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Abstract: Protein-protein interactions (PPI) control most of the biological 
processes in a living cell. In order to fully understand protein functions,  
a knowledge of protein-protein interactions is necessary. Prediction of PPI is 
challenging, especially when the three-dimensional structure of interacting 
partners is not known. Recently, a novel prediction method was proposed by 
exploiting physical interactions of constituent domains. We propose here a novel 
knowledge-based prediction method, namely PPI_SVM, which predicts 
interactions between two protein sequences by exploiting their domain 
information. We trained a two-class support vector machine on the 
benchmarking set of pairs of interacting proteins extracted from the Database of 
Interacting Proteins (DIP). The method considers all possible combinations of 
constituent domains between two protein sequences, unlike most of the existing 
approaches. Moreover, it deals with both single-domain proteins and multi-
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domain proteins; therefore it can be applied to the whole proteome in high-
throughput studies. Our machine learning classifier, following a brainstorming 
approach, achieves accuracy of 86%, with specificity of 95%, and sensitivity of 
75%, which are better results than most previous methods that sacrifice recall 
values in order to boost the overall precision. Our method has on average better 
sensitivity combined with good selectivity on the benchmarking dataset. The 
PPI_SVM source code, train/test datasets and supplementary files are available 
freely in the public domain at: http://code.google.com/p/cmater-bioinfo/. 
 
Key words: Protein-protein interaction, Domain-frequency values, Domain-
domain interaction affinity value, Proteome, Interactome, Brainstorming, 
Machine learning, Consensus, DIP, Protein domains, Sequences, Structures, 
Protein-protein complexes 
 
INTRODUCTION 
 
Understanding protein function is a major goal in the post-genomic era. It has 
been shown that proteins with similar functions are more likely to interact [1]. If 
the function of one protein is known, then the function of binding unannotated 
protein can be assigned. Protein-protein interactions are involved in many 
biological processes. For example, signals from the exterior of a cell are 
mediated to the inside of a cell by protein-protein interactions of the 
biomolecules. The signal transduction process plays a fundamental role in 
biological processes, and in many diseases (e.g. cancers). There are two types of 
protein-protein interactions. Proteins might bind to each other and form a stable 
protein-protein complex, for example in order to be transported from the 
cytoplasm to the nucleus, or vice versa (nuclear pore importins). On the other 
hand, a protein may interact only temporarily with another protein, in order to 
modify it (e.g. a protein kinase adds a phosphate to a target protein). Moreover, 
posttranslational modifications may change protein-protein interactions, 
allowing or prohibiting binding to their partners [2]. For example, several 
proteins with SH2 domains bind to other proteins only when they are 
phosphorylated on tyrosine residue, while bromodomains specifically recognize 
only acetylated lysines.  
Presently, there are many biochemical and biophysical experimental methods to 
investigate protein-protein interactions [3-6]. For example, co-
immunoprecipitation [3] is the biochemical technique of precipitating a protein 
antigen out of a solution using an antibody that specifically binds to that 
particular protein. Biomolecular fluorescence complementation (BiFC) [4] is 
another method for actually observing the interactions of proteins based on the 
association of the fluorescent protein fragments that are attached to the 
components of the same macromolecular complex. Tandem affinity purification 
[5] is a commonly used technique, which involves creating a fusion protein with 
a designed TAP tag on the end. The protein of interest with the TAP tag first 
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binds to beads coated with IgG protein, the TAP tag is then broken apart by an 
enzyme, and finally a part of the TAP tag binds reversibly to beads of a different 
type. The protein of interest is then washed through two affinity columns; and it 
can be examined for binding partners. Among different biophysical methods, 
dual polarization interferometry (DPI), surface plasmon resonance, and 
fluorescence resonance energy transfer (FRET) are typically used.  
All these experimental techniques have contributed tremendously to the creation 
of databases containing large sets of protein-protein interaction pairs, such as the 
Database of Interacting Proteins (DIP) [7], MIPS [8] BIND [9], IntAct [10], 
MINT [11] and many others. Yet, the high throughput techniques described 
above are labor intensive and time-consuming, especially when a huge volume 
of protein and protein-protein interaction data is involved. Therefore, several 
computational methods have been proposed to first analyze, then automatically 
predict protein-protein interaction, by exploiting physical and chemical effects 
on protein binding, or a thermodynamic description of binding kinetics. One of 
the most profound examples is the protein-protein docking approach for the 
prediction of protein-protein interactions based on the three-dimensional 
structures of interacting partners [12-13]. The docking algorithms are slow, so 
machine learning approaches were proposed in order to speed up the prediction 
time. Other large-scale computational methods, such as virtual screening 
techniques, easily deal with many protein-protein interactions within a short time 
window with acceptable accuracy. Among the most rapid algorithms are those 
that use the primary sequence of proteins, or their domain structure.  
The support vector machine method employed by Bock et al. [14] uses protein 
primary structure and associated physicochemical properties such as charge, 
surface tension, and hydrophobicity to predict protein-protein interaction. Their 
training dataset was obtained from the Database of Interacting Proteins (DIP). 
Each protein sequence was annotated by a diverse set of features sensitive to 
local interaction sites, such as surface tension, charge, polar interaction, or 
sequential hydrophobicity profiles. Gomez et al. [15] used an attraction-
repulsion model, where an interaction between a pair of proteins is represented 
as the sum of attractive and repulsive terms associated with small, domain- or 
motif-long sequence fragments along a protein chain. The first term is computed 
using a collection of hidden Markov models (HMMs) for protein domains 
extracted from the Pfam database. It not only exploits evolutionary conservation 
of three-dimensional protein structures, but also groups amino acids into four 
groups depending on their biochemical similarity. The support vector machine 
(SVM) algorithm is trained, and three-fold cross-validation is performed with 
ROC score equal to 0.7. Zaki et al. [16] extracted functional, structural or 
evolutionary relationships between protein sequences to identify inter-domain 
linker regions, finally detecting domain matches in protein sequences of interest. 
The main assumption is that two protein sequences may interact if they share 
similar domains. The overall prediction accuracy achieved by this method is 
close to 70%, with sensitivity of 0.61 and specificity of 0.7.  
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The protein-protein interactions can be decomposed into physical interactions 
between constituent domains of proteins. A domain or motif is defined as  
a structural and/or functional unit for which a specific sequence signature is 
conserved in evolution. Therefore, assuming that such motifs mediate the 
protein-protein interactions, the utilization of domain-domain interaction 
information is very promising. Wojcik et al. [17] introduced the profile method, 
which uses evolutionary information about interacting domains. A high quality 
protein interaction map with information about interacting domains is used to 
predict protein-protein interactions in other organisms. For example, the E. coli 
protein interaction map is derived from the reference H. pylori interactome. Kim 
et al. [18] proposed the statistical scoring system (PID matrix score) as  
a measure of the interaction probability (interactability) between different 
domains. They developed a database of interacting domain pairs (PID), which 
were extracted from the dataset of experimentally identified interacting protein 
pairs (DIP). Those pairs were cross-validated with InterPro and a database of 
protein families, domains and functional sites. The method is able to achieve 
about 50% sensitivity and 98% specificity.  
In other studies [19] the one-class support vector machine algorithm is trained 
on protein pairs using their constituent domains. The feature vector of each 
protein includes the number of domains appearing in all the yeast protein. Then 
the feature vector for a particular protein is prepared by encoding “m” for the 
domain’s indexed position when the protein has m pieces of that domain, 
otherwise 0. These two vectors for a protein pair are concatenated to form  
a single feature vector. The support vector machines (SVM) trained on the yeast 
data achieve accuracy of about 80%. A similar representation was used by Chen 
et al. [20], although all possible interactions between protein domains were 
analyzed instead of assuming a single interacting pair of domains for each 
protein. The forward-pruning decision tree model is able to predict interactions 
with sensitivity of 79% and specificity of 63%, whereas the multi-layer neural 
network achieves respectively 77.6% and 66%. In PreSPI [21] a probabilistic 
framework to predict interaction probability of proteins with a ranking method is 
developed. Protein pairs that are more likely to interact with each other are 
distinguished to achieve better accuracy, and the sensitivity is equal to 77%, 
with specificity of 95% for the DIP dataset. A similar domain approach is used 
to train a Bayesian kernel [22] with varied threshold, where both domain 
combinations and their appearance frequencies are obtained from the interacting 
and non-interacting sets of protein pairs. This information is stored in the 
appearance probability (AP) matrix, with minimum achieved accuracy equal to 
80%, 77.4% sensitivity and 84% specificity, as benchmarked on a protein pair 
listed in the DIP core.  
In summary, most of the existing computational methods consider only domain 
pairs (a single domain from one protein), and they assume that domain-domain 
interaction is independent. We propose a novel binary classification method to 
exploit additionally all possible combinations of domain pairs, therefore 



Vol. 16. No. 2. 2011         CELL. MOL. BIOL. LETT.         
 

 

268 

validating and emphasizing their frequencies of co-interactions. The estimation 
of interaction probability is done by utilizing the individual domain occurrence 
values and calculated affinity value of domain pairs. 
 
MATERIAL AND METHODS 
 
A novel PPI_SVM two-class classification method is proposed here. Each 
protein pair belongs to either the “interaction” class (i.e. the two proteins interact 
with each other), or the “non-interaction” class (the two proteins do not interact 
with each other). Each protein pair is characterized by the list of domains for 
those two proteins. We used the DIP database (http://dip-mbi.ucla.edu/), which 
contains experimentally identified pairs of interacting proteins from various 
organisms, including yeast, H. pylori, and Homo sapiens. We used 9000 protein 
pairs from DIP, where almost 4080 unique domain types can be found.  
 
Design of feature set 
The likelihood of two proteins interacting depends on their structural 
composition, homology, etc. It has been found that the possibility of interaction 
between homologous protein pairs is higher than for those without any 
homology. This has been taken into account in designing the present feature set 
without using time-consuming similarity measuring tools such as FASTA, or 
PSI-BLAST. For that, we have analyzed interacting proteins’ domain 
compositions in order to predict which domains are in contact in the protein-
protein complex. In the case of multi-domain proteins we first consider all 
possible domain pair combinations. Then, we calculate two types of features, 
which are described in the following subsections: domain frequency and affinity 
values. 
 

Domain frequency value (݂ܦ) 
Whenever a domain appears several times in different interacting protein pairs, 
we assume that the presence of the domain increases the chance of protein-
protein interaction. The domain frequency value ܦ௜

௙
for the domain i is computed 

by counting the occurrence of the i-th domain in our training dataset of protein-
protein interaction pairs (9000 positive samples), and scaled to be in the range 
[0,1]. We identified 4080 unique Pfam domains among considered proteins, and 
indexed them with a number between 1 and 4080. For each protein ܦ௜

௙ is 
therefore represented as a 4080 dimensional vector. The j-th element in the 
vector is assigned the frequency values ݆ܦ

݂
; if a protein has a j domain, the rest 

of the elements are set to 0.  
 
Protein pair interaction affinity value (Affinity) 
The more often the domain pairs appear in the interacting protein pairs, the more 
likely the two domains interact with each other. This observation is calculated 
using the protein pair interaction affinity value (Affinity). We consider all 
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possible interactions between different constituent domains observed in  
a particular protein pair. Each domain pair combination is searched among 4500 
available positive samples. We compute the occurrence of a particular domain 
pair (Di, Dj) in all interacting protein pairs and Affinity for two interacting 
domains, namely Di, Dj divided by 100, is stored. A higher value of this feature 
indicates a higher intensity level of protein pair interaction, which normally 
occurs between homologous protein pairs. For a particular protein pair, there are 
several combinations of interacting domain pairs, each with corresponding 
AffinityDiDj values, from which the highest one is taken as the final interaction 
affinity value for a given protein pair.  
 
Feature representation 
First, a protein pair is represented as two vectors of real numbers, each having 
the dimension of 4080 elements that include the domain frequency values for 
each individual protein together with their AffinityDiDj data. Therefore, after 
combining those two vectors, a protein pair is described by 8161 features (see 
the first part of Fig. 1 for interacting proteins marked by class 1, and the second 
part of Fig. 1 for non-interacting ones from class 0). For example, if protein  
P1 has two domains D1, D2, then 1ܦ

݂
 and 2ܦ

݂
 are calculated. If the second 

interacting protein P2 has domain D7, then  7ܦ
݂
 is calculated. Here, both possible 

domain combinations are analyzed: the first one for D1, D7, and another one for 
D2, D7. The maximum of these two affinity values is taken as the final Affinity 
value between two proteins P1 and P2. We assume that the more active domain 
pair determines the intensity of interaction of the protein pair. In the case of non-
interacting proteins, which have a non-interacting domain pair (Fig. 1), the 
affinity value is set to 0. 
 

 
  
Fig. 1. Feature representation of interacting and non-interacting protein pair. 
 
The support vector machine classifier 
The interacting and non-interacting protein pair can be represented as a point in 
the input feature space as described above. We consider all protein pairs in the 
training set, divided into two clusters: the first one represents the interacting, and 
the second one the non-interacting protein pairs. Both clusters are very well 
separated in the features space; therefore the application of any binary classifier 
is possible. In the machine learning research area typically SVM is used to find 
an optimal hyperplane or hypersurface in the binary classification problem 
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mapped into the high-dimensional features space. The classification of a given 
protein pair point is predicted depending on which side of the hyperplane 
(decision surface) it lies. The support vector machine developed by Vapnik [23] 
is known for its superb generalization abilities with binary classification data. 
Therefore we use it as a classifier for distinguishing interacting and non-
interacting protein pairs. The first set of interacting protein pairs is used as 
positives for the training algorithm, whereas the non-interacting ones are 
negatives. The input training examples are nonlinearly mapped into a high-
dimensional representations space, and in this space the separating hyperplane 
that maximizes the margin between the two classes (positives and negatives) is 
determined. The margin is calculated as the distance of the closest to the 
hyperplane points from two classes. The hyperplane that minimizes the margin 
value is proven to separate two classes optimally in comparison to other 
separating hyperplanes. The support vectors are identified as those data points 
that lie closest to the decision surface, and therefore that are the most difficult to 
classify. Given the training set of points ൛݅ݔ,  ൟ݅ݕ

݅ൌ1,2,…݌, where xi  represents 

values of the input feature vector, and y represents the corresponding class label 
with two value ݕഥ݅  , the separating hyperplane is represented as a linear 
combination of the training examples, and classification of an unknown test 
pattern ݔഥ is done using the following equation (1): 
 

݂ሺݔҧሻ ൌ ෍ ௜ߙ

ଵ

௜ୀଵ

పഥݔ௜ ݇ሺݕ  , పഥሻݕ ൅ ܾ   

         (1) 
Where ݇ ሺݔపഥ  ,  పഥሻ is the SVM kernel function, and b the bias that can beݕ
optimized on given training data. The optimal hyperplane is found by varyingαi , 
and the data point xi corresponding to a given non-zero αi  is defined as the 
support vector. Finally, the sign of ݂ሺݔҧሻ function determines the class 
membership of input query point  ݔഥ. Apparently, the quality of results depends 
on the selected kernel function, and therefore helps SVMs to handle nonlinearly 
separable pattern classes. Typically used kernel functions are polynomials of 
arbitrary degrees, Gaussian RBFs, etc. In practice, an SVM is implemented as  
a two-layer feed-forward neural network. Support vector machine (SVM) 
models are a close cousin of classical multilayer perceptron neural networks. 
Using a kernel function, SVMs are an alternative training method for 
polynomial, radial basis function and multi-layer perceptron classifiers in which 
the weights of the network are found by solving a quadratic programming 
problem with linear constraints, rather than by solving a non-convex, 
unconstrained minimization problem as in standard neural network training.  
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EXPERIMENTAL RESULTS 
 
The protein interaction pairs were obtained from the Database of Interacting 
Proteins (DIP) [24], which was developed to store and organize information on 
binary protein-protein interactions from manually compiled and experimentally 
verified PPI datasets, for example in Saccharomyces cerevisiae. The database 
combines information from a variety of sources in order to create a high-quality 
dataset for protein-protein interactions of the organism of interest. The data of 
the DIP database is curated, both manually by expert curators, and by 
computational approaches that utilize biological knowledge about the protein-
protein interaction networks. The most reliable, core subset of the DIP data 
contains 15 675 interactions of 4749 proteins for which the domain information 
is available. We have selected almost 9000 protein interaction pairs as our 
training and test dataset, where unique 4080 Pfam domains are involved. 
Unfortunately, there is no negative dataset representing non-interacting protein 
pairs readily available. Therefore, we created 9000 non-interacting protein pairs 
by exhaustive search and scanning of the 4749 protein pairs. We have in total 
18 000 protein pairs, where the ratio of interacting and non-interacting samples 
is maintained at the ratio of 1:1. The 18 000 protein pairs are divided into  
12 subsets (12-fold cross-validation) each containing 1500 positive and negative 
samples, i.e. 8.33% of the total number of positive/negative samples are used for 
training and the rest of the samples are used for testing. SVM classifiers are 
trained with variation of the kernels (linear, polynomial of degree 2, and radial 
basis function with gamma=.00123), and the Accuracy (%), Recall (Sensitivity) 
and Precision (Specificity) measures on the test data samples are calculated. We 
used SVMlight code implemented by Joachims et al. [25] (downloaded from 
http://svmlight.joachims.org web site).  
 
Evaluation metrics 
The training results are evaluated using standard measures, such as the 
Accuracy, Recall, and Precision values, which are explained below. We use  
a binary SVM classifier with three kernels, namely the linear kernel, polynomial 
kernel of order 2, and radial basis function kernel with gamma = 0.00123  
(i.e. equal to 1.0 divided by the dimension of the feature vector): 
Accuracy = (1 – Error) =    

ܶܲ൅ܶܰ
ܶܲ൅ܲܨ൅ܶܰ൅(2)    ܰܨ 

 

True positive rate / Recall / Sensitivity   
ܶܲ

ܶܲ൅ܰܨ  
    (3) 

Precision / Specificity   
ܶܲ

ܶܲ൅(4)      ܲܨ 

False positive rate / (1-specificity)   
ܲܨ

 ൅ܶܰ    (5)ܲܨ
where TP is the number of true positives, FP is the number of false positives,  
TN is the number of true negatives, and FN is the number of false negatives. The 
recall (R) corresponds to the percentage of correct positive predictions, and the 
precision (P) measures the percentage of observed positives that are correctly 
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predicted. The true positive rate (TPR) is described as either the recall or 
sensitivity measure, and the false positive rate (FPR) estimates the false alarm 
rate or fall-out values. The performance of SVM models for each type of kernel 
is described by the recall R and the precision P. The R value measures the 
percentage of correct predictions, whereas P gives the percentage of observed 
positives that are correctly predicted. 

  

 
 

Fig. 2. Performance measures with linear, polynomial and RBF kernel. 
 
Performance analysis 
We performed 12-fold cross-validation of results, on protein pairs selected from 
a subset of the DIP dataset. We selected 9000 protein pairs, with 4500 
interacting protein pairs and 4500 non-interacting ones. The dataset is divided 
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into 12 different folds, where each fold contains 750 interacting pairs as positive 
items and 750 non-interacting pairs as negative ones. Each dataset is trained with 
three different learning kernels: linear, polynomial of order 2, and the radial 
basis function with gamma equal to 0.00123. Each of these 12 subsets is 
sequentially evaluated 12 times using models trained on the other subsets which 
are tabulated in detail in the supplementary material: SupplTab. 1. A-M, 
SupplTab. 2. A-M and SupplTab. 3. A-M at http://dx.doi.org/10.2478/s11658-
011-0008-x.  Accuracy, Precision and Recall measures for each training and test 
dataset combination are presented in Fig. 2. The linear kernel for training and 
test combination numbers (1, 9, 10, 11, 12) achieves accuracies in the range  
69-70%, whereas for other combinations it is around 90%. On average the linear 
kernel classifier achieves accuracy of almost 86%, precision (specificity) of 
95.2%, and recall (sensitivity) of 75.7%. The polynomial kernel of order 2, 
training and test combination numbers (1, 3, 9, 10, 11, and 12) give 69-72% 
accuracy on test sets, whereas other sets give 90% accuracy. This classifier 
achieves on average 84.4% accuracy, with precision of 94.9%, and recall 
measure of 71.2%. Another kernel, namely the radial basis function kernel, for 
training on (1, 9, 10, 11, and 12) combinations achieves less accuracy than other 
combinations. Yet, on average it achieves better accuracy than the polynomial 
kernel, i.e. equal to 86%, with precision of 95.4% and recall of 75.6%. 
 
Discovering potentially interacting domain pair 
The domain pairs can be categorized by computing the Domain-domain 
interaction affinity value (AffinityDiDj) according to their active participation in 
protein-protein interactions. The interaction probability between two proteins 
can be supported by the presence of these frequently interacting domains as 
measured by the AffinityDiDj coefficient. These interacting domain pairs can be 
categorized into three groups: high, medium, and low probability of interaction. 
We list in Tab. 1 a selection of high probability interacting domain pairs. We are 
also able to draw an interaction network for interacting domain pairs. Fig. 3 
shows an interaction network for some interacting domains. 
 
Comparison with other existing methods 
In Fig. 4 we compare the accuracy of the PPI_SVM method with other 
previously proposed methods that also exploit domain information to predict 
PPI. Our tool achieves comparable accuracy with PreSPI [21], the domain-based 
approach by Chen et al. [20], and the Bayesian kernel by Alshawl et al. [22].  
PreSPI achieves 77% recall, 95% precision values. The Bayesian kernel 
approach by Alshawl et al. also reaches almost 77.4% recall, 83.9% precision. 
Recall and precision reported by the domain-based approach [20] are equal 
respectively to 79.3% and 62.8%. Our method, namely PPI_SVM, achieves 86% 
accuracy, with recall/sensitivity of 75.65% and precision/specificity of 95.35%. 
The PID approach by Kim et al. [8] has values of 50% sensitivity and 98% 
specificity. Zaki’s [6] algorithm has 60% sensitivity, and 70.26% specificity. 
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The overall accuracy achieved by our method is 86%, which is greater than both 
the Bayesian kernel method (80%) and PPI prediction by Zaki (70%). Detailed 
results of the performance measures achieved by this selection of different 
methods are shown in Fig. 4. 
 
Tab. 1. List of highly active domain pairs 

 

Domain #1 Domain #2 

PF00069: Protein kinase domain (IPR000719) PF00069: Protein kinase domain (IPR000719) 

PF00010: DNA-binding domain (IPR001092) PF00010: DNA-binding domain (IPR001092) 

PF00048: Small cytokines (IPR001811) PF00001:Transmembrane receptor (IPR000276) 

PF01423: LSM domain (IPR001163 ) PF01423: LSM domain (IPR001163 ) 

PF00001: Transmembrane receptor (IPR000276) PF00048: Small cytokines (IPR001811) 

PF00006: Nucleotide-binding domain (IPR000194) PF00231: ATP synthase (IPR000131) 

PF00306: ATP synthase domain (IPR000793) PF00231: ATP synthase (IPR000131) 

PF00137: ATP synthase subunit C(IPR002379) PF00231: ATP synthase (IPR000131) 

PF00010: DNA-binding domain (IPR001092) PF07527: Hairy Orange (IPR003650) 

PF07527: Hairy Orange (IPR003650) PF00010: DNA-binding domain (IPR001092) 

PF00018: SH3 domain (IPR001452) PF00018: SH3 domain (IPR001452) 

PF00118: SH3 domain (IPR001452) PF00400: WD domain (IPR001680) 

PF00227: Proteasome (IPR001353) PF00227: Proteasome (IPR001353) 

PF07714: Protein tyrosine kinase (IPR001245) PF00017: SH2 domain (IPR000980) 

 
 
 
 
 

 
 
 
Fig. 3. Domain-domain interaction network.  
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Fig. 4. Comparison of PPI predictive accuracy with other existing methods. 
 
DISCUSSION 
 
Proteins interact with each other through specific intermolecular interactions that 
are localized to specific structural domains within each protein. So, interaction 
between protein pairs comprises interactions among their constituent domains. 
Appearance of a particular domain in interacting protein pairs and participation 
of interacting domain pairs in PPI are very important in this respect. A protein 
may consist of multiple domains. For an interacting protein pair, it needs to be 
investigated which domain pair in what intensity among all possible pairs of 
them is actively interacting to make the protein pair interact. The novelty of this 
work lies in the use of two unique features, namely domain frequency, and 
protein pair interaction affinity values. We consider all possible combinations of 
constituent domains between two proteins; therefore our method can be applied 
not only for single-domain proteins, but also multi-domain protein-protein 
interaction, which is frequently observed in real biological data [26]. Not only 
considering all possible interactions between constituent domains of interacting 
protein pairs but also determining interaction affinity between a protein pair by 
distinguishing the dominant interacting domain pair is also significant in this 
work. In addition, for binary classification, the choice of support vector machine 
with different kernels is also important. The support vector machine algorithm 
with radial-basis function kernel achieves over 86% in accuracy, with precision 
of 95.35% and recall of 75.65%. The linear kernel reports similar results: 
accuracy of 86%, precision (specificity) 95.24%, and recall (sensitivity) equal to 
75.71%. The polynomial kernel on the other hand provides lower accuracy of 
69%, with precision 84.96% and the recall measure 46%. Our method is 
comparable to the PreSPI method, or other domain-domain interaction methods. 
PreSPI involves a probabilistic framework to predict the interaction probability 
of proteins and develops an interaction possibility ranking method for multiple 
protein pairs. Following the Brainstorming approach [27], we achieved 
considerable predictive accuracy with the use of these features without using any 
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probabilistic computation. It dominates over classical tools such as PID, or PPI 
by Zaki et al. Moreover, we are able to provide a list of highly interacting 
domain pairs, which is useful to form a domain interaction map to be further 
used in order to predict PPI [26]. 
Although the proposed domain combination based prediction method certainly 
improves the prediction accuracy of the conventional domain based prediction 
method, it has limitations. Domain-domain interactions are not the only factor in 
determining all the details of complex protein–protein interactions. In addition, 
there is no information on the sets of non-interacting pairs. Hence, we artificially 
created random protein pairing and used it to form a set of non-interacting 
protein pairs. This could limit the accuracy of prediction, since it might contain 
some interacting protein pairs that have not yet been discovered. Since we used  
a subset of the DIP dataset the number of domains in the feature vector is 
dependent upon the selection of proteins. Since the feature vector of protein is 
constituted by unique domains (i.e., 4080 unique domains) of selected proteins, 
PPI_SVM only predicts interaction of those proteins which should have domains 
within our unique domain sets. Different types of protein features such as 
solvent accessibility, subcellular localization, and hydrophobicity can be utilized 
along with domain information to improve its performance [27]. This can be  
a future work to achieve better predictive accuracy.   
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