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Abstract

Background: Although the 3T3-L1 preadipocyte cell line represents an informative
model for in vitro adipogenesis research, primary cultured cells are often needed to
understand particular human or animal metabolic phenotypes. As demonstrated by
in vitro cultured preadipocytes from large mammalian species, primary cultured cells
require specific adipogenic differentiation conditions different to that of the 3T3-L1
cell line. These conditions are also species-specific and require optimization steps.
However, efficient protocols to differentiate primary preadipocytes using alternative
species to rodents are scarce. Sheep represent an amenable animal model for fetal
biology and developmental origins of health and disease studies. In this work, we
present with the first detailed procedure to efficiently differentiate primary fetal and
adult ovine preadipocytes.

Methods: Fetal and adult ovine adipose and skin tissue harvest, preadipocyte and
fibroblast isolation, proliferation, and standardization and optimization of a new
adipogenic differentiation protocol. Use of commercial cell lines (3T3-L1 and NIH-3T3)
for validation purposes. Oil red O stain and gene expression were used to validate
adipogenic differentiation. ANOVA and Fisher’s exact test were used to determine
statistical significance.

Results: Our optimized adipogenic differentiation method included a prolonged
adipogenic cocktail exposure time from 2 to 8 days, higher insulin concentration, and
supplementation with the peroxisome proliferator-activated receptor gamma (PPARγ)
agonist, rosiglitazone. This protocol was optimized for both, fetal and adult preadipocytes.

Conclusions: Our protocol enables successful adipogenic differentiation of fetal and
adult ovine preadipocytes. This work demonstrates that compared to the 3T3-L1 cell line,
fetal ovine preadipocytes require a longer exposure to the differentiation cocktail, and the
need for IMBX, dexamethasone, and/or the PPARγ agonist rosiglitazone through the
terminal differentiation phase. They also require higher insulin concentration during
differentiation to enhance lipid accumulation and similar to human primary
preadipocytes, PPARγ agonist supplementation is also required for ovine adipogenic
differentiation. This work highlights species-specific differences requirements for
adipogenic differentiation and the need to develop standardized methods to investigate
comparative adipocyte biology.
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Introduction
To study adipogenesis, adipogenic differentiation, and their regulation, investigators

often resource to the commercially available preadipocyte cell line 3T3-L1 of murine

origin [1]. Results from these studies are not as useful for applications on human health

as expected, given the physiological and metabolic differences among species [2].

Human primary cultured cells are the best resource to understand human adipocyte

biology in deranged metabolic states [2], but cannot inform about cell events that occur

during prenatal life. The developmental origins of health and disease theory is pointing

to early life events as one of the contributing factors towards the increased prevalence

of metabolic diseases worldwide, including obesity [3–5]. To test hypotheses relative to

fetal adipose tissue differentiation and fate and/or the effects of prenatal exposures

(chemicals, stress, nutrition) on adult metabolic risk, alternative models are often

needed [6]. Other large mammalian species, such as feline and porcine primary cells,

have recently been used as alternatives [7, 8]. The sheep is an outstanding animal

model to understand how prenatal exposures can affect adult metabolic disease risk

[9–12] because, as humans, sheep are a monotocous and precocial species, with major-

ity of organs maturing before birth [13], including the adipose tissue [14]. Identified

barriers to the advance of our understanding on adipocyte biology include the great

diversity of protocols available for some cell lines and the lack of standardized methods

of adipogenic differentiation in other mammalian species [2]. As we demonstrate in this

study, standard murine 3T3-L1 differentiation protocols [15, 16] are not suitable for

ovine preadipocyte adipogenic differentiation.

Adipocyte differentiation is a complex process by which preadipocytes transition into

lipid-filled, insulin-responsive adipocytes. Adipocyte fate is controlled by transcription

factors, including peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/

enhancer-binding proteins (C/EBPs), and sterol regulatory element binding protein

(SREBP). Preadipocyte differentiation is routinely initiated by a 48 h exposure to a basic

3T3-L1 differentiation induction cocktail containing 3-isobutyl-1-methyxantine

(IBMX), dexamethasone, and insulin [17]. IBMX regulates C/EBPβ [18], enhances 3T3-

L1 differentiation upon longer exposures [15], and alone [19] or in combination with

dexamethasone [20], regulates PPARγ activity. PPARγ, the master regulator of adipo-

genesis, cooperates with C/EBPα to initiate adipogenic differentiation, is required in

human preadipocyte differentiation [21, 22], and can increase glycerol-3-phosphate

dehydrogenase (GPDH) activity in sheep preadipocytes [23], an enzyme involved in

lipid biosynthesis. PPARγ agonists, such as thiazolidinediones, have been used to

enhance adipogenic differentiation in 3T3-L1 and primary preadipocytes of large mam-

mals [7, 14, 17]. In addition, supplementation with insulin promotes preadipocyte dif-

ferentiation [24], but the insulin dose is among the most variable media components of

3T3-L1 differentiation protocols [17].

In this work, we aimed to standardize a protocol for effective ovine adipogenic differ-

entiation using fetal and adult primary cultured preadipocyte that will help understand

basic adipocyte biology knowledge in a relevant meat-producing species, as well as

events occurring during fetal adipose tissue remodeling. To enable ovine adipogenic

differentiation, we applied several media modifications. Here, we have only presented

the key modifications that resulted in significant improvements in ovine preadipocyte

adipogenic differentiation.
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Materials and methods
Fetal and adult tissue harvest

All procedures used in this study were approved by the Institutional Animal Care and

Use Committee of Michigan State University (MSU) and are consistent with the

National Research Council’s Guide for the Care and Use of Laboratory Animals and

the Animal Welfare Act. The study was conducted at the MSU Research Facility (East

Lansing, MI; 42.7° N, 84.4° W) using an in-house flock of multiparous Polypay x

Dorsett breed of sheep. Female sheep were bred using a time mated pregnancy strategy.

At gestational day 120 and after humane sacrifice, fetal perirenal adipose tissue and

skin from the abdominal midline were harvested from female fetuses to isolate fetal

ovine preadipocytes (oPADs) and skin fibroblasts. Immediately after, tissues were placed

in transport medium (Omental Preadipocyte Medium, Zen Bio, USA) and processed

within two hours. Adipose tissue was also collected from the subcutaneous adipose

depot of three adult females after humane sacrifice.
Generation of fetal and adult ovine primary preadipocytes

Preadipocyte isolation method was conducted following a common standard protocol

used in isolation of human adipogenic precursor cells [25]. This isolation protocol

followed by adipogenic differentiation allows an average cell differentiation rate of 50-60%

[25]. In brief, fetal and adult oPADs were isolated by rinsing a 1–2 g of adipose tissue with

pre-warmed Dulbecco’s phosphate-buffered saline (DPBS) with antibiotic-antimycotic

(Invitrogen), removing any visible blood clots and connective tissue using sterile forceps

and then minced into small pieces. Collagenase-I (C0130, Sigma, 1 mg/ml) was used to

digest tissue for 40 min in a 37 °C water bath. The mixture was filtered through a mesh

filter (250 μm, U-CMYBK-250, Component Supply Company, Fort Meade, USA) and

centrifuged at 1,200 rpm for 5 min. The cell pellet was washed with fresh omental

preadipocyte medium and seeded into 6-well plates. After six days of culture, cells

were frozen (Preadipocyte Cryopreservation Medium, FM-1-100, Zen-Bio) and stored

in liquid nitrogen until further use. All experiments were performed using fetal oPAD

primary cells (passage 3) from one female and validated with fetal and adult oPADs

from 2 and 3 additional females, respectively. The 3T3-L1 (preadipocyte) and NIH-

3T3 (fibroblastic) cell lines were used as positive and negative control of adipogenic

cells, respectively. Ovine fetal primary fibroblasts were also used as a negative control

of adipogenesis.
Generation of fetal ovine primary skin fibroblasts

Ovine fetal primary fibroblasts were isolated as follows. After hair and connective tis-

sue removal using sterile forceps, fetal skin tissue was rinsed twice with pre-warmed

DPBS supplemented with antibiotic and antimycotic. Tissue (1 g) was minced into

small pieces and distributed into 6-well plates with 0.2 ml of serum per well. After

6 h incubation, 2 ml of basal medium consisting of DMEM/F12 medium (Invitrogen)

supplemented with 1% penicillin-streptomycin, 10 mM HEPES, and 10% fetal bovine

serum (Corning, Manassas, VA, USA) was added into the plate and primary cells cul-

tured for 4 to 6 days until confluency. Cells were then trypsinized and passaged as

primary fibroblasts for further study.
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Ovine primary preadipocytes proliferation

Primary cultured oPADs were trypsin digested (Invitrogen, 0.05%) for subculture upon

90% confluency. Proliferation ability for each cultured cell (passage 3) was assessed by

growth curve analysis. Cells were seeded at a density of 10,000 cells per well in 24-well

plates and the counts were performed in haemocytometer chamber. Cell counts were

performed every 24 h for 8 days. Triplicate wells for each time point per cultured cell

were used.
Cell culture and adipocyte differentiation

Before differentiation induction, fetal oPADs (passage 3), 3T3-L1 cells (American Type

Culture Collection, ATCC, Manassas, VA, USA; within passage 6), and NIH-3T3

(ATCC, Manassas, VA, USA; within passage 6) were cultured in basal medium (same

as for oSFs) until confluency and allowed to grow for two additional days. Thereafter,

adipocyte differentiation was induced. Summary of adipogenic differentiation media

and exposure times are detailed in Figs. 1c and 2c. 3T3-L1 differentiation medium 1a

(DM1a) consisted of basal medium supplemented with biotin (33 μM), pantothenate

(17 mM), insulin (1 μg/ml), dexamethasone (1 μM) and 3-isobutyl-1-methylxanthine

(IBMX, 0.5 mM). 3T3-L1 differentiation medium 1b (DM1b) was same as DM1a, with-

out dexamethasone and IBMX. 3T3-L1 were exposed to DM1a from days 0 to 2 and to

DM1b from days 3 to 8 (Fig. 1c). All media were replaced every 48 h. Composition of

the modified differentiation medium 2a (DM2a) was the same as DM1a, but supple-

mented with increased insulin concentration (10 μg) and rosiglitazone (20 μM). Differ-

entiation medium 2b (DM2b) was the same as DM2a, but without dexamethasone,

IBMX, and rosiglitazone (Fig. 2c). Rosiglitazone concentration was based on previous

reports [26] and pilot work in our laboratory (data not shown). Ovine female fetal skin

fibroblasts were induced to differentiate using the final differentiation protocol to dem-

onstrate how ovine fetal fibroblasts lack the ability to differentiate upon exposure to

the PPARγ agonist, rosiglitazone (Fig. 3c). 3T3-L1 and NIH-3T3 cell lines were also in-

duced to differentiate (Fig. 3c) in DM1a media for 2 days, following by DM1b media

for additional 6 days.
Oil Red O stain

Preadipocyte differentiation into mature adipocytes was determined by Oil Red O (ORO)

stain, as a marker of lipid accumulation. In brief, ORO (0.3%) was dissolved in isopropanol

diluted in water (0.18%). Adipocytes at differentiation day 8, were washed with DPBS

twice then fixed in 10% formalin for 30 min at room temperature. Cells were washed with

DPBS and incubated 5 min in 60% isopropanol followed by incubation in ORO working

solution. After multiple DPBS washes, bright field images were captured on an inverted

microscope. Five images of each treatment were used to calculate ORO positive area using

the Image J software [27].
Quantitative real time PCR (qRT-PCR)

To evaluate the dynamic expression of genes involved in adipogenic differentiation,

qRT-PCR (ABI-Quant Studio 7 Flex Real-Time PCR System, Thermo Fisher, Carlsbad,

CA) was performed to examine the mRNA expression of ovine genes encoding for



a

c

b

Fig. 1 Differentiated 3T3-L1 cells and fetal ovine preadipocytes (oPADs) with 3T3-L1 medium. Quantification
of ORO positive area (mean ± SEM; a), representative ORO stain images of 3T3-L1 (B1) and fetal oPADs (B2)
after 8 days of differentiation (b), and differentiation medium details (c). Scale bar: 50 μm. BM: basal
medium, Dex: dexamethasone, DM: differentiation medium, Ins: insulin, oPADs: ovine preadipocytes, Rosi:
rosiglitazone. Three fetal oPAD primary cells (passage 3) from three different fetuses were used. Asterisk
represents significant differences (P < 0.05)
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peroxisome proliferator-activated receptor gamma (PPARɣ), fatty acid binding pro-

tein 4 (FABP4), CCAAT/enhancer-binding protein alpha (C/EBPα), adiponectin

(ADIPOQ), protein delta homolog 1 (DLK1) and zinc finger protein 423 (ZFP423).

Primer sequences are shown in Table 1. The sizes of the DNA templates were con-

firmed by 1.5% agarose gel. Cultured cells were washed three times with ice cooled

DPBS and total RNA extracted with an RNeasy Mini kit (Qiagen, Hilden,

Germany) according to the manufacturer’s protocol. RNA quality and concentration

were measured by Nanodrop (Thermo Fisher Science, Wilmington, NC, USA).

1 μg RNA (quality: A260/A280: 2.0 ± 0.05; concentration: 200 ± 50 ng/μl) was re-

verse transcribed into cDNA using a High Capacity cDNA Reverse Transcription

Kit (Promega, Madison, WI, USA) in 10 μl reaction volume. cDNA amplification

reaction (50 ng) consisted of template denaturation and polymerase activation at

95 °C for 30 s, followed by 40 cycles of denaturation at 95 °C for 15 s, annealing

at 60 °C for 30 s, and extension at 72 °C for 30 s. All experiments and qRT-PCR

were run in triplicate. Melt curve analyses were performed for all genes, and the

specificity as well as integrity of the PCR products was confirmed by the presence

of a single peak. The levels of mRNA encoding the indicated genes were normal-

ized against three housekeeping genes GAPDH, RPL27, and β-actin to calculate

relative fold change to that of the control. Results using all three housekeeping

genes provided with the same results, but only GAPDH data are shown.
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Fig. 2 Effect of rosiglitazone supplementation and prolonged adipogenic cocktail exposure on ovine fetal
and adult preadipocyte (oPADs) differentiation. Quantification of ORO positive area (mean ± SEM; a),
representative ORO stain images of fetal (B1 (only insulin supplementation in days 3 to 8); B2 (optimized
medium)) fetal and adult oPADs (B3; optimized medium) after 8 days of differentiation (b), and differentiation
medium details (c). Scale bar: 50 μm. BM: basal medium, Dex: dexamethasone, DM: differentiation medium, Ins:
insulin, oPADs: ovine preadipocytes, Rosi: rosiglitazone. Three fetal oPADs and three adult oPADs primary cells
(passage 3) from three different fetuses and three different adult sheep, respectively, were used. Asterisks
represent significant differences (P < 0.05)
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Statistics

All data are presented as mean ± SEM. All experiments (adipogenic differentiation in

fetal and adult oPADs and oSFs, and qRT-PCR) were conducted in triplicate. Appropri-

ate transformations were applied, as needed, to account for normality of data. ANOVA

was used to compare gene expression data among differentiation time points followed

by Dunnett’s posthoc test. For comparing percent differences Fisher’s exact test was

used. Statistical software used was PASW Statistics for Windows release 18.0.1. Differ-

ences were considered significant at P < 0.05.

Results and discussion
In this work, we have successfully established a protocol to induce adipogenic differen-

tiation in fetal and adult ovine primary cultured preadipocytes. As expected from prea-

dipocytes, the morphology of oPADs was phenotypically fibroblastic (Fig. 4a-b),

demonstrated good proliferative ability (Fig. 4c), and expressed both, the preadipocyte

marker (DLK1) [28] and the adipogenic differentiation ability marker (ZFP423) [29]

mRNA (Fig. 3a). ZFP423 mRNA expression was highest in the 3T3-L1 cell line (100%,

preadipocyte cell line), followed by oPADs (71%), ovine fetal primary fibroblasts (17%)

and NIH-3T3 cell line (0.5%, fibroblast cell line) and was positively correlated with the

differentiation ability of each of these cultured cells and cell lines (Fig. 3b-c).

We first tested the ability of the 3T3-L1 differentiation protocol (Fig. 1c) to induce differ-

entiation in fetal oPADs and compared it to the differentiation ability in the 3T3-L1 cell

line (Fig. 1). After 8 days of differentiation, over 90% of 3T3-L1 cells differentiated in fully

mature adipocytes as shown by ORO stain (Fig. 1a and b1). However, the 3T3-L1 protocol
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Fig. 3 Preadipocyte and adipogenic markers mRNA expression in murine and ovine primary cultured cells
and cell lines. a) DLK1 and ZFP423 mRNA expression in ovine fetal preadipocytes (oPADs). b ZFP423 mRNA
expression in undifferentiated 3T3-L1 and NIH-3T3 cell lines and fetal ovine primary cultured cells, oPADs
and fetal skin fibroblasts (oSFs). c Oil red O stain of 3T3-L1 cell line (preadipocyte), NIH-3T3 cell line (fibroblast),
ovine female fetal preadipocytes (oPADs), and skin fibroblasts (oSFs) after differentiation induction for 8 days.
Three fetal oPADs and three fetal oSFs primary cells (passage 3) from three different fetuses were used
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was not able to induce terminal adipogenic differentiation in oPADs (Fig. 1a and b2). The

≥ 16-fold difference between 3T3-L1 and fetal oPADs differentiation was similar to reports

standardizing adipogenic differentiation with human primary preadipocytes [22, 30].

Because insulin concentration is among the adipogenic media supplements with the

largest variation [17], we tested if increasing the insulin concentration would improve

accumulation of lipid droplets during adipogenic differentiation. A 10-fold increase in

insulin concentration (10 μg/ml) induced the formation of small and middle-sized lipid

droplets in fetal oPADs (data not shown). 3T3-L1 cells do not require adipogenic in-

duction with a PPARγ agonist, however differentiation protocols for large mammalian

species [7, 8, 14] preadipocyte and human mesenchymal stem cells into adipocytes

often include this modification [31, 32]. To test if supplementation with a PPARγ



a c

b

Fig. 4 Characterization of primary fetal ovine preadipocytes (oPADs). oPADs in culture (a) and at confluency
(b). c Preadipocytes growth curve (mean ± SEM) over 8 days (three fetal oPADs cell lines)

Table 1 Primers for quantitative real time PCR

Gene Primer Length (bp) Accession number

oADIPOQ - Forward GGAGATCCAGGTCTCGTTGG 98 NM_001308565

oADIPOQ - Reverse TTTCTGCCTGGGACTCCTGG

oβ-ACTIN - Forward CCAACCGTGAGAAGATGACC 97 NM_001009784

oβ-ACTIN - Reverse CCAGAGGCGTACAGGGACAG

oC/EBPα - Forward CCCCGACAGGAGCAAGGT 114 KF830871

oC/EBPα - Reverse GGTTCAAAGCCCCAAGT

oDLK1 - Forward GGCATCGTCTTCCTCAAC 89 XM_015102053

oDLK1 - Reverse CGCAGCAGCAGATTCTTC

oFABP4 - Forward GGATGATAAGCTGGTGCTGG 53 NM_001114667.1

oFABP4 - Reverse CTCTGGTAGCAGTGACACCG

oGAPDH - Forward TTCCACGGCACAGTCAA 241 NM_001190390

oGAPDH - Reverse TCACGCCCATCACAAAC

mGAPDH - Forward CGGCAAATTCAACGGCACA 84 NM_001289726

mGAPDH - Reverse TCTCGCTCCTGGAAGATGG

oPPARγ - Forward TGGATGACCACTCCCATGCC 97 NM_001100921

oPPARγ - Reverse TTGGGAACGGAATGTCCTC

oRPL27 - Forward CGCAAGGCCCGACGAGAGGC 93 XM_015098799

oRPL27 - Reversr GACCTAAAACCGCAGCTTCTGG

oZFP423 - Forward CCCGATTCCAGCAACCACA 160 XM_015100428

oZFP423 - Reverse CGTCATCCCGCATCTTCTTCT

mZFP423 - Forward CCGTCTGCTTCACAGTCTTCG 155 NM_001310520

mZFP423 - Reverse TGCGTGCTGGCTCATCG

Note: o refers to ovine, m refers to murine. Accession number from NCBI gene database
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Fig. 5 Dynamic gene expression in fetal ovine preadipocytes (oPADs) during differentiation. mRNA
expression (mean ± SEM) through adipogenic differentiation in fetal oPADs from day 0 to 7 of
differentiation when using the optimized differentiation protocol (Fig. 2b2). Different letters represent
significant differences (P < 0.05) within gene and between culture days by ANOVA. Three fetal oPAD
primary cells (passage 3) from three different fetuses were used. Gene expression was validated using three
housekeeping genes (GAPDH, RPL27, and β-actin), but only GAPDH results are shown
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agonist results in enhanced fetal ovine preadipocyte differentiation, rosiglitazone was

selected over other PPARγ agonists, such as troglitazone, because troglitazone is only a

partial PPARγ agonist [33]. Rosiglitazone (20 μM) was included into the differentiation

medium (DM2a; Fig. 2c) and cells exposed for 2 days. Thereafter, differentiation

medium was replaced with DM2b (Fig. 2c) and fetal oPADs cultured for 6 additional

days. Addition of a PPARγ agonist for 48 h improved differentiation, increasing

medium-sized lipid droplet formation (Fig. 2b1) and suggesting that similar to feline

[7], porcine [34], and human [31] preadipocytes, ovine preadipocytes have lower sensi-

tivity to insulin than murine cell lines and PPARγ agonist may be a more stringent re-

quirement for adipogenic differentiation in these species.

Since previous studies have shown that longer exposure (>2 days) to the differenti-

ation cocktail can enhance adipogenesis [35, 36], we tested if a longer exposure to the

DM2a increased ovine adipogenic differentiation. Exposure to the DM2a for 8 days

resulted in an enhanced adipogenic differentiation of oPADs and formation of medium

to large sized lipid droplets (Fig. 2b2). With this differentiation protocol, lipid accumu-

lation is readily visible under light microscope starting at day 3 of culture. The final

protocol (8 days of DM2a exposure) was tested in two additional fetal oPADs confirm-

ing differentiation results observed in the first fetal oPAD cultured cells. We also tested

our optimized adipogenic differentiation system in three different ovine adult primary

cultured preadipocytes. Adult subcutaneous preadipocytes were used and a similar

differentiation rate to that seen in fetal oPADs was observed (Fig. 2a and b3). Because

PPARγ agonists can induce lipid droplet accumulation in non-adipogenic cells, we used

ovine fetal skin fibroblasts to test if rosiglitazone could induce lipid droplet accumula-

tion. Fetal fibroblasts originated from the same animals as the oPADs. When subjected

to the final protocol (DM2a for 8 days), fetal fibroblasts were not able to accumulate

lipid droplets (Fig. 3c).
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To further assess the differentiation process in oPADs, we evaluated the expression

of genes expressed in preadipocytes (DLK1) and in the commitment (C/EBPα and

PPARγ) and terminal phase (FABP4 and ADIPOQ) of adipogenesis by qRT-PCR. Differ-

entiation was confirmed by a downregulation of DLK1 and exponential upregulation of

C/EBPα, PPARγ, FABP4, and ADIPOQ (Fig. 5) upon differentiation progression.

In conclusion, our protocol enables successful adipogenic differentiation of fetal and

adult ovine preadipocytes. It also demonstrates that compared to the 3T3-L1 cell line,

fetal ovine preadipocytes require a longer exposure to the differentiation cocktail, and

suggests the need for IMBX, dexamethasone, and/or the PPARγ agonist rosiglitazone

through the terminal differentiation phase. They also require higher insulin concentra-

tion during differentiation to enhance lipid accumulation and similar to human primary

preadipocytes [21, 22], PPARγ agonist supplementation is also required for ovine adipo-

genic differentiation. This work highlights species-specific differences requirements for

adipogenic differentiation [7, 14, 31, 34] and the need to develop standardized methods

to investigate comparative adipocyte biology.
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