Skip to main content
  • Mini review
  • Published:

Regulation of angiogenesis by hypoxia: the role of microRNA

Abstract

Understanding the cellular pathways that regulate angiogenesis during hypoxia is a necessary aspect in the development of novel treatments for cardiovascular disorders. Although the pathways of angiogenesis have been extensively studied, there is limited information on the role of miRNAs in this process. miRNAs or their antagomirs could be used in future therapeutic approaches to regulate hypoxia-induced angiogenesis, so it is critical to understand their role in governing angiogenesis during hypoxic conditions. Although hypoxia and ischemia change the expression profile of many miRNAs, a functional role for a limited number of so-called hypoxamiRs has been demonstrated in angiogenesis. Here, we discuss the best examples that illustrate the role of hypoxamiRs in angiogenesis.

Abbreviations

3′UTR:

3′-untranslated region

CUL2:

cullin 2

DDX6:

member six of the DEAD box protein family

DUSP2:

dual-specificity phosphatase-2

EFNA3:

ephrin-A3

ERK:

extracellular signal-regulated kinases

Ets-1:

v-ets erythroblastosis virus E26 oncogene homolog 1

FIH:

factor inhibiting HIF-1

HIF:

hypoxia-inducible factor

hnRNP L:

heterogeneous nuclear ribonucleoprotein L

HRE:

hypoxia-response element

miRNA:

microRNA

PHD2:

proline-hydroxylase-2

RISC:

miRNA-induced silencing complex

SIRi1:

sirtuin

STAT3:

signal transducer and activator of transcription 3

VEGF:

vascular endothelial growth factor

VEGFR2:

vascular endothelial growth factor receptor-2

VHL:

gene encoding von Hippel-Lindau tumor suppressor protein

References

  1. Rocha, S. Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem. Sci. 32 (2007) 389–397.

    Article  PubMed  CAS  Google Scholar 

  2. Guillemin, K. and Krasnow, M.A. The hypoxic response: huffing and HIFing. Cell 89 (1997) 9–12.

    Article  PubMed  CAS  Google Scholar 

  3. Semenza, G.L. Hypoxia and cancer. Cancer Metastasis Rev. 26 (2007) 223–224.

    Article  PubMed  CAS  Google Scholar 

  4. Eltzschig, H.K. and Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364 (2011) 656–665.

    Article  PubMed  CAS  Google Scholar 

  5. Pierson, D.J. Pathophysiology and clinical effects of chronic hypoxia. Respir. Care 45 (2000) 39–51; discussion 51–53.

    PubMed  CAS  Google Scholar 

  6. Fulton, A.B., Akula, J.D., Mocko, J.A., Hansen, R.M., Benador, I.Y., Beck, S.C., Fahl, E., Seeliger, M.W., Moskowitz, A. and Harris, M.E. Retinal degenerative and hypoxic ischemic disease. Doc. Ophthalmol. 118 (2009) 55–61.

    Article  PubMed  Google Scholar 

  7. Yoshida, Y., Tsunoda, T., Takashima, Y., Fujimoto, T., Doi, K., Sasazuki, T., Kuroki, M., Iwasaki, A. and Shirasawa, S. ZFAT is essential for endothelial cell assembly and the branch point formation of capillary-like structures in an angiogenesis model. Cell Mol. Biol. Lett. 15 (2010) 541–550.

    Article  PubMed  CAS  Google Scholar 

  8. Tonini, T., Rossi, F. and Claudio, P.P. Molecular basis of angiogenesis and cancer. Oncogene 22 (2003) 6549–6556.

    Article  PubMed  CAS  Google Scholar 

  9. Beck, H. and Plate, K.H. Angiogenesis after cerebral ischemia. Acta Neuropathol. 117 (2009) 481–496.

    Article  PubMed  Google Scholar 

  10. Haider, H., Akbar, S.A. and Ashraf, M. Angiomyogenesis for myocardial repair. Antioxid. Redox Signal. 11 (2009) 1929–1944.

    Article  PubMed  CAS  Google Scholar 

  11. Shazly, T.A. and Latina, M.A. Neovascular glaucoma: etiology, diagnosis and prognosis. Semin. Ophthalmol. 24 (2009) 113–121.

    Article  PubMed  Google Scholar 

  12. Crosby, M.E., Glazer, P.M. and Ivan, M. “Micro”-management of DNA repair genes by hypoxia. Cell Cycle 8 (2009) 4009–4010.

    Article  PubMed  CAS  Google Scholar 

  13. Gee, H.E., Camps, C., Buffa, F.M., Patiar, S., Winter, S.C., Betts, G., Homer, J., Corbridge, R., Cox, G., West, C.M., Ragoussis, J. and Harris, A.L. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer 116 (2010) 2148–2158.

    PubMed  Google Scholar 

  14. Pocock, R. Invited review: decoding the microRNA response to hypoxia. Pflugers Arch. 461 (2011) 307–315.

    Article  PubMed  CAS  Google Scholar 

  15. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136 (2009) 215–233.

    Article  PubMed  CAS  Google Scholar 

  16. Berezikov, E., Guryev, V., Van De Belt, J., Wienholds, E., Plasterk, R.H. and Cuppen, E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120 (2005) 21–24.

    Article  PubMed  CAS  Google Scholar 

  17. Noren Hooten, N., Abdelmohsen, K., Gorospe, M., Ejiogu, N., Zonderman, A.B. and Evans, M.K. microRNA expression patterns reveal differential expression of target genes with age. PLoS One 5 (2010) e10724.

    Article  PubMed  Google Scholar 

  18. Ritchie, W., Rajasekhar, M., Flamant, S. and Rasko, J.E. Conserved expression patterns predict microRNA targets. PLoS Comput. Biol. 5 (2009) e1000513.

    Article  PubMed  Google Scholar 

  19. Du, R., Sun, W., Xia, L., Zhao, A., Yu, Y., Zhao, L., Wang, H., Huang, C. and Sun, S. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the notch signaling pathway in tubular epithelial cells. PLoS One 7 (2012) e30771.

    Article  PubMed  CAS  Google Scholar 

  20. Muth, M., Theophile, K., Hussein, K., Jacobi, C., Kreipe, H. and Bock, O. Hypoxia-induced down-regulation of microRNA-449a/b impairs control over targeted SERPINE1 (PAI-1) mRNA — a mechanism involved in SERPINE1 (PAI-1) overexpression. J. Transl. Med. 8 (2010) 33.

    Article  PubMed  Google Scholar 

  21. Kulshreshtha, R., Ferracin, M., Wojcik, S.E., Garzon, R., Alder, H., Agosto-Perez, F.J., Davuluri, R., Liu, C.G., Croce, C.M., Negrini, M., Calin, G.A. and Ivan, M. A microRNA signature of hypoxia. Mol. Cell. Biol. 27 (2007) 1859–1867.

    Article  PubMed  CAS  Google Scholar 

  22. Chan, S.Y. and Loscalzo, J. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9 (2010) 1072–1083.

    Article  PubMed  CAS  Google Scholar 

  23. Kaelin, W.G., Jr. and Ratcliffe, P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30 (2008) 393–402.

    Article  PubMed  CAS  Google Scholar 

  24. Wang, V., Davis, D.A., Haque, M., Huang, L.E. and Yarchoan, R. Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 65 (2005) 3299–3306.

    PubMed  CAS  Google Scholar 

  25. Maynard, M.A., Evans, A.J., Hosomi, T., Hara, S., Jewett, M.A. and Ohh, M. Human HIF-3alpha4 is a dominant-negative regulator of HIF-1 and is downregulated in renal cell carcinoma. FASEB J. 19 (2005) 1396–1406.

    Article  PubMed  CAS  Google Scholar 

  26. Li, Q.F., Wang, X.R., Yang, Y.W. and Lin, H. Hypoxia upregulates hypoxia inducible factor (HIF)-3alpha expression in lung epithelial cells: characterization and comparison with HIF-1alpha. Cell Res. 16 (2006) 548–558.

    Article  PubMed  CAS  Google Scholar 

  27. Mole, D.R., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J. Regulation of HIF by the von Hippel-Lindau tumour suppressor: implications for cellular oxygen sensing. IUBMB Life 52 (2001) 43–47.

    Article  PubMed  CAS  Google Scholar 

  28. Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. and Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295 (2002) 858–861.

    Article  PubMed  CAS  Google Scholar 

  29. Dery, M.A., Michaud, M.D. and Richard, D.E. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Biol. 37 (2005) 535–540.

    Article  PubMed  CAS  Google Scholar 

  30. Pagé, E.L., Robitaille, G.A., Pouysségur, J. and Richard, D.E. Induction of hypoxia-inducible factor-1α by transcriptional and translational mechanisms. J. Biol. Chem. 277 (2002) 48403–48409.

    Article  PubMed  Google Scholar 

  31. Kaluz, S., Kaluzova, M. and Stanbridge, E.J. Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxiaresponsive element. Clin. Chim. Acta 395 (2008) 6–13.

    Article  PubMed  CAS  Google Scholar 

  32. Pugh, C.W. and Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9 (2003) 677–684.

    Article  PubMed  CAS  Google Scholar 

  33. Huang, X., Ding, L., Bennewith, K.L., Tong, R.T., Welford, S.M., Ang, K.K., Story, M., Le, Q.T. and Giaccia, A.J. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol. Cell 35 (2009) 856–867.

    Article  PubMed  CAS  Google Scholar 

  34. Hua, Z., Lv, Q., Ye, W., Wong, C.K., Cai, G., Gu, D., Ji, Y., Zhao, C., Wang, J., Yang, B.B. and Zhang, Y. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1 (2006) e116.

    Article  PubMed  Google Scholar 

  35. Lei, Z., Li, B., Yang, Z., Fang, H., Zhang, G.M., Feng, Z.H. and Huang, B. Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One 4 (2009) e7629.

    Article  PubMed  Google Scholar 

  36. Lin, S.C., Wang, C.C., Wu, M.H., Yang, S.H., Li, Y.H. and Tsai, S.J. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J. Clin. Endocrinol. Metab. 97 (2012) E1515–1523.

    Article  PubMed  CAS  Google Scholar 

  37. Cascio, S., D’andrea, A., Ferla, R., Surmacz, E., Gulotta, E., Amodeo, V., Bazan, V., Gebbia, N. and Russo, A. miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. J. Cell Physiol. 224 (2010) 242–249.

    PubMed  CAS  Google Scholar 

  38. Rane, S., He, M., Sayed, D., Vashistha, H., Malhotra, A., Sadoshima, J., Vatner, D.E., Vatner, S.F. and Abdellatif, M. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res. 104 (2009) 879–886.

    Article  PubMed  CAS  Google Scholar 

  39. Ghosh, G., Subramanian, I.V., Adhikari, N., Zhang, X., Joshi, H.P., Basi, D., Chandrashekhar, Y.S., Hall, J.L., Roy, S., Zeng, Y. and Ramakrishnan, S. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J. Clin. Invest. 120 (2010) 4141–4154.

    Article  PubMed  CAS  Google Scholar 

  40. Saito, K., Kondo, E. and Matsushita, M. MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic Acids Res. 39 (2011) 6086–6099.

    Article  PubMed  CAS  Google Scholar 

  41. Bruning, U., Cerone, L., Neufeld, Z., Fitzpatrick, S.F., Cheong, A., Scholz, C.C., Simpson, D.A., Leonard, M.O., Tambuwala, M.M., Cummins, E.P. and Taylor, C.T. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1α activity during prolonged hypoxia. Mol. Cell Biol. 31 (2011) 4087–4096.

    Article  PubMed  CAS  Google Scholar 

  42. Huang, X., Le, Q.T. and Giaccia, A.J. MiR-210—micromanager of the hypoxia pathway. Trends Mol. Med. 16 (2010) 230–237.

    Article  PubMed  CAS  Google Scholar 

  43. Camps, C., Buffa, F.M., Colella, S., Moore, J., Sotiriou, C., Sheldon, H., Harris, A.L., Gleadle, J.M. and Ragoussis, J. hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res. 14 (2008) 1340–1348.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang, Z., Sun, H., Dai, H., Walsh, R.M., Imakura, M., Schelter, J., Burchard, J., Dai, X., Chang, A.N., Diaz, R.L., Marszalek, J.R., Bartz, S.R., Carleton, M., Cleary, M.A., Linsley, P.S. and Grandori, C. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle 8 (2009) 2756–2768.

    Article  PubMed  CAS  Google Scholar 

  45. Liu, F., Lou, Y.L., Wu, J., Ruan, Q.F., Xie, A., Guo, F., Cui, S.P., Deng, Z.F. and Wang, Y. Upregulation of MicroRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro. Kidney Blood Press. Res. 35 (2012) 182–191.

    Article  PubMed  Google Scholar 

  46. Goodsell, D.S. The Molecular perspective: VEGF and angiogenesis. Oncologist 7 (2002) 569–570.

    Article  PubMed  Google Scholar 

  47. Ferrara, N., Gerber, H.P. and Lecouter, J. The biology of VEGF and its receptors. Nat. Med. 9 (2003) 669–676.

    Article  PubMed  CAS  Google Scholar 

  48. Oladipupo, S., Hu, S., Kovalski, J., Yao, J., Santeford, A., Sohn, R.E., Shohet, R., Maslov, K., Wang, L.V. and Arbeit, J.M. VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting. Proc. Nat. Acad. Sci. USA 108 (2011) 13264–13269.

    Article  PubMed  CAS  Google Scholar 

  49. Levy, A.P. Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins. Trends Cardiovasc. Med. 8 (1998) 246–250.

    Article  PubMed  CAS  Google Scholar 

  50. Ray, P.S., Jia, J., Yao, P., Majumder, M., Hatzoglou, M. and Fox, P.L. A stress-responsive RNA switch regulates VEGFA expression. Nature 457 (2009) 915–919.

    Article  PubMed  CAS  Google Scholar 

  51. Jafarifar, F., Yao, P., Eswarappa, S.M. and Fox, P.L. Repression of VEGFA by CA-rich element-binding microRNAs is modulated by hnRNP L. EMBO J. 30 (2011) 1324–1334.

    Article  PubMed  CAS  Google Scholar 

  52. Fandrey, J., Gorr, T.A. and Gassmann, M. Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res. 71 (2006) 642–651.

    Article  PubMed  CAS  Google Scholar 

  53. Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D. and Pouyssegur, J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22 (2003) 4082–4090.

    Article  PubMed  CAS  Google Scholar 

  54. Appelhoff, R.J., Tian, Y.-M., Raval, R.R., Turley, H., Harris, A.L., Pugh, C.W., Ratcliffe, P.J. and Gleadle, J.M. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxiainducible factor. J. Biol. Chem. 279 (2004) 38458–38465.

    Article  PubMed  CAS  Google Scholar 

  55. Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D. and Pouyssegur, J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1[alpha] in normoxia. EMBO J. 22 (2003) 4082–4090.

    Article  PubMed  CAS  Google Scholar 

  56. Lee, S.-T., Chu, K., Jung, K.-H., Yoon, H.-J., Jeon, D., Kang, K.-M., Park, K.-H., Bae, E.-K., Kim, M., Lee, S.K. and Roh, J.-K. MicroRNAs induced during ischemic preconditioning. Stroke 41 (2010) 1646–1651.

    Article  PubMed  Google Scholar 

  57. Chan, Y.C., Khanna, S., Roy, S. and Sen, C.K. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J. Biol. Chem. 286 (2011) 2047–2056.

    Article  PubMed  CAS  Google Scholar 

  58. Listowski, M.A., Heger, E., Bogusławska, D.M., Machnicka, B., Kuliczkowski, K., Leluk, J. and Sikorski, A.F. microRNAs: fine tuning of erythropoiesis. Cell. Mol. Biol. Lett. DOI: 10.2478/s11658-012-0038-z, in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Bartoszewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madanecki, P., Kapoor, N., Bebok, Z. et al. Regulation of angiogenesis by hypoxia: the role of microRNA. Cell Mol Biol Lett 18, 47–57 (2013). https://doi.org/10.2478/s11658-012-0037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0037-0

Key words