys. Res. Commun. 373 (2008) 164–168.

    Article  PubMed  CAS  Google Scholar 

  54. Kapanidis, A.N., Lee, N.K., Laurence, T.A., Doose, S., Margeat, E. and Weiss, A. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl. Acad. Sci. USA 101 (2004) 8936–8941.

    Article  PubMed  CAS  Google Scholar 

  55. Sjöback, R., Nygren, J. and Kubista, M. Absorption and fluorescence properties of fluorescein. Spectrochim. Acta A 51 (1995) L7–L21.

    Google Scholar 

  56. Kubica, K., Langer, M. and Gabrielska, J. The dependence of fluorescein-PE fluorescence intensity on lipid bilayer state. Evaluating the interaction between the probe and lipid molecules. Cell. Mol. Biol. Lett. 8 (2003) 943–954.

    PubMed  CAS  Google Scholar 

  57. Wolber, P.K. and Hudson, B.C. An analytical solution to the Förster energy transfer problem in two dimensions. Biophys. J. 28 (1979) 197–210.

    Article  PubMed  CAS  Google Scholar 

  58. John, E. and Jähnig, F. Aggregation state of melittin in lipid vesicle membranes. Biophys. J. 60 (1991) 319–328.

    Article  PubMed  CAS  Google Scholar 

  59. Li, M., Reddy, L.G., Bennett, R., Silva, N.D., Larry, J., Jones, R. and Thomas, D.D. A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Biophys. J. 76 (1999) 2587–2599.

    Article  PubMed  CAS  Google Scholar 

  60. Fore, S., Yuen, Y., Hesselink, L. and Huser, T. Pulsed-interleaved excitation FRET measurements on single duplex DNA molecules inside C-shaped nanoapertures. Nano Lett. 7 (2007) 1749–1756.

    Article  PubMed  CAS  Google Scholar 

  61. Montroll, E.W. Random walks on lattices. J. Math. Phys. 10 (1969) 753–765.

    Article  CAS  Google Scholar 

  62. Galla, H.J., Hartmann, W., Theilen, U. and Sackmann, E. On twodimensional random walk in lipid bilayers and fluid pathways in biomembranes. J. Membr. Biol. 48 (1979) 215–236.

    Article  PubMed  CAS  Google Scholar 

  63. Barenholz, Y., Cohen, T., Haas, E. and Ottolenghi, M. Lateral organization of pyrene-labeled lipids in bilayers as determined from the deviation from equilibrium between pyrene monomers and excimers. J. Biol. Chem. 271 (1996) 3085–3090.

    Article  PubMed  CAS  Google Scholar 

  64. Fleming, A. On a remarkable bacteriolytic element found in tissues and secretions. Proc Roy. Soc. Ser. B 93 (1922) 306–317.

    Article  CAS  Google Scholar 

  65. Blake, C.C., Koenig, D.F., Mair, G.A., North, A.C., Phillips, D.C., and Sarma, V.R. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 206 (1965) 757–761.

    Article  PubMed  CAS  Google Scholar 

  66. Meyer, K., Palmer, J.W., Thompson, R. and Khorazo, D. On the mechanism of lysozyme action. J. Biol. Chem. 113 (1936) 479–486.

    CAS  Google Scholar 

  67. Boasson, E.H. On the bacteriolysis by lysozyme. J. Immunol. 34 (1938) 281–293.

    Google Scholar 

  68. Epstein, L.A. and Chain, E. Some observations on the preparation and properties of the substrate of lysozyme. Brit. J. Exptl. Pathol. 21 (1940) 339–355.

    CAS  Google Scholar 

  69. Ibrahim, H.R., Yamada, M., Matsushita, K., Kobayashi, K. and Kato, A. Enhanced bactericidal action of lysozyme to Escherichia coli by inserting a hydrophobic pentapeptide into its C terminus. J. Biol. Chem. 269 (1994) 5053–5063.

    Google Scholar 

  70. Hunter, H.N, Jing, W., Schibli, D.J., Trinha, T., Park, Y., Kim, S.C. and Vogel, H.J. The interactions of antimicrobial peptides derived from lysozyme with model membrane systems. Biochim. Biophys. Acta 1668 (2005) 175–189.

    Article  PubMed  CAS  Google Scholar 

  71. Touch, V., Hayakawa, S. and Saito, K. Relationships between conformational changes and antimicrobial activity of lysozyme upon reduction of its disulfide bonds. Food Chem. 84 (2004) 421–428.

    Article  CAS  Google Scholar 

  72. Zhao, H., Tuominen, E.K.J. and Kinnunen, P.K.J. Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43 (2004) 10302–10307.

    Article  PubMed  CAS  Google Scholar 

  73. Choo-Smith, L.P., Garson-Rodriges, W., Glabe, C.G. and Surewicz, W.K. Acceleration of amyloid fibril formation by specific binding of Aβ-(1–40) peptide to ganglioside-containing model membranes. J. Biol. Chem. 272 (1997) 22987–22990.

    Article  PubMed  CAS  Google Scholar 

  74. Morillas, M., Swietnicki, W., Gambetti, P. and Surewicz, W.K. Membrane environment alters the conformational structure of the recombinant human prion protein. J. Biol. Chem. 274 (1999) 36859–36865.

    Article  PubMed  CAS  Google Scholar 

  75. Zhu, M., Li, J. and Fink, A.L. The association of α-synuclein with membranes affects bilayer structure, stability and fibril formation. J. Biol. Chem. 278 (2003) 40186–4097.

    Article  PubMed  CAS  Google Scholar 

  76. Huang, H.W. Action of antimicrobial peptides: two-state model. Biochemistry 39 (2000) 8347–8352.

    Article  PubMed  CAS  Google Scholar 

  77. Chen, F.Y., Lee, M.T. and Huang, H.W. Sigmoidal concentration dependence of antimicrobial peptide activities: a case study of alamethicin. Biophys. J. 82 (2002) 908–914.

    Article  PubMed  CAS  Google Scholar 

  78. Polverino de Laureto, P., Frare, E., Gottardo, R., Van Dael, H. and Fontana, A. Partly folded states of members of the lysozyme/lactalbumin superfamily: a comparative study by circular dichroism spectroscopy and limited proteolysis. Protein Sci. 11 (2002) 2932–2946.

    Article  PubMed  Google Scholar 

  79. Lagüe, P., Zuckermann, M.J. and Roux, B. Lipid-mediated interactions between intrinsic membrane proteins: a theoretical study based on integral equations. Biophys. J. 79 (2000) 2867–2879.

    Article  PubMed  Google Scholar 

  80. Lagüe, P., Zuckermann, M.J. and Roux, B. Lipid-mediated interactions between intrinsic membrane proteins: dependence on protein size and lipid composition. Biophys. J. 81 (2001) 276–284.

    Article  PubMed  Google Scholar 

  81. Zemel, A., Ben-Shaul, A. and May, S. Membrane perturbation induced by interfacially adsorbed peptides. Biophys. J. 86 (2004) 3607–3619.

    Article  PubMed  CAS  Google Scholar 

  82. Denisov, G., Wanaski, S., Luan, P., Glaser, M. and McLaughlin, S. Binding of basic peptides to membranes produces lateral domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol 4,5-bisphosphate: an electrostatic model and experimental results. Biophys. J. 74 (1998) 731–744.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriya Trusova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trusova, V. Modulation of physiological and pathological activities of lysozyme by biological membranes. Cell Mol Biol Lett 17, 349–375 (2012). https://doi.org/10.2478/s11658-012-0015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0015-6

Key words