Skip to main content
  • Research Article
  • Published:

The immunosuppressive activities of newly synthesized azaphenothiazines in human and mouse models

Abstract

In this study, we evaluated the activities of new types of azaphenothiazines in the following immunological assays: the proliferative response of human peripheral blood mononuclear cells induced by phytohemagglutin A or anti-CD3 antibodies; lipopolysaccharide-induced cytokine production by human PBMC; the secondary, humoral immune response in mice to sheep erythrocytes (in vitro); and delayed-type hypersensitivity in mice to ovalbumin (in vivo). In some tests, chlorpromazine served as a reference drug. The compounds exhibited differential inhibitory activities in the proliferation tests, with 10H-2,7-diazaphenothiazine (compound 1) and 6-(3-dimethylaminopropyl)diquinothiazine (compound 8) being most suppressive. Compound 1 was selected for further studies, and was found to be strongly suppressive in the humoral immune response even at low concentrations (1 μg/ml). Compound 1 also inhibited the delayed-type hypersensitivity lipopolysaccharide-induced production of tumor necrosis factor and interleukin-6 in cultures of human blood cells. As there were only two subjects in this study, the effects of these compounds on human blood cells need to be confirmed. In this paper, we also discuss the structure-activity relationships of selected compounds.

Abbreviations

AFC:

antibody-forming cells

CNS:

central nervous system

DMF:

dimethylformamide

DMSO:

dimethyl sulfoxide

DTH:

delayed-type hypersensitivity

FCS:

fetal calf serum

GI50 :

inhibition of cell growth (the concentration needed to reduce the growth of treated cells to half that of untreated cells)

IFN-γ:

interferon gamma

IL:

interleukin

i.p.:

intraperitoneally

LPS:

lipopolysaccharide

MDR:

multidrug resistance

MTT:

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NS:

not significant

OVA:

ovalbumin

PBMC:

peripheral blood mononuclear cells

PHA:

phytohemagglutinin

RPMI-1640:

Rosewell Park Memorial Institute Medium

s.c.:

subcutenaously

SRBC:

heep red blood cells

TNF-α:

tumor necrosis factor alpha

References

  1. Gupta, R.R. and Kumar, M. Synthesis, properties and reactions of phenothiazines. in: Phenothiazines and 1,4-Benzothiazines — Chemical and Biological Aspects (Gupta, R.R., Ed) Elsevier, Amsterdam, 1988, 1–161.

    Google Scholar 

  2. Motohashi, N., Kurihara, T., Sakagami, H., Szabo, D., Csuri, K. and Molnár, J. Chemical structure and tumor type specificity of “half-mustard type” phenothiazines. Anticancer Res. 19 (1999) 1859–1864.

    PubMed  CAS  Google Scholar 

  3. Motohashi, N., Kawase, M., Saito, S. and Sakagami, H. Antitumor potential and possible targets of phenothiazine-related compounds. Curr. Drug Targets 1 (2000) 237–245.

    Article  PubMed  CAS  Google Scholar 

  4. Motohashi, N., Kawase, M., Satoh, K. and Sakagami, H. Cytotoxic potential of phenothiazines. Curr. Drug Targets 7 (2006) 1055–1066.

    Article  PubMed  CAS  Google Scholar 

  5. [5] Molnár, A., Amaral, L. and Molnár, J. Antiplasmid effect of promethazine in mixed bacterial cultures. Int. J. Antimicrob. Agents 22 (2003) 217–222.

    Article  PubMed  Google Scholar 

  6. Amaral, L. and Kristiansen, J.E. Phenothiazines: potential management of Creutzfeldt-Jacob disease and its variants. Int. J. Antimicrob. Agents 18 (2001) 411–417.

    Article  PubMed  CAS  Google Scholar 

  7. Motohashi, N., Kawase, M., Saito, M., Kurihara, T., Satoh, K., Nakashima, H., Premanathan, M., Arakaki, R., Sakagami, H. and Molnár, J. Synthesis and biological activity of N-acylphenothia-zines. Int. J. Antimicrob. Agents 14 (2000) 203–207.

    Article  CAS  Google Scholar 

  8. Amaral, L., Martins, M. and Viveiros, M. Enhanced killing of intracellular multidrug-resistant Mycobacterium tuberculosis by compounds that affect the activity of efflux pumps. J. Antimicrob. Chemother. 59 (2007) 1237–1246.

    Article  PubMed  CAS  Google Scholar 

  9. Mayur, Y.C., Jagadeesh, S. and Thimmaiah, K.N. Targeting calmodulin in reversing multi drug resistance in cancer cells. Mini-Rev. Med. Chem. 6 (2006) 1383–1389.

    Article  PubMed  CAS  Google Scholar 

  10. Mosnaim, A.D., Ranade, V.V., Wolf, M.E., Puente, J. and Valenzuela, M.A. Phenothiazine molecule provides the basic chemical structure for various classes of pharmacotherapeutic agents. Am. J. Therapeutics 13 (2006) 261–273.

    Article  Google Scholar 

  11. Viveiros, M., Martins, M., Couto, I., Kristiansen, J.E., Molnár, J. and Amaral, L. The in vitro activity of phenothiazines against Mycobacterium avium: potential of thioridazine for therapy of the co-infected AIDS patients. In Vivo 19 (2005) 733–736.

    PubMed  CAS  Google Scholar 

  12. Ghezzi, P., Garattini, S., Mennini, T., Bertini, R., Delgado Hernandez, R., Benigni, F., Sacco, S., Skorupska, M., Mengozzi, M., Latini, R., Kurosaki, M., Lombet, A., Fradin, A., Bonnet, J., Rolland, Y. and Brion, J.D. Mechanism of inhibition of tumor necrosis factor production by chlorpromazine and its derivatives. Eur. J. Pharmacol. 317 (1996) 369–376.

    Article  PubMed  CAS  Google Scholar 

  13. Zinetti, M., Galli, G., Demitri, M.T., Demitri, M.T., Fantuzzi, G., Minto, M., Ghezzi, P., Alzani, R., Cozzi, E. and Fratelli, M. Chlorpromazine inhibits tumor necrosis factor synthesis and cytotoxicity in vitro. Immunology 86 (1995) 416–421.

    PubMed  CAS  Google Scholar 

  14. Molnar, J., Mandi, Y., Regely, K., Tarnoky, K. and Nakamura, M.J. Inhibition of biological effects of endotoxin by phenothiazines. In Vivo 6 (1992) 205–209.

    PubMed  CAS  Google Scholar 

  15. Molnár, J., Mándi, Y., Földes, J., Földeák, S., Molnár, M. and Motohashi, N. Effect of phenothiazines, benzo[a]phenothiazines, benz[c]acridines and pentaglobin on endotoxin. In Vivo 9 (1995) 463–468.

    PubMed  Google Scholar 

  16. Mengozzi, M., Fantuzzi, G., Faggioni, R., Marchant, A., Goldman, M., Orencole, S., Clark, B.D., Sironi, M., Benigni, F. and Ghezzi, P. Chlorpromazine specifically inhibits peripheral and brain TNF production, and up-regulates IL-10 production, in mice. Immunology 82 (1994) 207–210.

    PubMed  CAS  Google Scholar 

  17. Pollmächer, T., Haack, M., Schuld, A. Kraus, T. and Hinze-Selch, D. Effects of antipsychotic drugs on cytokine networks. J. Psych. Res. 34 (2000) 369–382.

    Article  Google Scholar 

  18. Drzyzga, Ł, Obuchowicz, E., Marcinkowska, A. and Herman, Z.S. Cytokines in schizophrenia and the effects of antipsychotic drugs. Brain Behav. Immun. 20 (2006) 532–545.

    Article  PubMed  CAS  Google Scholar 

  19. Morak-Młodawska, B. and Pluta, K. Synthesis of novel dipyrido-1,4-thiazines. Heterocycles 71 (2007) 1347–1361.

    Article  Google Scholar 

  20. Pluta, K. Synthesis and properties of 14-substituted 1,4-thiazinodiquinolines. Phosphorus, Sulfur, Silicon 59 (1997) 145–156.

    Article  Google Scholar 

  21. Pluta, K., Maślankiewicz, A. and Szmielew, M. N,N-dialkylaminoalkyl substituted quinobenzo[1,4]thiazines and diquino[1,4]thiazines. Phosphorus, Sulfur, Silicon 159 (2000) 79–86.

    Article  CAS  Google Scholar 

  22. Nowak, M., Pluta, K., Suwińska, K. and Straver, L. Synthesis of new pentacyclic diquinothiazines. J. Heterocycl. Chem. 44 (2007) 543–550.

    Article  CAS  Google Scholar 

  23. Jeleń, M. and Pluta, K. Synthesis of 6-aminoalkyldiquinithiazines and their acyl and sulfonyl derivatives. Heterocycles 75 (2008) 859–870.

    Article  Google Scholar 

  24. Morak-Młodawska, B. and Pluta, K. Acyl and sulfonyl derivatives of 10-aminoalkyl-2,7-diazaphenothiazines. Heterocycles 78 (2009) in press.

  25. Hansen, M.B., Nielsen, S.E. and Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119 (1989) 203–210.

    Article  PubMed  CAS  Google Scholar 

  26. Mishell, R.I. and Dutton, R.W. Immunization of dissociated spleen cell cultures from normal mice. J. Exp. Med. 126 (1967) 423–442.

    Article  PubMed  CAS  Google Scholar 

  27. Lagrange, P.H., Mackaness, G.B., Miller, T.E. and Pardon, P. Influence of dose and route of antigen injection on the immunological induction of T cells. J. Exp. Med. 139 (1974) 528–542.

    Article  PubMed  CAS  Google Scholar 

  28. Espevik, T. and Nissen-Meyer, J. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J. Immunol. Methods 95 (1986) 99–105.

    Article  PubMed  CAS  Google Scholar 

  29. Van Snick, J., Cayphas, S., Vink, A., Uyttenhove, C., Coulie, P. G., Rubira, M. R. and Simpson, R.J. Purification and NH2-terminal amino acid sequence of a T-cell-derived lymphokine with growth factor activity for Bcell hybridomas. Proc. Natl. Acad. Sci. USA 83 (1986) 9679–9683.

    Article  PubMed  Google Scholar 

  30. Molnar, J., Mandi, Y., Petri, I., Petofi, S., Sakagami, H., Kurihara, T. and Motohashi, N. Immuonomodulation activity of phenothiazines, benzo[a]phenothiazines and benz[c]acridines. Anticacer Res. 13 (1993) 439–442.

    CAS  Google Scholar 

  31. Pasparakis, M., Alexopoulou, L., Episkopou, V. and Kollia, G. Immune and inflammatory responses in TNF-α-deficient mice: a critical requirement for TNF-α in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184 (1996) 1397–1411.

    Article  PubMed  CAS  Google Scholar 

  32. Ceuppens, J.L., Baroja, M.L., Lovre, K., Van Damme, J. and Billiau, A. Human T cell activation with phytohemaglutinnin. The function of IL-6 as an accessory signal. J. Immunol. 14 (1998) 3868–3874.

    Google Scholar 

  33. Waterfield, J.D., Hammarstrom, L. and Smith, E. The effect of membrane stabilizing agents on induction of the immune response. I. Effect of lymphocyte activation in mixed lymphocyte reactions. J. Exp. Med. 144 (1976) 562–567.

    Article  PubMed  CAS  Google Scholar 

  34. Martinez, F. and Coleman, J.W. The effects of selected drugs, including chlorpromazine and non-steroidal anti-inflammatory agents, on polyclonal IgG synthesis and interleukin 1 production by human peripheral blood mononuclear cells in vitro. Clin. Exp. Immunol. 76 (1989) 252–257.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Pluta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimecki, M., Artym, J., Kocięba, M. et al. The immunosuppressive activities of newly synthesized azaphenothiazines in human and mouse models. Cell Mol Biol Lett 14, 622–635 (2009). https://doi.org/10.2478/s11658-009-0025-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-009-0025-1

Key words