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Abstract 

Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human 
life and is the most common form of liver cancer. Treatment of HCC depends on 
chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own 
drawbacks, and patients may develop resistance to these therapies due to the aggres-
sive behavior of HCC cells. New and effective therapies for HCC can be developed 
by targeting molecular signaling pathways. The expression of signal transducer and 
activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer 
progression, the expression tends to increase. After induction of STAT3 signaling by 
growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus 
to regulate cancer progression. The concept of the current review revolves around the 
expression and phosphorylation status of STAT3 in HCC, and studies show that the 
expression of STAT3 is high during the progression of HCC. This review addresses the 
function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis 
and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- 
and death-inducing autophagy in HCC and promotes cancer metastasis by inducing 
the epithelial–mesenchymal transition (EMT). In addition, upregulation of STAT3 is asso-
ciated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, 
non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition 
by antitumor agents may affect tumor progression. In this review, all these topics are 
discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, 
treatment resistance, and pharmacological regulation of HCC.
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Graphical Abstract

Introduction
Liver cancer is the fifth most common tumor worldwide and the second leading cause 
of death [1]. In 2012 alone, a total of 14.1 million cases of liver cancer were diagnosed, 
which were responsible for 745,500 deaths [2]. The mortality rate of liver cancer differs 
between men and women. It is the second leading cause of death in men and the sixth 
leading cause of death in women. The most common form of liver cancer is hepatocel-
lular carcinoma (HCC), which can be caused by hepatitis B virus (HBV) and hepatitis C 
virus (HCV) infection, aflatoxin contamination in food, alcohol consumption, obesity, 
type 2 diabetes, liver cirrhosis, and smoking, among other factors [2, 3]. Due to the syn-
ergy between these additional factors, the risk of developing HCC in the community and 
individuals has increased significantly [4–7]. Up to 70–85% of HCC cases are caused by 
HBV and HCV [8]. According to studies, 50% of HCC cases are due to HBV, while HCV 
is responsible for the development of 25% of HCC cases [8, 9]. Treatment strategies for 
HCC vary and include chemotherapy, radiotherapy, surgery, and immunotherapy. Clini-
cal studies have shown that chemotherapy can improve the prognosis of patients with 
HCC. For example, a combination of atezolizumab and bevacizumab can increase the 
survival rate of patients with HCC, and its therapeutic potential is better than that of 
sorafenib [10]. In addition, a combination of oxaliplatin and fluorouracil shows a better 
effect in improving the prognosis of patients with HCC compared with sorafenib [11]. 
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Basic research has shown that the function of chemotherapy in the treatment of HCC 
may be affected by the development of drug resistance [12, 13]. Moreover, there is a pos-
sibility that the response of HCC cells to radiotherapy may be altered. For example, high 
expression of METTL1 leads to DNA repair and prevents the radiosensitivity of HCC 
cells [14]. In addition, dysbiosis in the gut microbiota is responsible for the impairment 
of the antitumor immune response by radiotherapy and may enhance HCC progres-
sion [15]. Some genetic modulations may also increase the efficacy of immunotherapy 
in the treatment of HCC. For example, silencing of MCT4 increases T cell infiltration 
and promotes immunotherapeutic potential in suppressing HCC [16]. GDF1 is involved 
in the upregulation of CTA by downregulating LSD1 to improve the immunotherapy of 
HCC [17]. However, much progress still needs to be made in the treatment of patients 
with HCC. Therefore, one area for developing new therapeutics is to focus on factors 
that mediate the progression of HCC. The cellular and molecular interactions determine 
the progression of HCC cells via molecular signaling pathways [18–20]. Disruption of 
the intrahepatic microbiota leads to stimulation of hepatic stellate cells and their senes-
cence, to direct liver cirrhosis toward HCC development [21]. Moreover, SNORAD17 
inactivates p53 by binding to NPM1 and MYBBP1A in the nucleus to promote HCC 
progression [22]. Inhibition of IRF8 impairs HCC cell progression, which is important 
for increasing the potential of anti-PD-1 therapy [23]. The extracellular vesicles derived 
from hepatic stellate cells are able to secrete HK1 to increase the malignancy of HCC by 
stimulating glycolysis [24]. Even more interestingly, dysregulation of molecular signal-
ing pathways may lead to drug resistance in HCC [25]. The upregulation of ROBO1 is 
considered to be a factor for the increase of HCC progression and its downregulation 
by miR-152-3p affects the malignancy of HCC [26]. In addition, inflammation is consid-
ered a factor in the pathogenesis of HCC, and the upregulation of signal transducer and 
activator of transcription 3 (STAT3) by GNAS creates such a condition [27]. Therapeutic 
targeting of UCK2 and its downregulation may lead to an increase in cancer immunity 
in HCC [28]. Since molecular interactions play a key role in HCC progression [29, 30], 
the current review was dedicated to understanding the function of STAT3 signaling in 
HCC tumorigenesis.

There are also a number of reviews on the STAT3 pathway in HCC [31–35]. However, 
their structure is not comprehensive, and the novelty of the current work is that it has 
focused in different sections and subsections on the role of STAT3 in growth, invasion, 
drug resistance, radioresistance, molecular pathways regulating STAT3, and its targeting 
by anticancer agents. These topics have not been fully investigated in previous reviews. 
As science continues to advance, an up-to-date review of STAT3 is needed for HCC. 
Therefore, most references in this article are new and updated.

STAT3 signaling: an overview
Structure and mechanism of activation

The STAT family comprises seven transcription factors: STAT1, STAT2, STAT3, STAT4, 
STAT5a, STAT5b, and STAT6. Their interaction with cytokines, growth proteins, and 
polypeptide ligands is critical for controlling important biological events in cells [36–
38]. STAT3 is the best known member of the STAT family. This transcription factor 
has the ability to bind to DNA and its expression can be induced by cytokines, growth 
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factors, inflammation, interleukin-6 (IL-6), and others [39]. Structurally, STAT3 has a 
unique shape and the presence of different domains in this protein leads to its specific 
functions in cells. The N-terminal, coiled-coil, DNA-binding, Src homology 2 (SH2), and 
C-terminal transactivation domains make up STAT3 [37, 38, 40]. Each of these domains 
is responsible for a specific function of STAT3. For example, dimer–dimer interactions 
are mediated by the N-terminal domain and the formation of the DNA–protein com-
plex in STAT3 is mediated by the DNA-binding domain. The SH2 domain is involved 
in increasing the stability of STAT3 and transcriptional activation is mediated by the 
C-terminal domain [40]. STAT3 was first discovered in 1996, when researchers inves-
tigated the intracellular transduction of epidermal growth factor (EGF) and IL-6, and 
STAT3 was believed to be involved in the regulation of cell growth and inflammatory 
responses [41, 42]. As a downstream target of inflammatory factors and growth factors, 
STAT3 is able to regulate important biological mechanisms in cells such as proliferation, 
differentiation, migration, and others [43–46]. In cells, there are endogenous inhibitors 
of STAT3 signaling, including PIAS, SOCS, and protein tyrosine phosphatases, as well 
as ubiquitin enzymes that can suppress this pathway [47]. Stimulation of STAT3 signal-
ing in cells is mediated by phosphorylation at tyrosine (705) and serine (727) residues 
induced by JAK proteins, tyrosine kinases, cytokines, and nonreceptor tyrosine kinases 
such as SRC and ABL. After phosphorylation of STAT3 and formation of homo- or het-
erodimers, STAT3 migrates to the nucleus to regulate gene expression [48]. Figure  1 
illustrates STAT3 signaling in cells.

STAT3 signaling in cancer

The field of oncology is rapidly evolving thanks to the development of various therapeu-
tics. A major limitation of current treatment strategies is that there are few therapies 
based on targeting of molecular signaling pathways that regulate cancer progression. 
Therefore, due to the development of precision medicine and improvements in the bio-
logical field, it is strongly recommended to develop novel therapies based on molecular 
signaling pathways that are mainly involved in cancer development. There is increasing 
evidence that STAT3 regulation is important in cancer and promotes cancer progres-
sion. Exosomal S100A4 stimulates STAT3 signaling to mediate resistance of lung tumor 
cells to the immune system [49, 50]. Moreover, high expression of STAT3 mediated by 
IL-6 can promote invasion and metastasis of gastric cancer cells [51]. The presence of a 
high-fat diet due to cyclophilin B is significant in inducing STAT3 signaling to increase 
PVT1 expression. Moreover, there is a positive feedback loop between STAT3 and PVT1 
that may promote the progression of colorectal tumor cells [52]. When STAT3 expres-
sion increases, it induces YAP signaling to promote lung tumor cell metastasis [53]. 
Nuclear translocation of STAT3 has been reported to be critical for the induction of the 
epithelial–mesenchymal transition (EMT) and increasing metastasis of bladder cancer, 
and this is mediated via SENP3 as a regulatory factor [54]. Circ-BGN and circ-RPPH1 
are able to stimulate STAT3 signaling to promote gastric and lung tumor cell progres-
sion, respectively [55, 56]. Due to the important function of STAT3 in oncogenesis, 
studies have focused on the use of antitumor agents targeting this molecular signaling 
pathway to suppress it and impair tumorigenesis [57]. Fangchinoline increases oxida-
tive stress to suppress STAT3 signaling to reduce myeloma progression [58]. Moreover, 
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epigallocatechin-3-gallate decreases STAT3 expression by impairing colon tumor cell 
invasion and metastasis [59]. According to these descriptions, the function of STAT3 
signaling in cancer is oncogenic and its suppression may therefore introduce new thera-
peutics for tumor therapy. The aim of the current review is to understand the function of 
STAT3 signaling in HCC, which will be discussed in detail in the next sections.

A summary of STAT3 inhibitors

Repurposed drugs and natural products can be considered as important STAT3 inhibi-
tors in cancer therapy [60]. In addition, medicinal chemistry has emerged as a new field 
for STAT3 suppression and cancer therapy [61]. The variety of natural products is large 
and they have shown high potential for modulating the STAT3 signaling pathway in can-
cer therapy. Betulinic acid, curcumin, plumbagin, diosgenin, caffeic acid, honokiol, and 
thymoquinone are among the phytochemicals that suppress STAT3 [62]. However, since 
natural products have poor bioavailability, the development of effective small molecule 
inhibitors of STAT3 has been proposed. These inhibitors are able to regulate upstream 
modulators of STAT3 such as JAK or Src, or they can directly interfere with the phos-
phorylation of STAT3 [63]. Most STAT3 inhibitors bind to the SH2 domain of STAT3 
to interfere with its tyrosine phosphorylation [64]. Interestingly, different types of small 

Fig. 1 A schematic representation of STAT3 in cells
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molecules such as AG490, LS-104, INCB018424, and CEP-701 have been used in pre-
clinical models and clinical trials [65]. However, since there are similarities between the 
SH2 domain of STAT3 and other members of the family, it is recommended that SH2 
domain regulators be used with more caution in clinical trials.

STAT3 in HCC apoptosis
One of the programmed cell death mechanisms important for cancer therapy is apop-
tosis. This cell death mechanism involves intrinsic and extrinsic pathways, with the 
intrinsic pathway involving mitochondria, while the extrinsic pathway involves death 
receptors [66]. In both pathways, the caspase cascade is upregulated to stimulate apop-
tosis. However, one of the drawbacks in cancer therapy is the development of apopto-
sis resistance, in which tumor cells do not respond to this form of cell death, leading 
to chemoresistance [67–70]. The interplay of oncogenic molecular signaling pathways 
and their upregulation may lead to the development of apoptosis resistance in HCC cells 
and inhibition of this intracellular mechanism. High expression of AKR1C3 suppresses 
apoptosis in HCC cells, and its silencing promotes apoptosis. To this end, AKR1C3 
increases the expression of STAT3 via IL-6, and there is also a positive feedback loop 
in which overexpressed STAT3 promotes AKR1C3 expression in inhibiting apoptosis in 
HCC cells [71]. When apoptosis is inhibited, cancer cells gain more potential to pro-
liferate and increase their population [72]. The upregulation of TRIM52 increases the 
growth rate of HCC cells, and to this end, TRIM52 stimulates STAT3 signaling as an 
oncogenic factor to prevent apoptosis in tumor cells [73]. Indeed, the function of STAT3 
signaling is to protect HCC cells from apoptosis and to provide optimal conditions for 
tumor cell growth. However, stimulation of STAT3 signaling in HCC cells is complicated 
and requires interactions between different molecular signaling pathways. For example, 
circRNA-9119 is involved in protecting HCC cells from apoptosis. Upregulation of cir-
cRNA-9119 in HCC cells leads to inhibition of miR-26a to stimulate the JAK1/STAT3 
axis to prevent apoptosis in tumor cells [74]. In chemotherapy, the main goal is to stimu-
late apoptosis to reduce HCC cell viability and progression. Doxorubicin (DOX) is com-
monly used in the treatment of HCC, and the goal of its administration is to induce 
apoptosis in tumor cells. The high expression level of CKLF1 can suppress apoptosis in 
DOX-exposed HCC cells, which is due to the activation of the IL-6/STAT3 axis [75].

Inhibition of apoptosis following upregulation of STAT3 may also lead to the devel-
opment of radioresistance. Therefore, researchers have sought to understand apoptosis 
regulation after targeting STAT3 signaling in HCC therapy. XL888 is a selective inhibitor 
of HSP90 that can reduce the expression of STAT3 to stimulate apoptosis after inad-
equate radiotherapy in the treatment of HCC [76]. The factors targeting STAT3 signaling 
in HCC may affect tumorigenesis. miR-383 is an inducer of apoptosis in HCC cells. The 
expression of miR-383 decreases in HCC cells, while IL-17 shows an increase in expres-
sion. miR-383 downregulates the expression of IL-17, inhibiting STAT3 signaling in 
triggering apoptosis in HCC cells [77]. Another important factor regulating cancer cell 
progression is PDIA3, the upregulation of which leads to an unfavorable prognosis [78]. 
Inhibition of PDIA3 is important for suppressing growth and metastasis in multidrug-
resistant tumor cells [79]. Low expression of PDIA3 leads to apoptosis in HCC cells, and 
after its inhibition, suppression of STAT3 phosphorylation occurs to stimulate apoptosis 
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[80]. According to these studies, inhibition of apoptosis occurs frequently in HCC, and 
upregulation of STAT3 increases tumorigenesis and prevents apoptosis in tumor cells.

STAT3 in HCC autophagy
In the previous section, the role of STAT3 in regulating apoptosis as a form of pro-
grammed cell death was explained. Another important mechanism is autophagy, which 
can have both oncogenic and oncosuppressive functions, and whose function is important 
in HCC. AMPK, Beclin-1, LC3, PI3K, and ATGs are important regulators of autophagy, 
which is a multistep mechanism involving initiation, elongation, maturation, and fusion 
steps. Therefore, targeting autophagy is of great importance in cancer therapy. One of the 
most important challenges is the dual function of autophagy as a pro-survival or pro-death 
mechanism [81–83]. Recent studies have shown that autophagy regulates the progression 
of HCC cells [84, 85]. Hepatocytic p62 impairs tumor progression and carcinogenesis via 
mTORC1 induction and defective autophagy [86]. Downregulation of SPTBN1 promotes 
the expression of YAP and inhibits autophagy in promoting HCC progression [87]. This 
section focuses on the role of STAT3 signaling in modulating autophagy in HCC. Capsai-
cin promotes the formation of reactive oxygen species (ROS), to increase STAT3 expres-
sion and induce autophagy. Notably, suppression of ROS /STAT3/autophagy enhances 
the ability of capsaicin to stimulate apoptosis in HCC cells [88]. Moreover, Zingiberen-
sis newsaponin reduces the expression of AKR1C to suppress the Janus kinase 2 (JAK2)/
STAT3 axis, thereby inhibiting autophagy and reducing the malignancy of HCC cells [89].

Under these circumstances, autophagy has an oncosuppressor function to inhibit 
cancer progression, and induction of autophagy is crucial to reduce HCC cell progres-
sion. Bufothionine decreases the serum level of IL-6 to inhibit the JAK2/STAT3 axis and 
increase the expression of ATG5, ATG7, and LC3II in autophagy induction and pre-
vent the progression of HCC [90]. However, the function of autophagy in cancer can 
always be pro-survival, even after stimulation by agents and drugs. Myricetin increases 
MARCH1 levels to induce STAT3 signaling in mediating autophagy. Moreover, inhibition 
of autophagy increases the potential of myricetin to induce cell cycle arrest, demonstrat-
ing the function of autophagy as a mechanism promoting survival [91]. Dimethyl fuma-
rate impairs HCC cell progression by suppressing growth, angiogenesis, and autophagy 
by increasing SOCS3 expression, thereby inhibiting the JAK1/STAT3 axis [92].

Oxaliplatin is one of the chemotherapeutic agents commonly used in cancer treat-
ment, although its efficacy may be determined and regulated by the autophagy mech-
anism. Stimulation of apoptosis and autophagy by 6-shogaol enhances the potential 
of oxaliplatin in cancer therapy [93]. Moreover, wogonin stimulates autophagy and 
increases the cytotoxicity of oxaliplatin [94]. However, induction of survival-pro-
moting autophagy may lead to oxaliplatin resistance in HCC cells. Upregulation of 
STAT3 stimulates autophagy, whereas inhibition of the JAK2/STAT3 axis inhibits 
autophagy, promoting oxaliplatin-mediated apoptosis in HCC cells [95]. According 
to these studies, the interplay between STAT3 and autophagy not only determines 
the progression and survival rate of HCC cells, but also influences the response to 
chemotherapy. When autophagy has a tumor suppressive function, its induction is 
followed, and when it has a pro-survival function, its inhibition can promote apop-
tosis in HCC cells (Fig. 2 and Table 1).
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STAT3/EMT axis in HCC
The previous sections have shown that STAT3 signaling is able to increase proliferation 
and survival of HCC cells via inhibition of apoptosis and modulation of autophagy (the 
function of autophagy can be pro-survival or pro-death). Although proliferation is an 
important hallmark of HCC cells, abnormal metastasis of these tumor cells may also 

Fig. 2 STAT3 signaling in the regulation of apoptosis and autophagy in HCC

Table 1 The role of STAT3 in regulating autophagy in HCC

Molecular pathway Remark Reference

ROS/STAT3/autophagy Suppression of ROS /STAT3/autophagy promotes induction of apopto-
sis in HCC cells

[88]

AKR1C/JAK2/STAT3 Downregulation of AKR1C leads to inhibition of the JAK2/STAT3 axis to 
suppress autophagy in impairing tumorigenesis

[89]

JAK2/STAT3/autophagy Bufothionine promotes ATGs and Beclin-1 in autophagy induction by 
inhibiting JAK2/STAT3 signaling to reduce tumorigenesis

[90]

MARCH1/STAT3/autophagy Upregulation of MARCH1 stimulates STAT3 signaling to mediate 
autophagy

[91]

SOCS3/JAK1/STAT3 Dimethyl fumarate increases SOCS3 expression to inhibit the JAK1/
STAT3 axis and suppress autophagy in HCC therapy

[92]

JAK2/STAT3/autophagy Inhibition of JAK2/STAT3 suppresses autophagy and promotes 
oxaliplatin-mediated apoptosis in HCC cells

[95]
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adversely affect patient survival and prognosis. According to clinical and experimen-
tal reports, interfering with STAT3 signaling is a therapeutic approach to prevent HCC 
cell metastasis. On the other hand, the best-known mechanism for cancer invasion and 
metastasis is the epithelial–mesenchymal transition (EMT), which converts epithelial 
cells into mesenchymal cells and is associated with downregulation of E-cadherin and 
upregulation of N-cadherin and vimentin [96, 97]. The increase in metastasis and the 
development of chemoresistance may be due to the induction of EMT in tumor cells 
[98–100]. This section focuses on the function of STAT3 signaling in regulating the EMT 
mechanism in HCC. First of all, two important aspects should be considered regarding 
the role of STAT3 signaling in the regulation of HCC metastasis. In the initial phase, 
STAT3 signaling may be involved in the increased invasion and progression of HCC 
cells, either alone or by targeting related factors of EMT. For example, high expression of 
STAT3 leads to upregulation of transforming growth factor-beta (TGF-β1) to stimulate 
the EMT mechanism and enhance tumor metastasis [101]. In the next phase, the coop-
eration of STAT3 signaling with other molecular signaling pathways is required for EMT 
induction in HCC. DYRK1A may be involved in increasing metastasis of HCC cells via 
EMT induction. To this end, DYRK1A promotes the expression of STAT3 and acceler-
ates its nuclear translocation; DYRK1A also interacts with TSC1 to phosphorylate the 
Smad2/Smad3 complex. Subsequently, it translocates to the nucleus, and the interac-
tion of the Smad2/Smad3 complex with STAT3 signaling induces EMT and enhances 
metastasis of HCC cells [102]. Moreover, STAT3 can create positive feedback loops 
with upstream mediators that facilitate HCC cell metastasis and invasion. High levels 
of DDR1 lead to poor prognosis and low survival in HCC. DDR1 increases phospho-
rylation of STAT3, and overexpressed STAT3 in turn increases DDR1 expression. These 
interactions lead to EMT induction, which promotes HCC invasion [103]. Regarding the 
oncogenic function of STAT3 in increasing metastasis of HCC cells, the upstream fac-
tors that suppress STAT3 signaling may impair tumorigenesis. PIRK4 is considered an 
inhibitor of HCC invasion. In this way, PIRK4 impairs the phosphorylation of STAT3, 
suppressing EMT and metastasis in HCC [104].

PRN2 is a new emerging target in the field of cancer therapy because its downregula-
tion impairs growth and metastasis and promotes apoptosis in cancer cells [105]. More-
over, PRN2 interacts with EGFR to promote cancer growth [106]. STAT3 is strongly 
regulated by PRN2, and its upregulation leads to radioresistance [107]. PRN2 promotes 
the expression of STAT3 in HCC and increases its nuclear translocation to induce EMT 
in HCC invasion and metastasis [108]. More importantly, endoplasmic reticulum (ER) 
stress may lead to malignancy of HCC cells via affecting STAT3 signaling. Hepatitis B 
virus small surface antigen leads to ER stress in HCC cells. Subsequently, ATF4 is upreg-
ulated to upregulate FGF19. The secreted FGF19 binds to the FGFR4 receptor on the 
cell surface to activate the JAK2/STAT3 pathway. Subsequently, nuclear translocation of 
STAT3 signaling occurs, increasing the levels of Slug, Snail, ZEB1, and Twist upon EMT 
induction and promoting tumor metastasis [109]. Due to advances in the field of biol-
ogy, key molecular signaling pathways regulating STAT3 have become increasingly well 
understood, revealing both oncogenic and oncosuppressive properties. For example, 
EFTUD2 stimulates NF-κB to mediate inflammation and colitis-induced carcinogenesis 
[110, 111]. In HCC, high levels of EFTUD2 are indicative of poor tumor cell prognosis 
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[112]. Mechanistically, EFTUD2 upregulates STAT3 expression, which is important for 
inducing EMT and facilitating metastasis and invasion of HCC [113].

Akt is another important factor in HCC, in which its overexpression and interaction 
with various molecular signaling pathways are responsible for the increase in HCC pro-
gression, malignancy, and development of drug resistance [114–116]. Interfering with 
Akt signaling is important for the treatment of HCC. Euphorbia factor L2 (EFL2) sup-
presses TGF-β-induced EMT in HCC cells. To this end, EFL2 reduces Akt expression 
and suppresses STAT3 signaling, which impairs tumor cell progression and metasta-
sis [117]. Moreover, high expression of SHC4 has been associated with upregulation 
of STAT3 and subsequent induction of EMT in HCC cells [118]. According to these 
studies, STAT3 is a positive regulator of EMT in HCC, and therefore, suppression of 
STAT3 signaling may impair tumor progression by reducing EMT (Table 2 and Fig. 3) 
[119–122].

Table 2 The regulation of EMT mechanism by STAT3 in HCC cells

Signaling network Remark Reference

MiR-345/mTOR/STAT3/Akt MiR-345 reduces the expression of IRF1 to suppress 
the mTOR/STAT3/Akt axis in inhibiting EMT

[222]

ERO1α/S1PR1/STAT3/VEGF-A ERO1α increases the expression of S1PR1 to induce 
STAT3/VEGF axis in angiogenesis induction and EMT 
stimulation

[223]

DLGAP1-AS1/miR-26a/b-5p/IL-6/JAK2/STAT3 Downregulation of miR-26a/b-5p by DLGAP1-AS1 to 
induce STAT3 signaling and mediate EMT

[224]

STAT3/NFE2L1/STX12 Mitochondrial respiratory defect leads to STAT3 
upregulation to induce NFE2L1/STX12 axis in EMT 
induction and facilitate tumor invasion

[225]

TLX3/STAT3/SNAI1/EMT TLX3 reduces STAT3 expression to suppress SNAI1-
mediated EMT

[226]

B7-H3/JAK2/STAT3/Slug B7-H3 induces the JAK2/STAT3 axis to increase Slug 
expression upon EMT induction

[227]

KIAA1217/STAT3/EMT KIAA1217 stimulates EMT mechanism via STAT3 
upregulation to increase cancer progression

[228]

FEZF1-AS1/JAK2/STAT3 FEZF1-AS1 stimulates the JAK2/STAT3 axis during EMT 
induction

[229]

IL-35/STAT3/EMT IL-35 promotes STAT3 expression to stimulate EMT [230]

RBM3/STAT3/EMT RBM3 promotes STAT3 expression to induce EMT [231]

Glycochenodeoxycholic acid/STAT3/EMT Up-regulation of STAT3 to induce EMT [232]

STAT3/Snail/EMT High expression level of Oct4 and Nanog promotes 
STAT3 expression to upregulate Snail in inducing EMT

[233]

STAT3/CASC11/PTEN/PI3K/Akt STAT3 increases CASC11 expression to induce PI3K/
Akt signaling via PTEN down-regulation upon EMT 
induction

[234]

IL-6/STAT3/HIF-1α/SNAI1/EMT IL-6 promotes STAT3 expression to upregulate HIF-1α
Up-regulation of SNAIL1 to induce EMT

[235]

DSCR8/miR-98-5p/STAT3/HIF-1α DSCR8 promotes STAT3 expression via miR-98-5p 
sponging to increase HIF-1α expression and induce 
EMT, which enhances cancer invasion

[236]

STAT3/Twist/EMT STAT3 increases the expression of Twist to stimulate 
EMT

[237]

TRIM27-USP7/STAT3/EMT TRIM27-USP7 promotes STAT3 expression during EMT 
induction

[238]

STAT3/EMT STAT3 stimulates EMT during increasing HCC invasion [239]
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STAT3 in HCC drug resistance
The process of drug resistance in HCC is complicated and subject to the control of differ-
ent molecular pathways in tumor cells. The process of drug resistance in HCC is favored 
by the upregulation of ribosomal RACK1, which increases tumor cell proliferation and 
viability [123]. PBK/TOPK expression increases in chemoresistant HCC cells and medi-
ates oxaliplatin resistance via downregulation of PTEN expression [124]. In addition, 
high levels of CPEB1 decrease the stemness of HCC cells and are critical for suppress-
ing drug resistance [125]. LINC01234 is able to promote the expression of MAGEA3 via 
miR-31-5p sponging to increase the proliferation rate of tumor cells and mediate drug 
resistance in HCC [126]. When the TRIM37 level is increased in HCC cells, it promotes 
Akt signaling to mediate chemoresistance [127]. Moreover, ID-1 is involved in triggering 
oxaliplatin resistance in HCC by inducing the pentose phosphate pathway [128]. There-
fore, aberrant expression of proteins and genes can lead to the development of chemore-
sistance in HCC cells [129, 130], and this part of the text is focused on understanding the 
role of STAT3 signaling in the development of HCC drug resistance. The STAT3 path-
way contributes to the development of drug resistance in HCC, and its expression level 
can be modulated by upstream mediators. The expression of DNMT3B is increased in 
HCC and shows a positive association with Oct4, which in turn increases the expression 
of IL-6 to induce STAT3 signaling in the development of sorafenib resistance in HCC 
and mediate an unfavorable prognosis in tumor cells [131]. As mentioned previously, the 
oncogenic function of STAT3 may be related to the inhibition of apoptosis in HCC cells. 
When dovitinib is administered, it suppresses STAT3 signaling in a SHP-1-dependent 

Fig. 3 EMT mechanism regulation by STAT3 in HCC
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manner to prevent apoptosis and develop sorafenib resistance in HCC [132]. In the same 
way, dovitinib also increases the sensitivity of HCC cells to TRAIL and tigatuzumab. 
To this end, dovitinib inhibits STAT3 signaling in a SHP-1 manner to prevent tumor 
cell progression [133]. The function of STAT3 in the development of chemoresistance 
in HCC was confirmed by the finding of increased sensitivity of HCC cells to sorafenib 
after suppression of STAT3 signaling by pharmacological compounds or genetic tools 
[134]. Although studies have shown that activation of STAT3 signaling can lead to the 
development of sorafenib resistance in HCC, it has been shown that STAT3 expression 
is also regulated by sorafenib. Based on this finding, sorafenib administration downregu-
lates STAT3 to prevent the development of TRAIL resistance in HCC [135]. In addition, 
the inhibition of STAT3 signaling by sorafenib is important for increasing the radiosen-
sitivity of HCC cells [136].

High excretion of drugs can also lead to the development of chemoresistance, and 
drug efflux transporters may contribute to this condition [137]. ABCB1, also known 
as P-glycoprotein (P-gp), is a member of the ABC protein family and is located on the 
cell membrane [137, 138]. The substrates with a molecular weight of 250–1250  Da, 
including phospholipids, sterols, cholic acids, peptides, metabolites, and drugs, can 
be transported out of cells by ABCB1 [139]. In particular, STAT3 shows some interac-
tions with ABCB1 in HCC cells. High expression of ABCB1 may lead to exocytosis of 
envatinib from HCC cells and thus development of drug resistance. Overexpression 
of EGFR in HCC cells induces STAT3 signaling to increase ABCB1 expression in the 
development of chemoresistance [140]. As mentioned earlier, the discovery of STAT3 
is related to inflammatory processes. Now, the question arises whether inflammation 
in the liver can trigger STAT3 signaling and whether there is a link with the develop-
ment of chemoresistance? The answer is yes. In a fibrotic liver, the presence of inflam-
mation can lead to the induction of STAT3 signaling, which promotes the progression 
(proliferation and invasion) of HCC cells and mediates sorafenib resistance [141].

One of the important regulators of STAT3 signaling in HCC is RFX-1, which 
upregulates SHP-1 expression to suppress STAT3-mediated HCC progression [142]. 
SC-2001 is involved in disrupting HCC progression and promotes RFX-1 expres-
sion to upregulate SHP-1 in inhibiting STAT3 signaling and suppressing sorafenib 
resistance in tumor cells [143]. Even antitumor agents increase the level of SHP-1 
in affecting the malignancy of HCC. Phloretin is a regulator of molecular signaling 
pathways in cancer [144] and can stimulate apoptosis to reduce tumor progression 
[145]. Phloretin suppresses the progression of HCC and promotes the expression of 
SHP-1 to suppress STAT3 signaling, leading to sorafenib sensitivity in tumor cells 
[146]. Moreover, inhibition of STAT3 signaling is important for the sensitivity of HCC 
cells to TRAIL-mediated apoptosis [147]. These studies suggest that high expression 
of STAT3 promotes drug resistance in HCC cells. Therefore, therapeutic targeting of 
this molecular pathway may impair tumorigenesis and promote chemosensitivity. In 
addition, regulators of STAT3 signaling may indirectly target STAT3 expression to 
modulate drug sensitivity in HCCs. Table 3 summarizes the role of STAT3 signaling 
in the development of drug resistance in HCC.
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STAT3 in HCC radio‑resistance
Radiotherapy is considered minimally invasive in the treatment of cancer, and is pre-
ferred to chemotherapy and surgery in some cases [148]. In addition, the develop-
ment of stereotactic body irradiation and heavy ion therapy has greatly improved 
the potential of radiotherapy [148–150]. Although radiotherapy has brought many 
improvements in the treatment of patients with HCC, its potential may be threatened 
by the development of resistance. Molecular interactions have been reported to play 
an important role in the development of radiation resistance in HCC. Upregulation 
of NEAT1 may lead to radiation resistance in HCC due to stimulation of the PINK1/
Parkin axis [151]. Furthermore, loss of CPS1 may lead to deubiquitination of c-Myc, 
triggering radioresistance in HCC [152]. Thus, when the expression level of oncosup-
pressor factors such as PTEN decreases and/or when oncogenic factors such as long 
noncoding RNA regulator of reprogramming (lncRNA ROR) increase, the likelihood 
of developing radioresistance in HCC is quite high [148, 153]. The role of STAT3 in 
the development of radioresistance in HCC has been investigated. High expression of 
mucin 1 may lead to radioresistance in HCC. Mechanistically, mucin 1 stimulates the 
JAK2/STAT3 axis to prevent apoptosis during radiation exposure in HCC cells [154]. 
Stattic, a small-molecule inhibitor of STAT3, is considered an inhibitor of radioresist-
ance in HCC as it decreases STAT3 levels to suppress the radiation-mediated increase 
in metastasis of HCC cells [155]. However, the role of STAT3 signaling in regulating 
the response to radiotherapy in HCC needs further discussion (Fig. 4).

Table 3 The role of STAT3 signaling in developing drug resistance in HCC

Molecular pathway Remark Reference

STAT3/Mcl-1 Inhibition of the STAT3/Mcl-1 axis promotes tumor cell sensitivity to 
5-fluorouracil

[240]

DANCR/IL-6/STAT3 DANCR promotes IL-6 levels to induce STAT3 signaling in the develop-
ment of sorafenib resistance

[241]

Gankyrin/STAT3 Gankyrin stimulates STAT3 signaling in mediating sorafenib resistance in 
tumor cells

[242]

STAT3/PTTG1 Falcarindiol suppresses STAT3/PTTG1 axis in increasing cisplatin sensitivity 
of tumor cells

[243]

STAT3 Suppression of STAT3 signaling by YC-1 is important in enhancing drug 
sensitivity of tumor cells

[244]

STAT3 Inhibition of STAT3 signaling by NSC 74,859 is significant in enhancing the 
anticancer activity of cetuximab

[245]

MAEL/Akt/STAT3 MAEL stimulates the Akt/STAT3 axis to increase stemness and mediate 
sorafenib resistance

[246]

miR-589-5p/STAT3 miR-589-5p reduces the expression levels of SOCS2, SOCS5, PTPN1, and 
PTPN11 to induce STAT3 signaling in doxorubicin resistance

[247]

Let-7a/STAT3 Let-7a reduces STAT3 expression and increases the sensitivity of HCC cells 
to cetuximab

[248]

RhoE/ROCK2/IL-6/STAT3 Downregulation of RhoE leads to upregulation of ROCK2 to induce STAT3 
signaling in developing chemoresistance

[249]

HOTAIR/STAT3/ABCB1 HOTAIR induces STAT3 signaling to increase ABCB1 expression in the 
development of cisplatin resistance

[250]

MAPK/ERK/STAT3 Metformin promotes the cytotoxicity of sorafenib by suppressing the 
MAPK/ERK/STAT3 axis

[251]
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Non‑coding RNAs regulating STAT3 in HCC
microRNAs

Noncoding RNAs (ncRNAs) play a rather crucial role in the process of tumorigenesis 
and microRNAs (miRNAs) are endogenous short noncoding RNAs that modulate gene 
expression by binding to the 3′-untranslated region (UTR) of target genes [156–158]. 
The role of miRNAs in HCC has been investigated and suggests a regulatory role of miR-
NAs in the progression and therapeutic response in HCC [159, 160]. Therefore, miR-
NAs are potential therapeutic targets in HCC. Moreover, miRNAs are able to regulate 
STAT3 signaling in various cancers [161, 162]. This section focuses on the role of miR-
NAs in STAT3 regulation in HCC. The progression of HCC cells can be suppressed by 
miR-637. Exogenous leukemia inhibitory factors (LIF) can induce STAT3 signaling and 
thus enhance HCC progression. On the other hand, miR-637 reduces the expression 
of LIF, to suppress STAT3 signaling [163]. miR-124 is another factor mainly responsi-
ble for reducing the progression of HCC cells. Of note, miR-124 downregulates STAT3 
expression, and restoration of STAT3 expression impairs the efficacy of miR-124 in sup-
pressing HCC cell proliferation and progression [164]. Two important references should 

Fig. 4 STAT3 in the development of chemoresistance and radioresistance in HCC
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be mentioned: First, upstream regulators of STAT3 can be modulated by miRNAs, and 
second, the goal of miRNAs in STAT3 targeting is to affect their downstream targets. 
For example, miR-340 reduces the expression of JAK1 to suppress STAT3 signaling and 
decreases the expression of Bcl-2, cyclin D1, and MMP-2 [165]. In addition, the level 
of miRNAs can be affected by STAT3 in HCC. Stimulation of STAT3 signaling leads to 
upregulation of Snail and Twist1 in facilitating metastasis of HCC cells. However, miR-
370-3p binds to the 3′-UTR of Snail and Twist1, suppressing HCC metastasis. On the 
other hand, IL-8 stimulates STAT3 signaling to reduce miR-370-3p expression in medi-
ating tumorigenesis [166]. Moreover, STAT3 increases the level of miR-23a to prevent 
gluconeogenesis in HCC [167]. miR-26a is a suppressor of HCC with attenuated expres-
sion in tumor cells [168]. miR-26a is able to reduce the expression of ERα to suppress the 
progression and proliferation of hepatomas mediated by E2 [169]. Moreover, miR-26a is 
involved in reducing DNMT3B expression in alleviating HCC progression [170]. Thus, 
miR-26a is an important tumor suppressor factor. miR-26a is able to decrease the lev-
els of IL-6 by inhibiting STAT3 signaling and reducing the progression of HCC [171]. 
Apoptosis, proliferation, and invasion of HCC cells are tightly regulated by STAT3 sign-
aling. High levels of STAT3 can lead to acceleration of proliferation through upregula-
tion of c-Myc, an increase in migration through upregulation of MMP-9, and decreased 
apoptosis of cells through downregulation of Bax and caspase-3. However, miR-378a-3p 
is able to suppress STAT3 signaling and thus disrupt HCC progression [172]. Even the 
regulation of STAT3 by miRNAs can affect the response of HCC cells to therapy. miR-
539 inhibits STAT3 signaling to stimulate apoptosis and promote the sensitivity of HCC 
cells to arsenic trioxide therapy [173]. Thus, STAT3 is strongly regulated by miRNAs in 
HCC cells.

Long noncoding RNAs

Long noncoding RNAs (lncRNAs) are RNA transcripts that have gained much interest 
in recent years and regulate muscle differentiation [174], pluripotent stem cell repro-
gramming [175], apoptosis, and migration [176]. lncRNAs are responsible for aberrant 
expression of genes in tumors and may influence colony formation, metastasis, and 
malignancy of cancer cells [177–180]. Interestingly, lncRNAs have shown their poten-
tial in regulating STAT3 signaling in HCC. To this end, the lncRNA TPTEP1 reduces 
the phosphorylation of STAT3, which has a positive effect on HCC cell progression 
[181]. On the other hand, the lncRNA TINCR is able to enhance the progression of 
HCC. TINCR interacts and binds with TCPTP to stimulate STAT3 signaling, which is 
critical for enhancing tumor cell proliferation and metastasis [182]. Similar to miRNAs, 
the expression levels of which can be regulated by STAT3, STAT3 is able to bind to the 
promoter of lncRNAs to modulate their expression levels. STAT3 increases the level of 
lncRNA HOXD-AS1, which downregulates the level of miR-130a-3p by acting as com-
peting endogenous (ce)RNA. Then, it induces SOX4 expression to upregulate EZH2 and 
MMP-2 to promote carcinogenesis in HCC [183]. In addition, infection with HBV can 
affect the expression level of lncRNAs in HCC. For example, in tissues infected with 
HBV, upregulation of lncRNA 01,152 is observed to increase the level of IL-23, inducing 
STAT3 signaling and promoting HCC progression [184].
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The lncRNA 00,364 was reported to suppress the progression of HCC cells. Of note, 
lncRNA 00,364 suppresses STAT3 phosphorylation, paving the way for increased levels 
of IFIT2, leading to induction of apoptosis, cell cycle arrest in G1/S phase, and inhibition 
of proliferation [185]. However, most studies have focused on the function of oncogenic 
lncRNAs and their ability to induce STAT3 signaling. The lncRNA TUG1 is another 
factor whose overexpression has been observed in HCC and can relieve miR-144. This 
stimulates the JAK2/STAT3 axis, which promotes the growth and metastasis of HCC 
cells and the carcinogenesis process [186]. These studies have highlighted the fact that 
lncRNAs can modulate STAT3 signaling in HCC and their interaction is mainly based 
on influencing miRNAs [187]. It is proposed that small interfering (si)RNA, small hair-
pin (sh)RNA, and CRISPR/Cas9 can be used as powerful genetic tools to target lncRNAs 
in the treatment of HCC and suppress tumorigenesis.

Table 4 The role of noncoding RNAs in the regulation of STAT3 signaling in HCC

Molecular pathway Remark Reference

MiR-486-5p/IGF-1R/STAT3 MiR-486-5p reduces IGF-1R expression to suppress STAT3 
signaling

[252]

MiR-MTCO3P38/STAT3/PTTG1/MYC Inhibition of STAT3 signaling and downstream targets by 
miR-MTCO3P38

[253]

MiR-363/S1PR1/STAT3 MiR-363 reduces S1PR1 expression to inhibit STAT3 signaling [254]

Gα12/miR-122/c-Met/STAT3 Gα12 decreases miR-122 expression through HNF4α [255]

LINC01133/miR-199a-5p/annexin A2 c-Met induction to stimulate STAT3 signaling [256]

Circ-0006916/miR-337-3p/STAT3 LINC01133 promotes the expression of annexin A2 via miR-
199a-5p to induce STAT3 signaling

[194]

LINC01433/miR-1301/STAT3 Circ-0006916 promotes STAT3 expression via miR-337-3p 
sponging in tumorigenesis

[257]

MiR-337-3p/JAK2/STAT3 LINC01433 promotes STAT3 expression via inhibition of miR-
1301

[258]

MiR-137/EZH2/STAT3 MiR-337-3p suppresses the JAK2/STAT3 axis in affecting HCC 
progression

[259]

MiR-30e/JAK1/STAT3 MiR-137 reduces EZH2 expression and inhibits STAT3 
signalingmiR-30e inhibits the JAK1/STAT3 axis in suppressing 
carcinogenesis

[260]

LINC01287/miR-298/STAT3 LINC01287 induces STAT3 via downregulation of miR-298 in 
EMT induction

[261]

SNHG16/miR-4500/STAT3 SNHG16 increases STAT3 expression via miR-4500 sponging 
in tumorigenesis

[262]

MiR-500a-3p/STAT3 MiR-500a-3p stimulates STAT3 signaling in cancer stemness 
enhancement

[263]

Circ-LRIG3/EZH2/STAT3 Circ-LRIG3 increases STAT3 expression in an EZH2-dependent 
manner to promote tumorigenesis

[264]

MiR-506/STAT3 MiR-506 suppresses STAT3 signaling to enhance natural killer 
cell cytotoxicity

[265]

MiR-146a STAT3 promotes miR-146a expression in inhibiting anti-tumor 
immune response

[266]

NEAT1/miR-485/STAT3 NEAT1 sponges miR-485 to induce STAT3 signaling [267]

MiR-451/IL-6R/STAT3 MiR-451 suppresses STAT3 signaling to inhibit angiogenesis 
via lower VEGF expression

[268]

MiR-515-5p/IL-6/JAK/STAT3 MiR-515-5p inhibits STAT3 signaling in reducing HCC progres-
sion

[269]

MiR-135a-5p/PTPRD/STAT3 MiR-135a-5p induces STAT3 signaling via downregulating 
PTPRD to promote tumorigenesis

[270]

Circ-0072088/miR-375/STAT3 Circ-0072088 increases STAT3 expression via miR-375 spong-
ing to enhance cancer progression

[197]
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Circular RNAs

Circular RNAs (circRNAs) are another member of the family of ncRNAs that do not 
code for proteins and develop a loop structure without 5′-3′ polarity, and with no 
polyadenylated tail in their structure [188, 189]. An abnormal amount of circRNAs is 
responsible for the process of tumorigenesis [190]. Moreover, circRNAs play a key role 
in HCC. For example, circ-0008934 sponges miR-1305 to increase TMTC3 expression, 
promoting HCC progression [191]. Moreover, circ-HIPK3 reduces the levels of miR-124 
and miR-506 to increase PDK2 expression, thereby accelerating HCC progression [192]. 
Therefore, understanding the function of circRNAs is important for HCC therapy [193]. 
The malignancy of HCC cells is increased by the function of circ-0006916. It has been 
reported that circ-0006916 stimulates STAT3 signaling via downregulating miR-337-3p 
to increase the malignancy of HCC and mediate poor prognosis [194]. Circ-0072088 has 
an oncogenic function in cancers, and by decreasing miR-377 expression, circ-0072088 
increases the progression of esophageal cancer cells [195]. Moreover, circ-0072088 
increases NOVA2 expression via downregulating miR-377-5p, accelerating the pro-
gression of lung tumor cells [196]. In HCC, circ-0072088 shows a similar function and 
promotes tumorigenesis. A high level of circ-0072088 is associated with upregulation of 

Fig. 5 Regulation of STAT3 signaling by noncoding RNAs in HCC
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STAT3, and this is achieved by downregulation of miR-375 to increase proliferation and 
metastasis of HCC cells and mediate EMT [197]. On the other hand, there are circR-
NAs that can inhibit the progression of HCC. Circ-0004913 is an inhibitor of HCC pro-
gression and for this purpose, it reduces the expression of miR-184 to increase HAMP 
expression. When the expression level of HAMP increases in response to circ-0004913, 
it can suppress proliferation, invasion, and glycolysis in HCC cells [198]. Table  4 and 
Fig. 5 provide an overview of the ncRNAs that regulate STAT3 signaling in HCC.

Pharmacological regulation of STAT3 in HCC
The use of novel antitumor agents for the treatment of HCC has received much 
attention recently. There are a number of reasons for this. The first is that conven-
tional drugs and compounds such as chemotherapeutics are no longer very effective 
in treating cancer due to resistance. Therefore, when new types of therapeutics are 
introduced for HCC, the prognosis and survival of patients can be greatly improved. 
Due to the emergence of the field of precision medicine, studies have focused on 
targeting specific molecular pathways in cancer therapy. Because the STAT3 path-
way is oncogenic and promotes progression of HCC cells, studies have focused on 
using antitumor agents that target the STAT3 pathway in cancer therapy. One of the 
new agents that has been extensively used to treat HCC in recent years is quercetin, 
which inhibits Akt signaling and suppresses HCC invasion [199]. In addition, querce-
tin shows a synergistic effect with oncolytic adenoviruses, which upregulate TRAIL 
in apoptosis induction [200]. JAK /STAT signaling can be regulated by quercetin in 
HCC therapy [201]. Quercetin suppresses the progression of HCC both in vitro and 
in  vivo. Specifically, quercetin stimulates apoptosis and autophagy, and suppresses 
metastasis and proliferation of HCC cells. These anticancer activities of quercetin are 
mediated by inhibition of JAK2/STAT3 signaling [202]. Another antitumor agent cur-
rently used in cancer therapy is curcumin, which stimulates apoptosis and cell cycle 
arrest, impairs metastasis, and increases chemosensitivity [203–205]. In HCC, cur-
cumin impairs tumor cell progression by affecting molecular signaling pathways, and 
its efficacy can be enhanced by nanoparticle delivery [206–208]. Trichloroethylene 
can induce EMT to promote HCC cell progression and metastasis. However, cur-
cumin suppresses the IL-6R/STAT3 axis to inhibit EMT-mediated metastasis in HCC 
and reduce tumor cell malignancy [209]. In the context of the current review, STAT3 
signaling promotes both growth and metastasis in HCC cells. Therefore, a novel ther-
apeutic approach targeting STAT3 signaling in the treatment of HCC should affect 
two important hallmarks of HCC cells. For example, administration of (−)-oleocan-
thal may suppress STAT3 signaling to impair HCC metastasis and proliferation [210]. 
However, most studies have focused on these two hallmarks. Since chemoresistance 
is common in HCC [211–213], the development of novel therapies to inhibit STAT3 
signaling should help reverse drug resistance in HCC.

Polydatin, another reagent used in the treatment of HCC, has been shown to be effi-
cient in apoptosis induction to suppress tumor cell proliferation and metastasis [214]. 
The antitumor activity of polydatin appears to be related to the inhibition of STAT3 sign-
aling in HCC. Administration of polydatin reduces Akt expression to suppress STAT3 
signaling as a downstream target. Subsequently, it is observed that overexpression of 
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FOXO1 stimulates apoptosis and G2/8  M cycle arrest and reduces cancer cell metas-
tasis [215]. In addition, regulation of STAT3 signaling by anticancer drugs is impor-
tant to improve the response of HCC cells to radiotherapy. Since radioresistance is also 
common in HCC [216, 217], inhibition of radiosensitivity through STAT3 signaling 
can greatly enhance the therapeutic potential in HCC. Lenvatinib reduces the expres-
sion of Src to downregulate STAT3. It then inhibits NF-κB signaling to impair EMT and 
increase the radiosensitivity of HCC cells [218]. An important regulator of HCC pro-
gression is RECK, whose methylation by LINC01419 can increase tumor malignancy 
[219]. Moreover, GAS5 increases the expression of RECK in HCC suppression [220], 
indicating an anticancer effect of this factor. Salvianolic acid decreases mortalin levels to 
upregulate RECK. Subsequently, STAT3 signaling is inhibited to downregulate MMP-9 
to delay HCC cell invasion and metastasis [221]. According to these studies, antitumor 
agents targeting STAT3 signaling may be very useful in the treatment and suppression of 
HCC (Table 5 and Fig. 6).

Table 5 The antitumor compounds targeting STAT3 signaling in HCC therapy

Compound Molecular pathway Remark Reference

18-Glycyrrhetinic acid STAT3/EMT Inhibition of STAT3 signaling to suppress TGF-
β-mediated EMT

[271]

LBH589 Gankyrin/STAT3/Akt Reduction of proliferation and invasion by 
inhibition of the gankyrin/STAT3/Akt axis

[272]

Atorvastatin IL-6/STAT3 Inhibition of the IL-6/STAT3 axis to induce 
senescence in tumor cells

[273]

Scutellarin JAK2/STAT3 Inhibition of the JAK2/STAT3 axis to reduce 
cancer progression

[274]

Carnosic acid STAT3
ERK1/2

Downregulation of STAT3 and ERK1/2 to sup-
press proliferation and invasion

[275]

Atiprimod STAT3/NF-kB/apoptosis Inhibition of the STAT3/NF-kB axis in the 
stimulation of apoptosis

[276]

Brusatol STAT3/EMT Inhibition of EMT by reducing STAT3 expres-
sion

[277]

Norcantharidin JAK2/STAT3/TWIST Inhibition of STAT3 signaling to reduce TWIST 
expression and suppress EMT

[278]

Sorafenib TLR3/STAT3/SUMO1 Sorafenib reduces caspase-1 expression via 
suppression of the TLR3/STAT3/SUMO1 axis

[279]

ZnAS@SiO2 nanoparticles SHP-1/JAK2/STAT3 Inhibition of STAT3 signaling to suppress EMT 
and reduce stemness

[280]

Hemistepsin a STAT3 Inhibition of STAT3 to mediate apoptosis [281]

Selenium sulfide PLAGL2/C-MET/STAT3 Selenium sulfide inhibits the C-MET/STAT3 axis 
in a PLAGL2-dependent manner to induce 
apoptosis in tumor cells

[282]

Kahweol Src/mTOR/STAT3 Kahweol inhibits the Src/mTOR/STAT3 axis in 
apoptosis induction

[283]

Sinomenine AMPK/STAT3 Suppression of HCC progression through 
inhibition of the AMPK/STAT3 axis

[284]

Dihydrotanshinone JAK2/STAT3 Inhibition of the JAK2/STAT3 axis in interfering 
with tumorigenesis

[285]

Isoliquiritigenin ROS/MAPK/STAT3/NF-kB Regulation of STAT3 signaling in a ROS-
dependent manner to stimulate apoptosis in 
tumor cells

[286]

Liraglutide IL-6/STAT3 Inhibition of STAT3 signaling to enhance 
antitumor immune response

[287]

Xanthin analog ROS/JAK2/STAT3 Inhibition of STAT3 signaling in a ROS-
dependent manner to stimulate apoptosis

[288]
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Conclusion and remarks
Thanks to advances in the field of cancer biology, the progression of cancer has been sig-
nificantly affected. Nowadays, researchers increasingly understand the molecular mech-
anisms involved in the development of cancer cells. With a better knowledge of their 
interaction with other signaling networks, unique targeted therapies can be developed. 
One of the best known molecular signaling pathways involved in cancer development 
and progression is the STAT3 pathway. Although upregulation of STAT3 has been men-
tioned in several human cancers, its overexpression in HCC is unique because a num-
ber of biological behaviors are controlled by STAT3 signaling in HCC cells. HCC is the 
most common form of liver cancer, and its treatment is a major challenge for physicians 
around the world. STAT3 levels increase in HCC, and high STAT3 expression is associ-
ated with poor prognosis and malignant behavior of cancer cells. The biological aspect 
of STAT3 goes beyond a single molecular pathway, as STAT3 can interact with other 
signaling pathways such as EZH2. Nevertheless, ncRNAs are the most prominent modu-
lators of STAT3 signaling in HCC. Upregulation of STAT3 is frequently observed dur-
ing the progression of HCC and the interesting thing is that STAT3 can support tumor 
cells against apoptosis. The interaction of STAT3 with autophagy is complicated because 
autophagy has both oncogenic and oncosuppressive properties, and thus therapeutic 
interventions in autophagy should be undertaken with caution. The major mechanism 

Fig. 6 Antitumor compounds target STAT3 signaling in HCC
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promoting HCC invasion and metastasis is EMT, and it is noteworthy that EMT is acti-
vated by STAT3, leading to enhanced HCC progression. Moreover, high STAT3 levels 
may also lead to the development of radio- and chemoresistance in HCC. Therapeutic 
suppression of STAT3 signaling may impair progression and increase tumor cell sensi-
tivity to therapy. Atorvastatin and brusatol are among the antitumor agents that target 
STAT3 signaling and can suppress the progression of HCC. In addition, ncRNAs create 
new molecular pathways in the regulation of STAT3. Future studies should focus on the 
clinical translation of experimental advances in ncRNAs.

The most important aspect of this review is to highlight both the underlying interac-
tions of STAT3 with other molecular signaling pathways in HCC and the development 
of strategies to target it. The question now arises as to which part of the treatment of 
patients with HCC will be more important in the future. If there is a plan for develop-
ing effective therapeutics for HCC in the near future, it is better to focus on both parts. 
In fact, treatment strategies mainly use anticancer agents targeting STAT3 in HCC. 
Since combination therapy is a priority in HCC, it is proposed to use antitumor agents 
together with genetic tools targeting STAT3 and its downstream targets in HCC therapy.

One challenge physicians face in treating HCC in the clinical setting is that patients 
with HCC are diagnosed at an advanced stage. At this stage, tumor cells spread rap-
idly in the body and upregulation of STAT3 is one of the reasons for this. Therefore, 
STAT3 can be targeted by safe products in the treatment of HCC. One of the most 
important applications of STAT3 in patients with HCC is its function as a biomarker. 
Therefore, the expression of STAT3 may affect the prognosis of patients and also the 
response to therapy to prevent treatment failure.

In this comprehensive review article, the role of STAT3 in the progression of HCC 
has been discussed in detail. However, it is better to provide an overview of the func-
tion of STAT3 in HCC. First, STAT3 determines growth, metastasis, drug resistance, 
and radioresistance in HCC. Second, STAT3 interacts with upstream mediators in 
HCC, which include Akt, IL-6, PRN2, non-coding RNAs, TRIM52, and CKLF1. In 
addition, STAT3 can also regulate downstream signaling pathways, including TGF-
β, ZEB1, Slug, and Twist, as well as matrix metalloproteinases (MMPs) and others. 
Interestingly, STAT3 can regulate important molecular mechanisms in HCC, includ-
ing apoptosis, autophagy, and EMT, and can determine the response of HCC to 
chemotherapy and radiotherapy.

This paper has demonstrated that STAT3 has a versatile function in HCC due to 
its interaction with various networks and molecular signaling pathways. However, 
there are some limitations that should be considered for the future. The regulation 
of STAT3 in HCC has been clearly demonstrated. Moreover, its influence on down-
stream targets has been studied in great detail. However, one of the drawbacks of the 
current studies is that not enough attention has been paid to the role of STAT3 in 
the development of radioresistance. Moreover, one of the pathways for the transfer 
of STAT3 to HCC is its incorporation into exosomes, and this has been somewhat 
ignored in HCC. In addition, many clinical trials should be conducted worldwide in 
the future to investigate STAT3 serum levels and its association with prognosis and 
overall survival of patients. Another important aspect is that the anticancer drugs 
used to suppress STAT3 are mainly phytochemicals. Since STAT3 has binding sites, 
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the discovery of drugs can be used to modulate STAT3 expression, and its suppres-
sion by small molecules can pave the way for the treatment of cancer patients.

Abbreviations
3′-UTR   Three prime untranslated region
ABCB1  ATP-binding cassette subfamily B member 1
CircRNAs  Circular RNAs
EGF  Epidermal growth factor
EMT  Epithelial–mesenchymal transition
ER  Endoplasmic reticulum
HBV  Hepatitis B virus
HCC  Hepatocellular carcinoma
HCV  Hepatitis C virus
IL  Interleukin
JAK2  Janus kinase 2
LncRNAs  Long noncoding RNAs
MiRNAs  MicroRNAs
MMP  Matrix metalloproteinases
NcRNAs  Noncoding RNAs
SH2  Src homology 2
STAT3  Signal transducer and activator of transcription 3
TGF-β  Transforming growth factor-beta
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