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Abstract 

Bladder cancer (BC) is a clinical challenge worldwide with late clinical presentation, 
poor prognosis, and low survival rates. Traditional cystoscopy and tissue biopsy are 
routine methods for the diagnosis, prognosis, and monitoring of BC. However, due to 
the heterogeneity and limitations of tumors, such as aggressiveness, high cost, and 
limited applicability of longitudinal surveillance, the identification of tumor markers has 
attracted significant attention in BC. Over the past decade, liquid biopsies (e.g., blood) 
have proven to be highly efficient methods for the discovery of BC biomarkers. This 
noninvasive sampling method is used to analyze unique tumor components released 
into the peripheral circulation and allows serial sampling and longitudinal monitoring 
of tumor progression. Several liquid biopsy biomarkers are being extensively studied 
and have shown promising results in clinical applications of BC, including early detec-
tion, detection of microscopic residual disease, prediction of recurrence, and response 
to therapy. Therefore, in this review, we aim to provide an update on various novel 
blood-based liquid biopsy markers and review the advantages and current limitations 
of liquid biopsy in BC therapy. The role of blood-based circulating tumor cells, circulat-
ing tumor DNA, cell-free RNA, exosomes, metabolomics, and proteomics in diagnosis, 
prognosis, and treatment monitoring, and their applicability to the personalized man-
agement of BC, are highlighted.
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Introduction
Bladder cancer (BC) poses a huge social burden, with a global yearly occurrence of more 
than 430,000 cases, resulting in nearly 170,000 deaths annually [1]. It is a highly hetero-
geneous malignancy, especially in advanced stages [2]. BC can present as non-muscle-
invasive bladder cancer (NMIBC), muscle-invasive bladder cancer (MIBC), or metastatic 
disease incidents, each with different molecular drivers. NMIBC accounts for approxi-
mately 75% of all BC types, and at least half of patients with NMIBC have a high rate of 
recurrence and disease progression to MIBC within 5 years [3]. Additionally, MIBC has 
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a high propensity to spread to lymph nodes and other organs, and approximately half of 
patients with MIBC develop metastases and die within 3 years [4, 5]. The high morbid-
ity and mortality of BC is in part associated with the lack of effective early diagnosis and 
prognostic approaches. Therefore, early diagnosis and lifelong surveillance are clinically 
important to improve the long-term survival of patients with BC.

Currently, invasive cystoscopy and tissue biopsy remain the gold standard for BC iden-
tification and surveillance. However, the drawbacks of this method, such as sampling 
bias, invasiveness, and difficulty in sampling deep tumors, limit its use in large-scale 
screening. Additionally, urine cytology represents another diagnostic possibility but is 
limited by poor sensitivity, especially for low-grade tumors [6, 7]. Other imaging tests 
are limited to BC staging in clinical practice owing to increased ionizing radiation and/
or cost, and there is often a delay in identifying recurrence and metastasis with imaging 
[8]. Therefore, there is an urgent need for biomarkers with high specificity and sensitiv-
ity that can be applied to BC.

Recently, genomic profiles of blood and body fluids based on liquid biopsies have been 
shown to be highly correlated with the genomic profiles of tumors [9–11]. DNA frag-
ments containing tumor-specific alterations, including information about point muta-
tions, DNA methylation, and copy number variation, are released into circulation by 
tumors. The dynamic assessment of specific molecular markers by liquid biopsy allows 
for real-time monitoring of tumors, thus facilitating the selection of targeted therapies. 
In contrast to cystoscopy and tissue biopsy, liquid biopsy is a holistic examination of 
blood and body fluids, reflecting the overall expression of tumor cells [12]. Figure 1 sum-
marizes the current testing methods applied to BC and the laboratory analytical tech-
niques of liquid biopsy [13, 14].

Liquid biopsy is based on the detection of circulating tumor cells (CTCs) and “cell-
free” nucleic acids in blood and body fluids, including urine, saliva, tears, sweat, amni-
otic fluid, cerebrospinal and pleural fluids, and cervicovaginal secretions, to detect and 
quantify targets of interest [13, 14]. Significant progress has been made in the detec-
tion of urinary biomarkers for BC, but it is currently limited by its low sensitivity and 
specificity [15, 16]. Since blood is in contact with most tumors, liquid biopsies mainly 
involve blood sampling. Liquid biopsies contribute to better characterization of BC by 
identifying tumor cells or tumor DNA that is released into the bloodstream with tumor 
progression or regression [17]. Meanwhile, unlike urine, the blood-based biomarkers or 
liquid biopsies can be applied to all BC, but may be particularly useful after cystectomy 
for curative purposes, providing a strategy for detecting minimal residual disease (MRD) 
prior to conventional imaging tests. The highly sensitive technique of blood testing pro-
vides detail of tumor characteristics, and blood-based cancer genomics may not be lim-
ited by sampling frequency, tumor availability, or the presence of a clinically significant 
disease compared with tissue sampling.

Historically, it is difficult to determine potentially recurrent or successfully cured 
patients with BC after surgery. This limitation has resulted in the unnecessary expo-
sure of successfully cured patients to the toxicity of adjuvant therapy, whereas oth-
ers with residual disease may not receive potentially beneficial treatment until disease 
progression can be detected by imaging. A comprehensive understanding of the sub-
group of patients predicted to become resistant to cisplatin is essential for patient 
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treatment modalities [18]. The advent of immunotherapy, especially immune check-
point inhibitors (ICIs), has revolutionized the landscape of BC systemic therapy over 
the past 5  years. However, ICIs provide durable immune memory in only a minor-
ity of patients [19]; additionally, most patients exhibit poor or no response to ICIs, 
and those who initially respond eventually develop resistance and disease progres-
sion. Moreover, ICIs are expensive and impose a significant financial burden on 

Fig. 1 Overview of clinical examination methods for bladder cancer and laboratory analytical techniques 
for liquid biopsies. Routine imaging tests used for bladder cancer detection and diagnosis include X-ray, 
CT, and PET–CT. Cystoscopy and tissue biopsy are the gold standard for the diagnosis of bladder cancer. 
Urine cytology is available as a complementary test. Liquid biopsy is emerging as a promising method. 
Liquid biopsy involves the collection and analysis of five different tumor components from peripheral blood 
samples: CTCs, cell-free nucleic acids (cfDNA/ctDNA, cfRNA), exosomes, and metabolomics and proteomics. 
Tumor components are then captured and analyzed in peripheral blood samples using appropriate 
laboratory assays. CT computed tomography, PET positron emission computed tomography, CTCs circulating 
tumor cells, ctDNA circulating tumor deoxyribonucleic acid, cfDNA cell-free DNA, cfRNA cell-free RNA
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patients. The occurrence of immune-related adverse effects can be fatal and may lead 
to permanent disease [20]. Therefore, there is a need to use predictive biomarkers 
of response to ICIs to assess early efficacy and toxicity of drugs and to better under-
stand resistance mechanisms to guide therapeutic decisions. Studies have shown that 
liquid biopsies can be applied to comprehensively examine tumor genome and moni-
tor genetic variation dynamically during treatment [21–23]. Overall, liquid biopsy can 
help in the selection of patients for immunotherapy.

Currently, liquid biopsies usually detect CTCs, exosomes, circulating tumor deoxy-
ribonucleic acid (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), 
circular RNAs (circRNAs), extracellular vesicles (EVs), tumor-educated platelets, pro-
teins, and metabolites [23–25]. New evidence for the clinical utility of liquid biopsies 
from noninvasive blood tests in BC continues to emerge and may provide a genomic 
profile that can be utilized in patients with BC and guide their treatment in some 
ways (Fig. 2). The purpose of this review is to discuss the latest information on liq-
uid biopsy components and their clinical utility for early diagnosis of BC, prognosis, 
monitoring of cancer treatment outcomes, detection of early recurrence, and indi-
vidualized treatment selection.

CTC 

The concept of CTCs was first described by the Australian scholar Ashworth in 1869, 
and it was defined as tumor cells shed from primary tumors or metastatic lesions and 
cleared by the lymphatic or circulatory system [26]. To date, most studies on CTCs 
have focused on the exploration of CTCs in the blood circulation, which are few in 
number (up to a few hundred per milliliter), depending on the available detection/
isolation techniques and the definition of CTCs used.

Fig. 2 Overview of the clinical use of liquid biopsy in bladder cancer. Sample analysis of bladder cancer 
biomarkers early in the disease process allows for early diagnosis and risk stratification. After receiving 
surgery, liquid biopsy can detect minimal residual disease as a prognostic indicator and allow early detection 
of recurrent disease. During treatment, liquid biopsy can enhance longitudinal surveillance through its 
noninvasive approach, thus enabling continuous sampling. In addition, liquid biopsies have the advantage of 
capturing the entire tumor genome, which can help identify novel genetic markers for targeted therapy and 
detect treatment resistance
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After release from the primary tumor, the process by which CTCs survive in the circu-
latory system and spread to remote organs requires overcoming several obstacles, with 
less than 0.01% of CTCs released into the circulation eventually surviving and producing 
metastases [27]. First, solid tumors shed tumor cells that normally cross the endothelium 
into the circulation via epithelial–mesenchymal transition (EMT), a highly dynamic pro-
cess of epithelial to quasi-mesenchymal cell transformation with enhanced metastatic 
potential and invasive capacity and resistance to some therapeutic strategies [28, 29]. 
Thereafter, most CTCs experience necrosis or apoptosis owing to environmental chal-
lenges in the blood, such as hemodynamic shear or immune system attack, with only a 
small percentage of CTCs interacting closely with cancer-associated fibroblasts, neutro-
phils or platelets, eventually evading the immune system and surviving [30–32]. Lastly, 
CTCs must evade the defenses of the natural immune system and recognition by natural 
killer cells [33, 34].

Since most cancers are epithelial in nature, the most commonly used marker for CTCs 
is epithelial cell adhesion molecule (EpCAM), a “universal” marker of cancer [35]. Sev-
eral studies have shown the predictive value of EpCAM-based CTC assays in breast 
cancer and non-small cell lung cancer, which are cancers that strongly express EpCAM 
[36, 37]. Moreover, high-grade advanced stages of BC were significantly associated with 
EpCAM expression, and EpCAM expression was associated with poor overall survival. 
The strong association of EpCAM expression with high-grade tumors suggests a possi-
ble role in tumor progression, making EpCAM a potential target for antibody-mediated 
therapy [38]. Additionally, EpCAM was found to be a viable imaging target for the diag-
nosis of lymph node metastases in migratory cell carcinoma of the bladder. Periopera-
tive examination of these metastases could improve disease staging and increase the rate 
of complete resection of MIBC lymph node metastases. Overall, these findings indicate 
that EpCAM-positive CTCs could be a robust and sensitive biomarker [39].

CTCs detected via liquid biopsy contain the complete genomic and transcriptomic 
information of cancer cells, making CTCs suitable clinical biomarkers [40]. The applica-
tion of CTC in tumors has many advantages, including the analysis of genetic informa-
tion or tumor morphology, which can improve patient classification and stratification, 
effective monitoring of patient response, and improved clinical prognosis [33, 41]. 
Additionally, CTCs can be selectively recovered from patients’ blood, amplified in vitro, 
and used to generate relevant animal models, enabling drug sensitivity assessment, bio-
marker discovery, and personalization of targeted therapies. These features suggest that 
blood detection of CTCs may be important for the clinical management of BC, facili-
tating the identification of tumor heterogeneity, potential micrometastases, and tumor 
evolution over time [42–44].

Over the last two decades, emerging isolation techniques have enabled the biological 
study of CTCs and promote their use in clinical applications for screening, treatment 
response monitoring, and prognostic assessment of cancer. Techniques for isolating 
CTCs include both physical property-based and biologic property-based approaches. 
The physical separation of CTCs for enrichment is based on the differences between 
CTCs and blood cells in size (filter-based devices), density, deformability, and charge 
(electrophoresis) [45]. Biological property-based techniques include immunoaffin-
ity methods that rely on antibody–antigen interactions, in which CTCs are enriched 
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positively by EpCAM and interstitial material (vimentin) or negatively by the leukocyte-
specific antigen CD45 to remove unwanted leukocytes [46]. The CellSearch system is 
the most frequently used technique for the detection of CTCs and it is an immunoaf-
finity-based isolation strategy for identifying CTCs on the basis of EpCAM-positive 
expression [47]. However, a previous study found that only about 32% of patients with 
BC were EpCAM positive [48]. Moreover, CTCs could not be detected in the blood of 
patients with nonmetastatic BC [49]. Therefore, the application of CellSearch in BC may 
be limited in the case of patients with low expression of CTCs. However, some novel 
techniques, such as nanotechnology-based techniques and microfluidic chips, have 
been developed and are expected to be examined in clinical studies [50, 51]. Despite the 
advantages and disadvantages between the different methods, the effective integration of 
such technologies may facilitate CTC research in several aspects, particularly in terms 
of in-depth analyses and potential clinical utilization. Although the application of CTC 
assays for BC still has technical challenges, they are being evaluated in clinical trials as 
tools for predictive and response biomarkers and MRD surveillance.

CTCs in BC diagnosis/prognosis

CTCs are released into the circulation during the early cancer stages; therefore, the 
detection of CTCs could have considerable clinical application for the early diagnosis of 
several types of BC. One study detected CTCs by tumor-specific ligand PCR and evalu-
ated their utility in the diagnosis of BC. The sensitivity and specificity of CTC quantita-
tive assay for BC based on high expression of folate receptor-α were 82.1% and 61.9, with 
an area under the receiver operating characteristic curve (AUC) of 0.819 [52]. In another 
study, after next-generation sequencing (NGS) of matched BCs and CTCs, KMT2C 
mutations were detected among those commonly observed in CTCs and corresponding 
primary tumors [53]. In contrast, the KMT2C gene is frequently observed to be mutated 
in patients with MIBC [54], indicating the potential clinical value of CTCs in the early 
identification of high-risk BC.

Several studies have evidenced that the presence of CTCs is associated with increased 
disease recurrence, post-radical cystectomy (RC) cancer-specific survival (CSS) and 
overall survival (OS). The detection of CTCs is a strong predictor of disease progression 
and poor prognosis in early BC [55–61]. A recent metaanalysis of 30 studies showed 
that the presence of CTCs in peripheral blood is an independent predictor of poor prog-
nosis in patients with BC [62]. Similarly, the presence of CTCs has been shown to be 
an independent predictor of disease progression to muscle-invasive disease in a large 
and homogeneous group of patients with high-risk NMIBC, with a 75% predictive value 
[56]. Lin et  al. used the CellSearch system to analyze CTCs in 188 patients with BC, 
and found that approximately one-quarter had detectable CTC prior to RC, and CTC-
positive patients treated with RC (with or without adjuvant chemotherapy) had poorer 
progression free survival (PFS), CSS, and OS compared with CTC-negative patients [56].

It was reported that preoperative detection of any CTCs predicts a higher risk of recur-
rence and poorer CSS in RC-treated patients with clinically non-metastatic BC com-
pared with CTC-negative patients [58]. Similarly, in a recent study, Beije et al. sought to 
explore the predictive value of CTCs in the prognostic value of patients with non-meta-
static MIBC after RC. They found a significant decrease in OS, CSS, and recurrence-free 
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survival (RFS) in patients with positive CTCs [63]. In addition, Soave et al. investigated 
the potential role of CTC status on adjuvant chemotherapy (AC) management decisions 
in patients with BC after RC, and found that the presence of CTC was associated with 
poorer PFS, CSS, and OS in patients not on AC, indicating that CTCs may be useful in 
decisions for or against AC [61]. Gazzaniga et al. found that CTCs were detectable in 
approximately 18% of NMIBC, and that CTC levels could be used to distinguish patients 
at high risk of recurrence from those at high risk for progression, facilitating the early 
identification of candidate patients for adjuvant therapy after RC [59]. Additionally, 
Osman et al. found that patients with urea/EGFR-positive CTCs after RC had a higher 
risk of recurrence [64].

Several studies have detected CTCs in high-risk or progressive BC, and have reported 
a correlation between CTCs and tumor stage, lymph node metastasis, and survival [42, 
65–68]. CTCs were identified in 19% of patients with advanced BC undergoing RC 
(with or without perioperative chemotherapy), and the presence of CTCs was associ-
ated with increased risk of disease progression; moreover, imaging metastatic disease 
was found to be significantly correlated with the presence of CTCs [65]. Additionally, 
higher levels of CTCs were detected in MIBC compared with NMIBC, suggesting that 
these cells may predominate during tumor muscle infiltration and disease progression 
[66]. Gradilone et al. found that CTCs could be isolated in the blood of 24 of 54 (44%) 
patients with T1G3 BC, and that CTC positivity was an independent prognostic factor 
(p < 0.001) of disease-free survival (DFS) [67]. Similarly, Nicolazzo et al. concluded that 
the presence of CTCs significantly affected disease-free survival and tumor-specific sur-
vival (p < 0.0001) on the basis of the findings of a long-term follow-up study of patients 
with T1G3 BC [68].

The identification of CTCs is considered a promising complementary tool for risk 
stratification of BC recurrence and progression, which is essential for the development of 
optimal surveillance strategies for patients after diagnosis [69–71]. Busetto et al. evalu-
ated 155 patients with BC with pathologically confirmed T1G3 with preoperative CTCs, 
and observed a strong correlation between the presence of CTCs and time to first recur-
rence and time to progression, which could be used as a prognostic marker for risk strat-
ification in patients with NMIBC [69]. Nicolazzo et al. demonstrated that the presence 
of even a single CTC in the peripheral blood of patients with BC indicates a high risk 
of local recurrence and/or disease progression in patients with ultra-high risk NMIBC 
[70]. Additionally, CTC counts were found to be significantly higher in the MIBC group 
than in the NMIBC group, and mortality was significantly higher in patients with high-
grade BC than in patients with low-grade BC [71]. These findings indicate that CTC can 
accurately predict high-risk subgroups of patients, thus allowing longitudinal long-term 
monitoring of BC.

CTCs as predictor of treatment response in BC

CTCs may be sensitive biomarkers in assessing chemotherapy response, which could 
improve the timing of RC in clinical care or changing chemotherapy regimens [58, 63, 
72]. Winters et al. conducted a prospective trial using the CellSearch system to examine 
CTCs in patients with BC treated with cisplatin chemotherapy, and observed a decrease 
in CTC counts after chemotherapy [72]. Moreover, the absence of CTC in patients with 
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MIBC has been associated with reduced risk of recurrence after cystectomy, as well as 
tumor-specific death; however, CTC-positive patients with MIBC may benefit more 
from neoadjuvant chemotherapy [63].

Furthermore, the HER2 status of CTCs was not consistent with the HER2 status of the 
corresponding BC, suggesting that a subgroup of patients with BC with HER2-positive 
CTCs may benefit from HER2-targeted therapy. The presence of HER2-negative CTCs 
in patients with HER2-positive primary tumors may account for the failure of HER2-
targeted therapy in a significant number of patients [58].

A recent study showed that baseline and serial assessment of programmed death-
ligand 1 (PD-L1) using CTC monitoring may be an effective tool to guide treatment 
selection in candidate patients for PD-L1 inhibitors after Bacillus Calmette–Guérin 
(BCG) failure [73]. Serial CTC assays of whole blood could be used to assess the efficacy 
of checkpoint inhibitor immunotherapies, which are active in a certain percentage of 
CTC-positive patients and usually have durable responses [74]. Studies regarding blood-
based CTCs as potential biomarkers for BC were summarized in Table 1.

Circulating non‑coding RNAs (ncRNAs) in BC

Blood ncRNAs can act as key functional components or regulatory molecules of gene 
expression in a variety of cancers, playing a role in tumorigenesis, cell differentiation, 
proliferation, inhibition of angiogenesis, metastasis, and apoptosis. Since miRNAs, lncR-
NAs, and circRNAs represent the most studied ncRNA types to date, we will briefly 
describe their roles in BC here. Table  2 summarizes the role of blood-based ncRNAs 
in BC. miRNAs are short ncRNAs, with an average length of 22 nucleotides. Normal 
and tumor cells secrete miRNAs into various body fluids, including plasma, urine, and 
vaginal secretions [75]. In blood, miRNAs can be bound to specific ribonucleoprotein 
complexes, platelets, or packaged in EVs, such as exosomes, to avoid degradation and to 
obtain higher stability [75]. There are two different strategies for cell-free miRNA stud-
ies in blood: (1) screening of differentially expressed miRNAs by microarray analysis or 
RNA sequencing, or (2) analysis of candidate miRNAs selected from published tumor 
tissue data. miRNAs are more rapidly biogenic and activated and highly stable, which 
may give miRNAs diagnostic and prognostic predictive aspects for BC potential.

Many studies have explored the diagnostic, prognostic, and therapeutic potential of 
circulating miRNAs as potential biomarkers and therapeutic targets in BC. Feng et al. 
investigated plasma miR-19a and miR-99a in 100 patients with BC and healthy blood 
donors, respectively [76, 77]. As in tumor tissue, miR-19a expression was significantly 
increased in BC plasma, whereas miR-99a expression was significantly decreased, sug-
gesting the potential of miR-19a and miR-99a as potential diagnostic markers for BC. 
Similarly, another study reported that plasma miR-200b expression was upregulated 
in patients with MIBC. In contrast, plasma miR-33b and miR-92b were downregu-
lated in plasma from patients with BC and negatively correlated with pathological stage 
[78]. Recently, a study found that serum miRNA-373 levels were significantly higher in 
patients with BC compared with healthy controls and may serve as a potential diagnostic 
marker for BC (AUC was 0.847). In addition, miRNA-373 overexpression may promote 
BC cell proliferation, migration, and invasion [79].
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Table 1 Studies regarding blood-based CTCs as potential biomarkers for bladder cancer

Authors (year) Sample type No. of patients Laboratory 
technique

Clinical 
application

Detection rate Refs.

Qi et al. (2014) Serum 120 ELISA, RT-qPCR Diagnostic 
biomarker

AUC = 81.9%, 
sensitiv-
ity = 82.1%, 
specific-
ity = 61.9%

[52]

Kim et al. (2020) Peripheral 
blood

20 Whole exome 
sequencing

Discrimina-
tion of MIBC 
from NMIBC 
and healthy 
individuals

KMT2C muta-
tions were 
detected in 
20% of CTCs

[53]

Gazzaniga et al. 
(2014)

Peripheral 
blood

102 CellSearch 
System

Predict prog-
nosis

DFS (p = 0.005), 
PFS (p = 0.004)

[56]

Soave et al. 
(2017)

Peripheral 
blood

188 CellSearch 
System

Predict prog-
nosis

RFS (p < 0.001), 
CSS (p < 0.001)

[57]

Rink et al. (2012) Peripheral 
blood

100 CellSearch 
System

Predict prog-
nosis

OS (p = 0.003), 
CSS (p = 0.002), 
RFS (p < 0.001)

[58]

Gazzaniga et al. 
(2012)

Peripheral 
blood

44 CellSearch 
System

Predict prog-
nosis

TFR (p < 0.001) [59]

Rink et al. (2011) Peripheral 
blood

50 CellSearch 
System

Predict prog-
nosis

OS (p = 0.001), 
CSS (p < 0.001), 
PFS (p < 0.001)

[60]

Soave et al. 
(2017)

Peripheral 
blood

226 CellSearch 
System

Predict prog-
nosis

OS (p < 0.001), 
CSS (p < 0.001), 
RFS (p < 0.001)

[61]

Beije et al. 
(2022)

Peripheral 
blood

273 CellSearch 
System

Predict treat-
ment response

CTC-positive 
patients treated 
with NAC have 
longer survival 
times

[63]

Osman et al. 
(2004)

Peripheral 
blood

62 Nested RT-PCR Monitoring 
recurrence

Positive predict 
value = 79%, 
negative 
predict 
value = 50%

[64]

Abrahamsson 
et al. (2017)

Peripheral 
blood

88 CellSearch 
System

Predict disease 
progression

Disease 
progression 
(p = 0.049)

[65]

Haga et al. 
(2020)

Peripheral 
blood

26 FISHMAN-R 
system

Predict disease 
progression

More CTC 
detected in 
progressive BC 
(p = 0.01)

[66]

Gradilone et al. 
(2010)

Peripheral 
blood

54 RT-PCR, CELLec-
tion Dynabeads

Monitoring 
recurrence

DFS (p < 0.001) [67]

Nicolazzo et al. 
(2017)

Peripheral 
blood

54 RT-PCR, CELLec-
tion Dynabeads

Predict prog-
nosis

DFS 
(p < 0.0001), CSS 
(p < 0.0001)

[68]

Busetto et al. 
(2017)

Peripheral 
blood

155 CellSearch 
System

Predict prog-
nosis

TFR (p < 0.0001), 
TTP (p < 0.0001)

[69]

Nicolazzo et al. 
(2019)

Peripheral 
blood

102 CellSearch 
System

Predict prog-
nosis

TFR (p < 0.001), 
TSR (p < 0.001), 
TTP (p < 0.001)

[70]

Fu et al. (2021) Peripheral 
blood

48 Microfluidic-
Assay System

Early risk strati-
fication

More CTC 
detected in 
progressive BC 
(p = 0.024)

[71]
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Moreover, a study by Motawi et  al. demonstrated that plasma miR-92a, miR-100, 
and miR-143 may be promising novel circulating biomarkers for clinical testing in BC 
[80]. The sensitivity and specificity of miR-92a calculated in this study were 97.1% and 
76.7%, respectively, with an AUC value of 0.940. MiR-100 had a sensitivity and specific-
ity of 90% and 66.7%, respectively, with an AUC value of 0.82. MiR-143 had a sensitivity 
and specificity of 78.6% and 93.3%, respectively, with an AUC value of 0.915. Similarly, 
another study observed that serum miR-210 expression was significantly elevated in 
patients with BC with a sensitivity of 97.6%, specificity of 69.2%, and AUC value of 0.898. 
Also, the authors found that serum miR-210 levels increased with increasing disease 
stage and grade. In addition, serum miR-210 expression was significantly lower in paired 
postoperative samples, whereas miR-210 expression was elevated in most patients with 
recurrent BC [81]. Similarly, a study found that plasma miR-205 levels were significantly 
higher in patients with BC than in normal controls, with a sensitivity of 76.4%, specific-
ity of 96.4% and AUC: 0.950. Also, miR-205 could have the potential to be used as a bio-
marker to differentiate MIBC from NMIBC [82].

Using high-throughput TaqMan analysis, Du et al. identified miR-497 and miR-663b 
with significant differential expression by quantitative PCR for plasma miRNA analysis 
and two-stage validation of candidate miRNA expression. When integrating miR-497 
and miR-663b, the AUC, sensitivity, and specificity were 0.711, 69.7%, and 69.6%, respec-
tively [83]. Similarly, another study similarly used high-throughput TaqMan analysis to 
profile serum miRNAs to predict the risk of NMIBC. After validation in two independ-
ent cohorts (NMIBC: n = 280, control: n = 278), miR-409-3p was confirmed to be signifi-
cantly associated with NMIBC [84].

Several groups developed a blood-based miRNA panel to improve the diagnostic 
efficacy of BC. Jiang et  al. performed genome-wide serum miRNA analysis by MiSeq 

Table 1 (continued)

Authors (year) Sample type No. of patients Laboratory 
technique

Clinical 
application

Detection rate Refs.

Winters et al. 
(2015)

Peripheral 
blood

31 CellSearch 
System

Predict treat-
ment response

Evaluate 
chemotherapy 
response: CTC 
declined after 
chemotherapy

[72]

Nicolazzo et al. 
(2021)

Peripheral 
blood

20 CellSearch Sys-
tem, ScreenCell

Treatment 
monitoring

Serial evalua-
tion of CTCs 
can guide 
treatment 
selection for 
suitable PD-L1 
inhibitors after 
BCG failure

[73]

Anantharaman 
et al. (2016)

Peripheral 
blood

25 Algorithmic 
analysis

Predict treat-
ment response

High PD-L1+ /
CD45− CTC 
burden and 
low burden 
of apoptotic 
CTCs had worse 
overall survival

[74]

CTCs Circulating tumor cells, AUC  area under the receiver operating characteristics curve, OS Overall survival, CSS 
Cancer-specific survival, RFS Recurrence-free survival, DFS Disease free survival, PFS Progression free survival, TFR time to 
first recurrence, TTP time to progression, TSR time to second recurrence, NAC neoadjuvant chemotherapy, BCG Bacillus 
Calmette–Guérin, PD-L1 Programmed death-ligand 1
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sequencing and established a panel of six miRNAs for the diagnosis of BC (miR-152, 
miR-3187-3p, miR-30a-5p, miR-27a-3p, miR-15b-5p, and miR-148b-3p). This miRNA 
model obtained high accuracy in this training set (sensitivity: 90.0%, specificity: 90.0%, 
AUC: 0.956) and was confirmed in the validation cohort (AUC: 0.899, sensitivity: 80.0%, 
specificity: 89.09%). Also, they found that serum miR-152 and miR-3187-3p expres-
sion was strongly associated with recurrence of NMIBC [85]. In the next step, they 
also defined a panel of four miRNAs (miR-422a-3p, miR-486-3p, miR-103a-3p, and 
miR-27A-3p) that predicted MIBC with high diagnostic accuracy (AUC: 0.89, sensitiv-
ity: 90.99%, specificity: 72.97%) and that was validated in an independent cohort (AUC: 
0.88; sensitivity: 90.0%; specificity: 70.06%). Also, they found that miR-486-3p and miR-
103a-3p were independently associated with OS [86]. A subsequent study found that a 
seven-miRNA panel (miR-6087, miR-6724-5p, miR-3960, miR-1343-5p, miR-1185–1-3p, 
miR-6831-5p, and miR-4695-5p) could be used as biomarkers for the specific and early 
detection of BC, with the highest accuracy for distinguishing BC from noncancerous 
tumors and other types of tumors (AUC: 0.97, sensitivity: 95%, specificity: 87%) [87].

In addition to miRNAs, several other non-coding RNAs, including lncRNAs and cir-
cRNAs, have been extensively studied and are associated with a variety of biological 
functions, including acting as microRNA sponges, RNA-binding proteins, regulating 
transcription, and encoding peptides [88, 89]. In view of BC, the utility of lncRNAs and 
circRNAs as prognostic, diagnostic, and therapeutic biomarkers was investigated [90–
97]. Due to lack of space, their roles in BC were summarized in Table 2.

Circulating tumor DNA (ctDNA) in BC

All tumor cells release DNA into the circulatory system, with cell-free DNA (cfDNA) 
constituting a major portion of released DNA circulating in the bloodstream [98]. Can-
cer cell-derived mutant cfDNA contains ctDNA, which consists of small nucleic acids 
released from necrotic or apoptotic tumor cells and circulating tumor cells, usually in 
the form of double-stranded fragments [99, 100]. The half-life of plasma ctDNA is short, 
estimated to be < 2 h, indicating that plasma ctDNA levels are in a state of dynamic and 
real-time change [101]. Although the half-life is relatively short, the rate of release of 
cancer DNA fragments is relatively constant owing to rapid cell turnover within tumors 
[102], providing real-time information on tumors in a longitudinal study, with multi-
ple time points. ctDNA possesses several cancer-associated molecular features, such 
as single nucleotide mutations [103], altered methylation [104], and tumor-derived 
viral sequences [105], which may distinguish ctDNA from normal circulating cfDNA. 
There is a correlation between ctDNA levels and tumor size and staging, and analysis 
of ctDNA can help identify tumor-specific abnormalities that can be used in a highly 
specific detection strategy [106]. ctDNA levels also vary considerably with tumor stag-
ing, surgery, and chemotherapy [107]. Moreover, the collection of ctDNA from blood 
is noninvasive and can be useful for early cancer detection and identification of micro-
scopic residual disease after treatment, in addition to cancer screening and prognosis 
prediction [108, 109]. ctDNA retains relatively intact genetic information when tumor 
cells enter the circulatory system after apoptosis or necrosis, clearly presenting all muta-
tions throughout the patient’s tumor progression [108]. Therefore, the use of ctDNA 
could help address the issue of tumor heterogeneity, allowing the genotyping of multiple 
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somatic aberrations across a wide genomic space in a single comprehensive assay [110]. 
Despite the pathological differences found between tissue and ctDNA-based muta-
tion testing, ctDNA is frequently used to inform clinical decisions in the diagnosis of 
advanced disease, particularly in cases where biopsies are difficult to obtain or the pri-
mary location of the cancer is unknown [111]. Considering the heterogeneity of BC and 
the evolutionary pressure to intervene in treatment, ctDNA-based profiles are more 
reflective of advanced tumor burden than histology. However, ctDNA is challenging to 
detect, owing to its small percentage (sometimes < 0.01%), compared with non-tumori-
genic cfDNA [112].

Currently, the main techniques for ctDNA detection in blood include quantitative 
polymerase chain reaction (qPCR) and digital polymerase chain reaction (dPCR), both 
of which allow the quantitative assessment of candidate genes and are rapid, cost-effec-
tive, and highly sensitive and specific. Additionally, both methods are suitable for the 
detection of certain simple mutations; however, the application of both methods is lim-
ited by the fact that they can only be used to monitor known genomic changes [113, 
114]. To overcome this problem, next-generation sequencing (NGS)-based technolo-
gies are increasingly being applied to detect ctDNA, including a wide range of methods 
from small targeted panels to whole genome sequencing (WGS). None of these NGS 
techniques require any a priori molecular mutation knowledge, and they allow for the 
detection of known and unknown mutations, as well as hard-to-detect alterations, for 
example, gene fusions and copy number changes [102]. Additionally, NGS techniques 
can characterize personalized cancer genetic profiles, which could help in the develop-
ment of personalized drugs. However, these techniques are expensive, time-consuming, 
and require more robust bioinformatics support [115]. In the era of precision oncology, 
the use of ctDNA analysis represents a paradigm shift in the use of genomic biomarkers, 
with considerable impact on clinical practice [116].

Compared with tissue-based tumor DNA analysis, plasma ctDNA is more conveni-
ent, easier and faster to obtain, and less invasive. Despite potential heterogeneity, tumor-
specific genomic alterations detected in plasma ctDNA and tumor tissue have a fairly 
high concordance rate [117, 118]. These advantages facilitate the adoption of ctDNA as 
the companion diagnostic test to detect certain mutations required for the implementa-
tion of targeted therapies and for the serial surveillance of tumor progression [119]. An 
increase in ctDNA levels has been shown to occur prior to radiological progression [120, 
121]. Additionally, the high somatic mutation rate in BC enhances the potential applica-
tion of ctDNA, as fewer genes or targeted regions can provide the necessary informa-
tion. Currently, ctDNA has a wide range of clinical applications in BC, including cancer 
screening, treatment response and drug resistance monitoring, and disease recurrence 
monitoring.

ctDNA for BC screening and diagnosis

Several studies have shown that promoter methylation, leading to epigenetic inactiva-
tion of tumor suppressor genes, has diagnostic potential for BC. Analysis of preoperative 
plasma samples of patients with BC showed a significant association between ctDNA 
methylation status and aberrant methylation of tumor suppressor genes [122–126]. A 
study reported highly specific detection of methylated p16 DNA in the serum of patients 
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with BC with sensitivity, specificity, and positive predictive values of 22.6, 95, and 98%, 
respectively [122]. Similarly, another study reported the presence of methylated p16 
DNA sequences in the plasma of patients with BC and the absence of methylated ctDNA 
in healthy individuals [123]. These results suggest that methylated p16 can be used as a 
tumor marker for the diagnosis of BC. Additionally, a small cohort study involving 45 
patients found that hypermethylation of serum ctDNA was detected in 59% of cases, 
and the hypermethylation of APC, GSTP1, or TIG1 differentiated patients with BC from 
healthy individuals, with 80% sensitivity and 93% specificity [124]. Similarly, methyla-
tion of the promoter of tumor suppressor CDH13 gene was observed in the serum of 
30.7% of patients with BC, with a higher frequency in patients with advanced high-grade 
BC [125]. Moreover, a prospective multicenter study involving 227 patients with BC 
showed that serum ctDNA methylation is a useful noninvasive biomarker for differen-
tiating patients with BC from healthy individuals (62% sensitivity, 89% specificity) [126]. 
Although the identification of aberrant gene promoter methylation could facilitate the 
detection of malignancies, its utility is still limited by the low concentrations of extracted 
ctDNA available for analysis. However, noninvasive testing for cancer-related altera-
tions in DNA methylation is feasible, and this can be a source of information for liquid 
biopsies.

Other approaches involve identifying gene mutations rather than methylation changes 
in ctDNA. For examples, alterations in oncogenes are common in BC, with the most 
studied being FGFR3, PIK3CA, ERBB2, and EGFR [127]. Additionally, potential muta-
tions were identified in the ctDNA of 51 patients with metastatic BC (including RB1, 
CDKN2A, and ERBB2), MAPK/ERK or PI3K/AKT/mTOR pathway-associated muta-
tions, and chromatin remodeling-associated mutations [2]. Although most studies were 
limited by small sample sizes, all authors concluded that ctDNA analysis by liquid biopsy 
has potential applications as a prognostic biomarker in clinical settings.

ctDNA as predictor of detecting recurrence and determining prognosis in BC

To date, the strongest evidence regarding the prognostic utility of liquid biopsy has 
been for ctDNA. CtDNA testing can be a valuable tool for early identification of dis-
ease recurrence after radical cystectomy (RC) or triple therapy for MIBC, which could 
facilitate early systemic treatment. In a previous study, ctDNA was collected at different 
timepoints before, during, and after treatment in 17 patients with MIBC who received 
neoadjuvant chemotherapy (NAC) and underwent surgery, and it was found that detec-
tion of ctDNA reflected persistence of disease, with a 83% sensitivity and 100% speci-
ficity for predicting recurrence [128]. Additionally, ctDNA levels were found to be 
significantly higher in patients who experienced metastatic recurrence or disease pro-
gression after cystectomy than in those who remained disease-free, with liquid biopsy 
results predating imaging evidence of recurrence by 101  days [129]. Moreover, addi-
tional ctDNA analysis after cystectomy has been shown to accurately predict metastatic 
recurrence, with 100% sensitivity and 98% specificity [130].

Others have used NGS to detect chromosomal breakpoints in 12 patients with 
NMIBC, and they subsequently designed droplet digital PCR (ddPCR) assays for these 
variants and found that somatic variants were detected in longitudinally collected 
plasma samples and that ctDNA levels decreased in patients after treatment, with high 
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levels of ctDNA predicting disease progression. ctDNA can be detected early (before 
disease progression or recurrence, or before clinical manifestations). Moreover, 67% of 
patients with progressive disease have detectable levels of ctDNA in their plasma several 
months before evidence of clinical progression [131].

In addition, ctDNA can be widely detected in metastatic BC and has outstanding 
clinical application value [2, 131, 132]. In a recent study in a large mUC cohort com-
paring blood-based “liquid” biopsies with patient-matched tumor tissue, ctDNA pro-
vided a more representative genomic snapshot of disease. ctDNA analysis can identify 
genetic alterations such as FGFR3, ERCC2, ERBB2, and TMB, which were previously 
proposed as biomarkers of BC treatment response. Cost-effective and minimally inva-
sive approaches to identify them will enable biomarker-driven stratification of patients 
in clinical trials, as well as real-world application of precision oncology [118].

The analysis of tumor-associated genomic alterations in ctDNA assays reflects an 
important approach for biomarker discovery and prognosis in patients with advanced 
malignancies [133–135]. A previous study reported disease progression using ddPCR to 
determine ctDNA for FGFR3 and PI3KCA hotspot mutations. It was found that tumor 
FGFR3 and PI3KCA mutations were significantly associated with subsequent disease 
recurrence, and that the expression of genes with multiple hotspot mutations could 
improve the prognostic monitoring performance of ctDNA [133]. Sequential ctDNA 
analysis can monitor dynamic changes in the frequency of genomically altered variant 
alleles and can predict disease progression and guide precise medication administra-
tion in patients with advanced BC [134]. In a recent retrospective study, ctDNA was 
found to identify clinically relevant molecular abnormalities, particularly, alterations in 
the BRCA-1 DNA repair-associated (BRCA1) and Raf-1 proto-oncogene (RAF1) genes 
appeared to be negatively associated with clinical outcomes [134].

The association between specific ctDNA genomic mutations and BC prognosis pro-
vides a new reference and basis for personalized BC treatment [136]. An association 
between the number of genomic alterations detected in ctDNA and the rate of disease 
control after receiving immunotherapy has also been suggested. In a recent randomized 
phase III trial involving 581 patients with uroepithelial carcinoma who had undergone 
surgery, ctDNA-positive patients in the atezolizumab treatment group were found to 
have improved disease-free survival and overall survival compared with the observa-
tion group [137]. Another study examined mutations in plasma ctDNA in 82 patients 
with NMIBC who underwent transurethral resection of the urinary bladder (TUR) and 
received immunotherapy, and found that higher somatic variants were independent pre-
dictors of recurrence after immunotherapy after bladder TUR. These findings suggest 
that ctDNA analysis based on targeted sequencing is a promising method for predicting 
disease recurrence in patients with NMIBC undergoing bladder TUR and immunother-
apy [138].

ctDNA as predictor of monitoring response to treatment

Quantitative changes in ctDNA levels have shown potential as an early indicator of 
treatment efficacy. Monitoring ctDNA scores during treatment has been reported 
to be useful in predicting treatment response in metastatic uroepithelial carcinoma. 
Treatment-responsive patients exhibited rapidly decreasing ctDNA scores, whereas 
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non-response patients exhibited stable or increasing scores, indicating that ctDNA 
could be used to identify responsive patients prior to imaging [139]. Moreover, dynamic 
changes in ctDNA during chemotherapy in patients with BC showed a superior asso-
ciation with patient prognosis [140]. In contrast, patients with ctDNA clearance indi-
cated a response to chemotherapy, and could provide additional cycles of chemotherapy 
before cystectomy [130]. A recent study showed that ctDNA can be used as a marker for 
MRD to predict response to adjuvant immunotherapy in patients with BC [137]. Over-
all, ctDNA analysis could be used to detect MRD and monitor treatment effects at early 
timepoints when patients can benefit from change in treatment regimen.

Additionally, an association between the number of genomic alterations detected in 
ctDNA and response to immunotherapy has been observed [134, 141–143]. Changes in 
the frequency of ctDNA variant alleles early in treatment were found to identify check-
point inhibitor monotherapy non-responders, thus helping to adjust treatment deci-
sions. ctDNA levels are a predictor of long-term benefits of BC immunotherapy [142]. A 
previous study showed that sequential ctDNA analysis can be used to monitor dynamic 
changes in the frequency of genomically altered variant alleles and to predict treatment 
response. Serial ctDNA testing is a promising option for dynamically monitoring ICI 
treatment effects, predicting outcomes, and guiding adaptive treatment modalities [134]. 
One or more genomic alterations in ctDNA, mainly TP53, TERT, and BRCA1/BRCA2, 
were detected in 95% and 100% of patients before and after treatment with ICI, respec-
tively, and genomic alterations in these oncogenic drivers were strongly associated with 
tumor resistance in advanced uroepithelial carcinoma [143]. Studies regarding blood-
based ctDNAs as potential biomarkers for BC were summarized in Table 3.

Exosomes

Exosomes are a subtype of a broad class of EVs, ranging from 40 to 100 nm in diameter, 
which are thought to be lipid bilayer membrane vesicles actively released by most cells 
and capable of stable circulation in body fluids [144, 145]. Exosomes are released by both 
normal and tumor cells, and are present in various body fluids, such as urine, plasma, 
saliva, and tears [146]. The biogenesis and release of exosomes is a complex multistep 
process involving plasma membrane invagination, formation of multivesicular bodies, 
and exosome secretion. Several studies have shown that donor cell-derived bioactive 
molecules are enriched in exosomes, indicating the key role of exosomes in the exchange 
of genetic information [147]. Exosomes carry specific proteins (CD9, CD81, CD63, 
ALIX, TSG101, and HSP70), nucleic acids (DNA, miRNA, lncRNA, and circRNA), 
lipids, and metabolites with cancer information, making them potential cancer diagnos-
tic biomarkers. Moreover, their specific cup-like features can be identified by electron 
microscopy [147–149]. Moreover, their specific cup-like features can also be identified 
by electron microscopy [150].

Exosomes play key roles in many pathophysiological processes, including immune 
responses, cardiovascular diseases, pregnancy disorders, and cancer [151, 152]. 
Exosomes are involved in EMT, angiogenesis, invasion and metastasis, evasion of 
immune surveillance, and drug resistance during tumorigenesis and progression, with 
promising clinical applications. Additionally, exosomes can be designed to deliver dif-
ferent therapeutic loads, including short interfering RNAs, antisense oligonucleotides, 
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chemotherapeutic agents, and immunomodulators, indicating their potential applica-
tion in tumor therapy [147]. In addition to their therapeutic potential, exosome-based 
liquid biopsies highlight their potential application in early cancer diagnosis, progres-
sion, prognosis, and response to therapy [153, 154]. Current reviews on BC exosomes 
focus on miRNAs, lncRNAs, and circRNAs.

Exosomes possess potential applications in precision tumor therapy, owing to their 
unique biological properties. However, the isolation and enrichment of exosomes from 
complex biological components is crucial for basic research and clinical translation. To 
date, some methods have been developed for exosome isolation and enrichment, with 
varying output and purity [155, 156]. Traditional separation methods include ultracen-
trifugation, size-exclusion chromatography, sedimentation techniques, and density gra-
dient/buffered centrifugation. Recently, novel techniques, such as immunoaffinity assays, 
lipid-based separation techniques, microbeads/microfluidic chips, and thermophoresis, 
have made the enrichment of exosomes fast and easy. However, there is need to stand-
ardize the classification and extraction methods of exosomes from different body fluids 
to facilitate clinical use of exosomes.

Exosomes in BC diagnosis

Serum exosomes have been examined as noninvasive stable and sensitive biomarkers for 
the early diagnosis of BC. Exosomes reveal information about living tumor cells, and 
possess promising opportunities for the early detection of lesions [157–161]. Elsharkawi 
et al. observed an increase in the serum exosome levels of patients with BC with increas-
ing stages of the disease. Moreover, patients with BC were successfully differentiated 
from healthy individuals on the basis of serum BC exosome levels, with 100% specificity 
and 82.4% sensitivity [160]. Similarly, Wang et  al. observed an upregulation in exoso-
mal lncRNA H19 levels in patients with BC compared with healthy subjects, indicating 
that exosomal lncRNA H19 could be a novel minimally invasive diagnostic biomarker 
[157]. Moreover, a previous study showed that hypoxic BC cells secreted lncRNA-rich 
uroepithelial carcinoma-associated 1 (UCA1) exosomes to remodel the tumor microen-
vironment and promote tumor growth and progression, indicating that serum exoso-
mal lncRNA UCA1 could be a potential diagnostic biomarker of BC [159]. Furthermore, 
Zheng et al. found that exosomal lncRNA PTENP1 levels could be used to successfully 
differentiate patients with BC from healthy individuals, with an AUC value of 0.743 
[161].

Some studies have also explored the combined application of exosomal non-coding 
RNAs in the diagnosis of BC. For example, a diagnostic model based on the combination 
of three serum exosomal lncRNAs (PCAT-1, UBC1, and SNHG16) was highly accurate 
for the early diagnosis of BC, with an AUC of 0.826, sensitivity of 80%, and specificity of 
75%, which were significantly higher than the results of urine cytology [158].

Exosomes in BC prognosis

Recently, exosomal miRNAs have been found to play important roles in tumorigenesis 
and progression [162–164]. Exosomal miRNAs regulate communication and multiple 
signaling pathways between BC cells and other cells, and cancer cell-derived exosomes 
have been associated with BC progression and metastasis through enriched specific 
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miRNAs [163]. Exosomal miR-21 from BC cells has been reported to promote BC cell 
invasion and migration by polarizing the PI3K/AKT signaling pathway in tumor-asso-
ciated macrophages [165]. Additionally, the exosome-based miR-139-5p delivery sys-
tem was found to help inhibit the proliferation, migration, and invasive potential of BC 
in vitro and in vivo, presenting potential innovative options to curb carcinogenesis [166].

Several studies have shown that blood-based exosomes can provide novel noninva-
sive prognostic biomarkers for BC. Yin et al. found that miR-663b levels were elevated 
in plasma exosomes of patients with BC compared with healthy controls. Exosomal miR-
663b from BC cells promotes BC cell proliferation and tumor progression by mediat-
ing the function of ERF [167]. Yan et al. observed higher levels of miR-4644 in plasma 
exosomes from patients with BC compared with patients without BC; additionally, exo-
somal miR-4644 directly targets and downregulates the expression of UBIAD1-contain-
ing protein 1 (UBIA prenyltransferase domain-containing protein 1) and promotes BC 
cell proliferation, migration and invasion [168]. Conversely, two recent studies demon-
strated that both miR-375-3p and miR-133b were significantly lower in BC serum, and 
inhibited cell proliferation and metastasis, but promoted apoptosis in both in vivo and 
in  vitro models, serving as suppressors and potential therapeutic targets of BC [169, 
170]. Furthermore, Sabo et al. confirmed that low expression of miR-185-5p and miR-
106a-5p, or high expression of miR-10b-5p, in exosomes from BC serum was signifi-
cantly associated with shorter survival [171].

Additionally, studies have shown that exosomal lncRNAs play a crucial role in cell 
proliferation and invasion, lymphangiogenesis, drug resistance, and prognostic assess-
ment in BC [158, 161, 172–177]. A research group found that cancer-associated fibro-
blast-derived exosome-mediated LINC00355 not only promotes cisplatin resistance in 
BC cells, but is also involved in regulating BC cell proliferation and invasion [172, 173]. 
Exosome-mediated lncRNA LINC01133 can inhibit BC suppression of cell viability, pro-
liferation, migration, and invasion ability by regulating the Wnt signaling pathway, which 
may provide a novel target for BC therapy [174]. High expression of lncRNA UBC1 in 
serum exosomes is associated with a high recurrence rate of NMIBC, and is an inde-
pendent risk factor for recurrence-free survival in NMIBC [158]. Zheng et al. found that 
exosomes from normal cells transferred PTENP1 into BC cells and reduced the invasive 
and migratory capacity of the cells in vitro and reduced BC progression both in vivo and 
in vitro [161].

The prognosis of patients with BC with lymph node metastases is extremely poor in 
clinical practice. It has been reported that exosomes can act as a vehicle of communi-
cation between the lymphatic system and BC, potentially remodeling the lymphatic 
system laterally by transferring epigenetic and genetic information [178]. Chen et  al. 
identified an exosomal lncRNA, called lymph node metastasis-associated transcript 2 
(LNMAT2), which was significantly elevated in BC serum samples [177]. Additionally, 
higher LNMAT2 expression levels were detected in serum exosomes of patients with 
BC with lymph node metastasis compared with patients without lymph node metastasis. 
Moreover, exosomes secreted by BC cells are internalized by human lymphatic endothe-
lial cells, which triggers the upregulation of Prox1-expressing exosomes through hnRN-
PA2B1 recruitment and increases H3K4 trimethylation of the Prox1 promoter, leading 
to lymphangiogenesis and lymph node metastasis in BC cells [176]. Furthermore, serum 
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exosome LNMAT2 overexpression is also associated with shorter OS in patients with BC 
[177].

Exosomal circRNAs are abundant and stably present in tumors, and are important 
for intercellular communication [179]. Recent studies using high-throughput sequenc-
ing have revealed that several exosomal circRNAs can serve as biomarkers for cancer 
diagnosis, invasion, and drug resistance [180, 181]. It was found that blood exosome-
derived circTRPS1 from patients with BC can regulate intracellular activity homeostasis 
and  CD8+ T cell depletion through the circTRPS1/miR141-3p/GLS1 axis, enhance BC 
cell proliferation and invasiveness, and impair antitumor immune function in the BC 
microenvironment [182]. Recent studies found that circPRMT5 is upregulated in serum 
exosomes of patients with BC, and plays a key role in the EMT and/or invasiveness of 
BC cells; moreover, high expression of circPRMT5 is positively correlated with metas-
tasis and/or poorer survival in patients with BC, making it a potential therapeutic target 
for patients with BC [183].

Furthermore, it was found that the CT10 regulator kinase (CRK) promoted the expres-
sion of ErbB2 in BC cells, and these tumor proteins were transferred via exosomes to 
receptor cells in target organs, contributing to the distant metastasis of BC. These find-
ings indicate that CRK intervention with exosomal ErbB2 blockade may be an effective 
therapeutic strategy for patients with advanced and metastatic BC with ErbB2 overex-
pression [184]. Studies regarding blood-based exosomes as potential biomarkers for BC 
were summarized in Table 4.

Blood‑based metabolomics and proteomics

Among the molecular and analytical techniques used to identify biomarkers, modern 
metabolomics technologies have made significant advances in characterizing and dif-
ferentiating patients with BC from control subjects, identifying signature metabolites, 
and revealing disease biology and potential therapeutic targets. Metabolomics attempts 
to use the metabolic profile of cancer to assess disease risk, enabling real-time docu-
mentation and monitoring of disease stages, prediction of prognosis, recurrence or pro-
gression, and assessment of response or resistance to therapy [185]. Metabolomics is a 
comprehensive analysis of small molecule metabolites and can provide critical informa-
tion on cancer stage [186, 187].

Metabolomics is a functional readout of tissue biochemistry that better reflects phe-
notypic status than other methods, such as transcriptomics and proteomics. There is 
increasing evidence that alterations in tumor metabolism may lead to local immuno-
suppression in the tumor microenvironment. Recently, metabolomic techniques are 
increasingly being utilized to identify potential biomarkers for cancer detection and 
monitoring. Serum/plasma is usually unaffected by exogenous factors and therefore var-
ies little between individuals [188]. The analysis of sera from patients with BC allows 
the quantification of surface adhesion molecules, proteins, lipids, and amino acids. The 
chromatographic properties and mass spectra obtained provide features that can be 
compared with known metabolomics libraries, resulting in a “fingerprint” that becomes 
a biomarker. Metabolomics can provide a better understanding of the biological mecha-
nisms of each tumor phenotype, thus promoting precision medicine and personalizing 
treatment for patients with different cancer types.
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The main techniques used in metabolomics include gas chromatography–mass spec-
trometry (GC–MS), liquid chromatography–mass spectrometry (LC–MS), and nuclear 
magnetic resonance (NMR) methods for the detection of compounds in any biological 
fluid or cellular/tissue liquid-phase extracts [189, 190]. GC–MS and LC–MS are the 
two most widely used analytical techniques in metabolomics and can be used to iden-
tify compounds with a unique quality of several thousand features [191]. Among them, 
LC–MS-based metabolomics has become increasingly popular, owing to the high cover-
age of metabolites, further improving detection sensitivity and data reliability in cancer 
metabolomic studies [192]. NMR is a versatile method that can be used for biological 
samples in liquid, solid, or gaseous form without prior processing [193]. Other tech-
niques for metabolite analysis are more limited, such as matrix-assisted laser desorp-
tion/ionization mass spectrometry imaging and magnetic resonance spectroscopy 
imaging. The increased sensitivity, specificity, and development of metabolomics-related 
technologies may help to identify good metabolic biomarkers, which can be applied in 
clinical settings.

Despite considerable improvements in genomics- and metabolomics-based strategies, 
the importance of proteomic-based analysis in liquid biopsies for cancer cannot be over-
emphasized. Recent advances in clinical proteomic techniques offer promising oppor-
tunities for the study of proteins in plasma/serum [194]. Since all tissues of the body 
are perfused by blood, each cell leaves a “trace” of its constituent proteins and other 
compounds in the circulatory system. Blood-based proteomics studies and links protein 
expression profiles to specific disease phenotypes, and identifies potential biomarkers 
reflecting the physiological or pathological state of the body, which may aid early disease 
detection.

Recently, separation techniques, such as electrophoresis, reversed-phase liquid chro-
matography, ion exchange and size-exclusion chromatography, and immune-enrichment 
or depletion methods, have been used to isolate or concentrate proteins or peptides, fol-
lowed by mass spectrometry in combination with advanced computer software, making 
it possible to accurately identify, characterize, and quantify proteomic data [195]. Mass 
spectrometry-based proteomics can be divided into data-intensive discovery-based pro-
teomics and targeted proteomics. The former allows unbiased analysis of the proteome 
on a global scale, whereas the latter provides highly specific quantitative detection of 
selected candidates in biological samples. To date, blood-based proteomics studies have 
provided considerable information on BC-associated proteomic changes, providing a 
better understanding of the intrinsic changes in the proteome of the blood during BC.

Role of blood‑based metabolomics and proteomics in BC diagnosis

Metabolomics and proteomics may help identify biomarkers for the diagnosis of BC. 
Serum is recognized for biomarker studies because it is constantly perfused in tissues 
and may pick up disturbed metabolites and proteins secreted and shed from cells and 
tissues. A previous study showed that patients with BC had lower serum levels of cit-
ric acid, glycine, isoleucine/leucine, lactate, and tyrosine, and higher levels of lipids and 
glucose compared with healthy individuals [196]. Additionally, NMR spectroscopy-
based serum metabolomics showed that a combination of dimethylamine (DMA), glu-
tamine, and malonic acid accurately isolated high-grade BC from low-grade BC, with 
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Table 4 Studies regarding blood-based exosomes as potential biomarkers for bladder cancer

miRNA microRNA, circRNA circular RNA, lncRNA long non-coding RNA, AUC  area under the receiver operating characteristics 
curve, ELISA enzyme linked immunosorbent assay, OS overall survival, RFS recurrence-free survival

Authors 
(year)

Sample 
type

Functional 
component

No. of 
patients

Laboratory 
technique

Clinical 
application

Detection 
rate

Refs.

Wang et al. 
(2018)

Serum H19 104 ExoQuick 
exosome 
purification 
kit

Diagnostic 
biomarker

AUC = 85.1%, 
sensitiv-
ity = 74.07%, 
specific-
ity = 78.8%

[157]

Zhang et al. 
(2019)

Serum Three-lncRNA 
panel (PCAT-
1, UBC1, and 
SNHG16)

520 ExoQuick 
exosome 
purification 
kit

Diagnostic 
biomarker

AUC = 0.857 
in training set, 
and 0.826 in 
validation set

[158]

Xue et al. 
(2017)

Serum lncRNA-UCA1 60 ExoQuick 
exosome 
purification 
kit

Diagnostic 
biomarker

AUC = 87.83%, 
sensitiv-
ity = 80%, 
specific-
ity = 83.33%

[159]

Elsharkawi 
et al. (2019)

Serum Tumor-
derived 
exosomes

82 ExoQuantTM 
overall 
exosome 
capture and 
quantifica-
tion assay 
kit, ELISA

Diagnostic 
biomarker

Sensitiv-
ity = 82.4%, 
specific-
ity = 100%

[160]

Zheng et al. 
(2018)

Plasma lncRNA-
PTENP1

110 ExoQuick 
exosome 
purification 
kit

Diagnostic 
biomarker, 
predict 
disease pro-
gression

AUC = 74.3%, 
sensitiv-
ity = 65.4%, 
specific-
ity = 84.2%, 
predict disease 
progression 
(p < 0.05)

[161]

Yin et al. 
(2020)

Plasma miR-663b 122 ExoQuick‐TC 
Exosome 
Precipitation 
Solution

Predict 
disease pro-
gression

Disease 
progression 
(p < 0.05)

[167]

Yan et al. 
(2020)

Plasma LINC00355 57 miRNA 
microarray

Predict 
disease pro-
gression

Disease 
progression 
(p < 0.05)

[168]

Cai et al. 
(2020)

Serum miR-133b 11 Total exo-
some isola-
tion reagent

Predict 
disease pro-
gression

Disease 
progression 
(p < 0.05)

[170]

Sabo et al. 
(2020)

Plasma miR-126-3p 93 Deep 
sequencing

Predict 
prognosis

OS (p < 0.05) [171]

Zhang et al. 
(2019)

Serum LINC00355 520 ExoQuick 
exosome 
purification 
kit

Predict 
prognosis

RFS (p = 0.01)

Chen et al. 
(2020)

Serum circRNA hsa_
circ_0051443

592 FRET, CD 
spectros-
copy

Predict 
prognosis

OS (p < 0.05) [181]

Yang et al. 
(2022)

Serum circTRPS1 90 ExoQuick 
Exosome 
Precipitation 
Solution

Predict 
prognosis

OS (p = 0.01) [182]

Chen et al. 
(2018)

Serum circRNA-
PRMT5

119 Electron 
microscopy

Predict 
prognosis

OS (p = 0.028) [183]
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good external validation (96% sensitivity and 94% specificity) [197]. Moreover, metabo-
lites involved in malignant proliferation, immune escape, differentiation, apoptosis, and 
invasion of cancer cells were identified by ultra-high performance liquid chromatogra-
phy (UHPLC) combined with Q-TOF mass spectrometry, and three combinations of 
serum metabolites, namely inosine, N1acetyl-N2-formyl-5-methoxykynurenine, and PS 
(O-18:0/0:0), showed good properties in predicting high-level BC [198].

Compared to urine analysis, proteomic studies using blood are rare. However, it was 
found that the proteomic pattern of serum samples from patients with BC versus con-
trols was an effective screening tool for identifying diagnostic BC, with 96.4% sensitivity 
and 86.5% specificity, even in low stage low grade tumors [199]. Bansal et al. analyzed 80 
serum samples from healthy individuals and patients with low-grade and high-grade BC 
using bidirectional gel electrophoresis, and identified five differentially expressed pro-
teins, including S100A8 and S100A9, which accurately distinguished between BC (low-
grade and high-grade) and healthy controls, with an AUC value of 0.946 [200]. Similarly, 
abnormally expressed serum levels of S100A4, S100A8, S100A9, CA-I, and annexin V 
proteins were found to serve to be effective protein biomarkers for BC diagnosis based 
on the analysis of 160 serum samples from 52 healthy individuals, 55 presurgical, and 53 
postsurgical patients with BC [201].

Role of blood‑based metabolomics and proteomics in BC disease progression

Metabolomics and proteomics can help identify potential biomarkers of high aggressive-
ness in patients with BC [202–204]. Certain metabolic pathways may be associated with 
the regulation of chemosensitivity and immunotherapy in BC and may serve as poten-
tial biomarkers for identifying high-risk patients [205, 206]. A previous metabolomic 
showed that a set of genetic features, specifically COMT, IYD, and TTL, play potentially 
important roles in the progression of BC in smokers [207].

Minami et al. demonstrated that tumor-associated proteins S100A8 and S100A9 are 
associated with BC staging, grading and CSS, and S100A8 expression is an important 
predictor of BC recurrence [208]. Similarly, a total of nine differentially expressed gly-
coproteins in another study, including haptoglobin, transferrin, and IgM glyco-variants, 
or various cleavage products of fibrinogen and complement C3b, may be promising in 
the monitoring of BC disease progression [209]. Studies regarding blood-based metabo-
lomics and proteomics as potential biomarkers for BC were summarized in Table 5.

Challenges facing liquid biopsy in BC

Liquid biopsies represent a promising strategy in biomarker research. Despite the con-
siderable potential implications, a range of technical, biological, and clinical challenges 
need to be addressed before liquid biomarkers can be adopted in clinical practice. Limi-
tations such as the lack of standardized assays and the high cost of liquid biopsies hinder 
the potential translation of liquid biomarkers into clinical practice. Additionally, most 
studies evaluating liquid biopsy techniques have been limited by small sample sizes, 
indicating the need for large-scale higher-quality studies to validate previous findings 
before routine clinical application.

CTC analysis can provide unique insights into tumor heterogeneity; however, CTC 
count during early-stage disease is low and may be undetected. Moreover, different 
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tumor regions in a single patient may not show the same CTC propensity. Therefore, it 
is unclear whether CTC analysis could cause potential biological bias in intratumor het-
erogeneity. Although several techniques for CTC detection have emerged, their sensitiv-
ity and specificity still require further improvement. High-throughput sequencing can 
facilitate CTC-based multiomics studies, which can further benefit clinical applications, 
but can also contribute to the difficulty and complexity of data analysis [210].

The advantage of ctDNA analysis over CTC detection is that plasma/serum samples 
can be stored for a longer period of time and are easily collected before final analysis, 
making ctDNA an attractive option for multicenter studies. Currently, ctDNA analy-
sis is a major method for assessing BC heterogeneity, without sampling bias of tissue 
biopsy. However, most studies on BC liquid biopsies have focused on patients with 
advanced disease. The use of ctDNA for early detection may be highly limited due to the 
low detection rate of early cancers, and therefore there is a need to develop techniques 
with higher sensitivity and to obtain sufficient sample volumes to detect trace amounts 
of ctDNA. Additionally, the sensitivity, specificity, and reproducibility of ctDNA assays, 
and the optimization and standardization of preanalytical conditions, require further 
studies [211].

Exosomes are a novel means of intercellular information exchange and play an impor-
tant role in the tumor microenvironment. However, the heterogeneity and number of 
exosomes in body fluids may be a drawback to their utility as biomarkers, as these may 
yield false negatives or positives in cancer diagnosis. Moreover, further studies are nec-
essary to develop and optimize methods for loading bioactive substances into exosomes. 
Additionally, extensive studies on the safety, targeting ability, and efficacy of exosomes 
are necessary to facilitate the successful application of exosomes as targets or drug deliv-
ery tools in BC.

Before fully evaluating cfRNA for clinical applications, the sensitivity of cfRNA for 
cancer detection in early-stage cancer needs to be determined. This is because cfRNA is 
unstable and highly fragmented. Targeted assays such as hybridization capture or ampli-
con sequencing should be used, which will allow for more sensitive quantification of 
cfRNA.

Furthermore, BC metabolic profiles are mainly characterized by alterations in metabo-
lites associated with energy metabolic pathways, amino acid metabolism, and fatty acid 
metabolism, which are important for cell proliferation and maintenance of cellular redox 
homeostasis. However, the lack of standardized sample collection methods, variations in 
metabolite analysis methods, environmental stress, and food intake of patients severely 
influence metabolome composition, all of which contribute to differences in metabo-
lomic profiles obtained from different laboratories. The analysis of changes in serum 
protein profiles in patients with BC is an emerging area of liquid biopsy that can reveal 
complex interactions between tumor tissue and the surrounding vascular microenvi-
ronment. However, additional clinical trials are still needed to validate previous prot-
eomic data. Despite these challenges, metabolomics and proteomics show great clinical 
promise. Figure 3 provides a summary of the main advantages, disadvantages, and clini-
cal applications of liquid biopsy components represented by CTCs, ctDNA, cfRNA, 
exosomes, and metabolomics and proteomics.
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Conclusion and future perspectives
Management strategy for patients with BC

Despite the high accuracy of cystoscopy and pathology biopsy in detecting BC, there 
are multiple limitations to their application for screening BC, including complications 
associated with invasive biopsy, patient anxiety, and financial burden. Although not cur-
rently considered a standard tool for the confirmation and diagnosis of BC, liquid biopsy 
could be a promising and effective alternative to traditional invasive sampling methods, 
especially in cases where tissue samples are not available. Additionally, it may be rea-
sonable to defer invasive cystoscopy in patients with low risk of recurrence on the basis 
of preliminary liquid biopsy, which could reduce patients’ pain. The use of circulating 
biomarkers and liquid biopsies in real-time assessment of BC during treatment could 
provide useful information for treatment strategy and prevent the human and economic 
costs associated with delaying treatment. Combining molecular alterations at different 
levels (genomic, transcriptomic, and proteomic) can improve the accuracy of diagnosis, 
prognosis, and prediction of BC, and is a key prerequisite for successful individualized 
treatment strategies.

Table 5 Studies regarding circulating metabolomics and proteomics in blood as potential 
biomarkers for bladder cancer

AUC  area under the receiver operating characteristics curve, ELISA enzyme linked immunosorbent assay, OS overall survival, 
RFS recurrence-free survival, CSS cancer-specific survival, NMR nuclear magnetic resonance, LC–MS liquid chromatography–
mass spectrometry, Q-TOF MS quadrupole time of flight mass spectrometry, UHPLC ultra-high performance liquid 
chromatography, MALDI-TOF–MS matrix-assisted laser desorption/ionization time of flight mass spectrometry

Authors (year) Sample type No. of patients Laboratory 
technique

Clinical 
application

Detection rate Refs.

Cao et al. (2012) Serum 112 1H NMR meas-
urements

Discrimination 
of patients with 
BC from healthy 
individuals

Detected 
abnormal serum 
metabolic 
profiles in 100% 
of patients

[196]

Bansal et al. 
(2013)

Serum 99 1H NMR meas-
urements

Diagnostic 
biomarker

Sensitiv-
ity = 94%, speci-
ficity = 97%

[197]

Tan et al. (2017) Serum 172 UHPLC coupled 
with Q-TOF MS

Diagnostic 
biomarker

AUC = 0.961 [198]

Schwamborn 
et al. (2009)

Serum 248 MALDI-TOF–MS Diagnostic 
biomarker

Sensitiv-
ity = 96.4%, 
specific-
ity = 86.5%

[199]

Bansal et al. 
(2014)

Serum 90 MALDI-TOF–MS Diagnostic 
biomarker

AUC = 0.946 
(S100A8 and 
S100A9)

[200]

Bansal et al. 
(2016)

Serum 160 ELISA, MARS Diagnostic 
biomarker

AUC = 0.957 
(S100A9)

[201]

Amara et al. 
(2019)

Serum 87 LC–MS Predict disease 
progression

OS (p = 0.0065) [207]

Minami et al. 
(2010)

Serum 2 Reversed-phase 
high-perfor-
mance liquid 
chromatogra-
phy

Predict prog-
nosis

RFS (p = 0.026), 
CSS (p = 0.041)

[208]

Lemańska-Perek 
et al. (2019)

Plasma 6 MALDI-TOF–MS Predict disease 
progression

Increasing 
abundance in 
progressing BC

[209]
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However, several key questions still need to be carefully addressed in the future to 
accelerate the adoption of biomarkers into clinical practice. (1) What biomarkers can 
help in the early detection of BC in high-risk populations? (2) What are the minimum 
requirements for biomarkers suitable to complement current routine screening for over-
all satisfactory accuracy? (3) Does liquid biopsy have the ability to differentiate between 
benign and malignant tumor? (4) What potential solutions can bridge the gap between 
basic research and clinical translation of these biomarkers?

Future perspectives for precision treatment of BC

Over the past decade, precision medicine has evolved considerably. Liquid biopsy has 
revolutionized the field of clinical oncology considerably by facilitating tumor sam-
pling, continuous monitoring through repeat sampling, the development of personal-
ized treatment plans, and the screening for treatment resistance. Although liquid biopsy 
technology is still evolving, its noninvasive nature promises to revolutionize the preci-
sion treatment of BC. Additionally, we hypothesize that a shift from single to multiple 
markers could improve BC diagnosis, monitoring, and treatment. Active collaboration 
between clinicians, industrial scientists, and biologists is necessary.

Noninvasive liquid biopsy technology holds promise for clinical applications in the 
early diagnosis of BC, accurate drug administration, real-time documentation and moni-
toring of disease evolution, and prognostic assessment. At the same time, it is critical to 
conduct more multicenter, large-scale clinical trials to verify its clinical effectiveness.

Fig. 3 Comparison of the major liquid biopsy methods in bladder cancer and their main advantages, 
limitations, clinical applications, and future directions
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