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Abstract: We describe a new factor in the recovery from inactivation in the ball 
and chain model. We propose a model in which the tension from the chain may 
help pull the ball away from its binding site, reducing the duration of the 
inactivation period. A corresponding model was built and analysed. 
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INTRODUCTION 
 
The ball and chain model of inactivation (Fig. 1) was proposed by Armstrong 
and Bezanilla [1]. Originally, the model was applied to sodium channels to 
explain how they inactivate after opening. More recent studies showed that the 
inactivation particle in the sodium channel is not exactly a ball on a chain, but 
rather a “hinged lid” [2]. However, this discovery did not decrease the 
significance of the ball and chain model, because the mechanism was found to 
apply to the shaker potassium channel [3-5].  
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The potassium channel ball and chain consists of a hydrophilic series of residues  
in the chain (60 residues) and a hydrophobic series of residues which form a ball 
(20 residues). It is assumed that the ball wanders in the space near the pore, and 
can occlude it to inactivate it, which is an event with a nonzero probability. 
 

 
 
Fig. 1. The ball and chain model of channel inactivation. The ball wandering in the space 
around the channel’s pore can occlude it and stop the ion flow. 
 
As can be seen, the ball and chain model provides an intuitive idea of the 
inactivation process, but does not reveal much about the possible mechanism of 
recovery from inactivation. This problem was the subject of various studies 
taking experimental approaches. For example, Demo and Yellen [6] investigated 
the influence of transmembrane voltage and K+ ion concentration on the 
recovery from inactivation. They found that increased K+ concentration speeds 
up the recovery from inactivation. Voltage reversal was also found to speed up 
the inactivation. To explain this behaviour, they proposed a mechanism where 
the K+ ions enter the channel from the extracellular side and push the 
inactivating particle from its binding site. 
The model of Demo and Yellen is quite intuitive and simple. More recent studies 
have altered this point of view. Gomez-Lagunas and Armstrong [7] discussed 
how potassium channel recovery from inactivation can be sped up by an increase 
in the concentration of non-permeant ions. On the other hand, it is also stated 
that there is an additional inactivation state that is insensitive to ionic 
concentration changes [7]. 
These findings complicate the model, and indicate that ionic concentrations and 
transmembrane voltage cannot be the only factors involved in the general 
process of recovery from inactivation. This appears to be the case. Looking at 
the results of Zagotta et al. [4], it can be seen that in a channel inactivated by an 
artificial inactivation particle, the duration of inactivation (before the channel 
recovers from inactivation) is longer than under natural conditions. This finding 
is the main basis of this paper. We postulate that the chain plays an inportant 
role in the recovery from inactivation, namely that the motion of the chain can 
drag the inactivation particle out of its binding site. 
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The model 
It has yet to be established in realistic modeling how the chain could interact 
with the ball. The chain is composed of 60 hydrophilic amino acid residues. The 
first idea was that the chain could drag the ball out of its binding site by means 
of inertial interactions. However, the time scale of velocity relaxation for inertial 
processes is actually too small, which we can see by solving Newton’s equation 
of motion for the damping medium: 
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dvm ηπ6−=        (1); 
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For an average amino acid with a radius of 1.6 Å and average mass of 2 10-25 kg 
[9], and an intracellular fluid viscosity of η = 5 cps [8], we obtain τ = 13 ps. This 
is very small, especially compared with the time scale of the measured recovery 

from inactivation (milliseconds) and the diffusion time ( 2D L
D

=τ , where L is 

the chain length, 200 Å [9]), which is of the order from micro to milliseconds, 
depending on whether we consider a single amino acid residue, D ≈ 10-5 cm2/s, 
or the ball, D ≈ 10-9 cm2/s [10]). 
 

 
 

Fig. 2. The Rouse model of a polymer. Subsequent subunits are held together by spring-
like connections. 
 
Another possibility is that the chain fluctuations themselves drag the ball out of 
its binding site. A similar idea, involving entropic forces, was recently presented 
by Bezrukov et al. [11]. The natural way to investigate this is to do the 
simulation of the Brownian dynamics of the chain residues. Since we are not 
interested in the folding pattern of the chain, but only in the magnitude of 
fluctuations near the ball, we do not need a detailed simulation of a peptide; we 
can simplify the Brownian dynamics to the simulation of a Rouse model of  
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a polymeric chain [12, 13] (Fig. 2). In this model, we cannot obtain exact 
configurations of the chain, because we do not model the bond type exactly. 
Instead, the cumulative force induced by fluctuations can easily be measured: it 
is proportional to the elongation of the bond between two subunits. 
The algorithm used in such a problem is of the Ermak and McCammon type 
[14], which allows the calculation of the displacements of amino acid subunits 
based on the equation: 
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where the index i goes through all the interacting subunit coordinates, F is an 
external force acting on the Brownian subunit, and R is a gaussian force whose 
variance depends upon the diffusion tensor Dij and the time step. The first 
derivative of the diffusion tensor with respect to displacement disappears for 
most of the commonly used diffusion tensors [14]. 
The diffusion tensor in general should include the hydrodynamic interactions 
between particles (taking the form of the Oseen tensor or Rotne-Prager tensor) 
[14, 15]. Unfortunately this leads to a large increase in the computational effort 
to calculate the random force. 
 

 
 
Fig. 3. The initial condition for the chain in the Brownian dynamics simulation. The black 
circle denotes the ball, the white circles correspond to the chain subunits. 
 
If we omit the hydrodynamic interactions, and take a simple diagonal diffusion 
tensor, then it is possible to obtain a longer simulation time. As regards the 
obtained values of tension in the chain, we can expect that the values without 
hydrodynamic interactions are similar to or smaller than those in the full model, 
and thus they can be treated as a lower estimate [15]. 
The value of the diffusion coefficient for the diagonal diffusion tensor Dij = Dδij 
was taken from Liebovitch et al. [16] and set at D = 10-5 cm2/s. The random 
force was gaussian with variance equal to:  
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σ2 = 6DΔt        (4) 
 

The external forces F in the Brownian dynamics simulation originate at the bond 
interactions. After [14], the bond strength (spring elasticity coefficient in the 
model) was set at:  
 

2δ
κ kT
=         (5) 

 

where δ stands for the inter-residue displacement (assumed to be δ = 3.33 Å). 
The initial condition for the Brownian dynamics was set to a fully elongated 
chain in the direction perpendicular to the membrane surface with both ends fixed 
at the channel’s pore (Fig. 3). The simulation time step was taken to equal 1 ps. 
 
RESULTS AND DISCUSSION 
 
Fig. 4 shows histograms of the tension between the chain and the ball. They 
were calculated for three lengths of chain: two residues, four residues and eight 
residues. A comparable simulation for the 60 residues of the real chain was 
computationally unfeasible; however, we did the calculations for short time 
scales, and the results are qualitatively similar. We can observe that when the 
chain gets longer, the maximum tension achieved in the fluctuations increases. 
This means that we observe a cooperative action of fluctuations acting on the 
whole chain. 

 
 

Fig. 4. Histograms of the tensions achieved in the chain in the simulation period of 1 ms 
(time step 1 ps; 106 iterations) for different chain lengths. Increasing the chain length 
increases the maximum tension achieved by the tail of this distribution. Note that the 
distribution is cut at lower tensions, and that we did not show tensions smaller than 8.5 nN. 
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The simulation was also verified for shorter time steps to check that the tensions do 
not arise from computational defects. The results confirmed that this effect is real.  
The results can be compared to rough estimates of the electrostatic and 
hydrophobic forces that act in the ball-channel complex. These forces have not 
yet been measured precisely, and there is still a debate on which interactions 
stabilise the complex (as can be seen, for example in [5]). 
The hydrophobic forces can be (over)estimated on the basis of the equation 
presented in Aldrich et al. [5], where it is stated that each Å2 of the surface adds 
25 cal/mol to the free energy. Checking the unburied surfaces of the 
hydrophobic amino acids [17] of the ball, we find that the maximum area that 
can contribute equals 387.9 Å2. This corresponds to 6.74⋅10-20 J ≈ 20 kT of free 
energy. Overestimating that the work needed to separate the hydrophobic 
surfaces to a distance of one water molecule equals the free energy difference 
between the bound and unbound states, we obtain the value of force needed for 
the separation as F = 0.337 nN. Bear in mind that the chain tension fluctuations 
obtain (instantaneous) values of force larger than 1 nN. 
A comparison to electrostatic forces can be done if we know the potential profile 
of the channel. According to [18], near the channel mouth, one can expect 4 kT 
of electrostatic potential energy per charge (cf. Fig. 2C in [18]), i.e. 8 kT for the 
ball, which carries two charges. This potential falls to zero at a distance of 20 Å, 
giving an average force of 0.016 nN. 
This is not a high value, and is in fact smaller than the value of hydrophobic 
interaction. Additionally, it should be taken into account that the recovery from 
inactivation has a weak dependency on the charge of the ball (as opposed to  
a dependency on hydrophobicity) [5].  
A comparison can also be done by means of the bending energy concept. Taking 
the persistence length of a peptide chain as Lp = 5 Å [20], we can estimate the 
bending energy [12, 21] of the inactivated chain when it forms a circular loop: 
 

kT2
R

LkTL2E 2
P

B ≈=        (6) 
 

Here, EB is the binding energy, L is the chain length, and R = L/2π is the radius 
of the loop formed by the inactivated chain. If the hydrophobic interactions 
dominate in the ball-channel binding and can reach at most 20 kT, we can see 
that the bending energy contribution is significant. 
Apart from the bending energy, we can estimate the decrease in the entropy of 
the chain when entering the bound state. The entropy of the chain, expressed as  
a function of the chain’s end-to-end vector RE for a chain that is floating in space 
[12], is given as: 
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The probability distribution gives the fraction of microstates available in the 
conformation versus the total number of microstates. For a free chain, this is 
given as: 
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where N is the number of residues, and b is the Kuhn length, which for  
a wormlike chain is twice the persistence length LP. 
In our case, the chain is not floating in space, but exists in a half-space. The total 
number of microstates is thus reduced by 0.5, and the number of microstates for 
any particular radius R is also reduced by 0.5. Thus, the probability formula can 
be seen unchanged in the first approximation. 
The last term on the RHS of the equation for entropy describes the entropy of the 
unbound state. The first term on the RHS describes the decrease in the entropy 
provided by the conformational constraint. In our case, the conformation which 
we need to inspect is where RE = 0. Then, the exponential term (which is usually 
of interest in books devoted to polymer physics) reduces to 1, and the entropic 
contribution of the bound state to free energy equals: 
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The formula is very interesting, since dRE→0. If this was the case, this term 
would grow to infinity. We cannot take this value for dRE. What then is the 
meaning of this parameter? It specifies the possible deviations from the exact 
conformation in the system. The ball bond in the channel is not perfectly rigid, 
and we can safely assume that dRE is in the range of 1 Å. The corresponding free 
energy change is 14 kT. This is again quite large, compared to the bond energy. 
Summarizing, we can make the following statements. The experimental results 
in the literature imply a role for the chain in the recovery from inactivation 
process, i.e. the process is slower in the absence of the chain. The type of 
interaction has yet to be understood. In this paper, we showed that a simple 
inertial model is inappropriate, and we proposed some alterations to the existing 
model. 
The proposed model for recovery from inactivation was based upon the 
Brownian motion of the chain and its interactions with the ball. The results 
obtained in this paper by means of a Brownian dynamics simulation indicate that 
the forces originating from this Brownian motion can reach values comparable 
to the values of the possible hydrophobic or electrostatic interactions between 
the ball and the channel. Estimates of the conformational entropy changes and 
bending energy further support this finding. This implies that these interactions 
cannot be omitted in the  understanding  of the recovery from inactivation process. 
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The simulation shows some new options for experimentation: shortening the 
chain should decrease the probability of obtaining high tension in the chain, and 
therefore would slow down the recovery from inactivation. 
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