Skip to main content
  • Research Article
  • Published:

Hybrid cells differentiate to hepatic lineage cells and repair oxidative damage

Abstract

Hybrid cells derived from stem cells play an important role in organogenesis, tissue regeneration and cancer formation. However, the fate of hybrid cells and their range of function are poorly understood. Fusing stem cells and somatic cells induces somatic cell reprogramming, and the resulting hybrid cells are embryonic stem cell-like cells. Therefore, we hypothesize that fusion-induced hybrid cells may behave like ES cells in certain microenvironments. In this study, human hepatic cells were induced to apoptosis with H2O2, and then co-cultured with hybrid cells that had been derived from mouse ES cells and human hepatic cells using a transwell. After co-culturing, the degree of apoptosis was evaluated using Annexin-V/PI double-staining analysis, flow cytometry and Western-blot. We observed that H2O2-induced cell apoptosis was inhibited by co-culture. In addition, the activity of injury-related enzymes (GSH-Px, LDH and SOD) and the level of albumin release in the co-culture system trended toward the level of normal undamaged hepatic cells. The stably increased levels of secretion of ALB in the co-culture system also confirmed that co-culture with hybrid cells helped in recovery from injury. The fate of the hybrid cells was studied by analyzing their gene expression and protein expression profiles. The results of RT-PCR indicated that during co-culturing, like ES cells, hybrid cells differentiated into hepatic lineage cells. Hybrid cells transcripted genes from both parental cell genomes. Via immunocytochemical analysis, hepatic directional differentiation of the hybrid cells was also confirmed. After injecting the hybrid cells into the mouse liver, the GFP-labeled transplanted cells were distributed in the hepatic lobules and engrafted into the liver structure. This research expands the knowledge of fusion-related events and the possible function of hybrid cells. Moreover, it could indicate a new route of differentiation from pluripotent cells to tissue-specific cells via conditional co-culture.

Abbreviations

AAT:

alpha-1 antitrypsin

CPSASE1:

carbamoyl-phosphate synthetase I

GSH-Px:

glutathione peroxidase

HNF3:

hepatocyte nuclear factor 3

LDH:

lactate dehydrogenase

LST1:

liver-specific organic anion transporter

MEF:

mouse embryonic fibroblast

MSCs:

mesenchymal stem cell

PEPCK:

phosphoenolpyruvate carboxykinase

TDO:

tryptophan 2,3-dioxygenase

TTF:

tail tip fibroblast

TTR:

transthyretin

SOD:

superoxide dismutase

References

  1. Barski, G., Sorieul, S. and Cornefert, F. Production of cells of a “hybrid” nature in cultures in vitro of 2 cellular strains in combination. C. R. Hebd. Seances Acad. Sci. 251 (1960) 1825–1827.

    CAS  PubMed  Google Scholar 

  2. Wang, X., Willenbring, H., Akkari, Y., Torimaru, Y., Foster, M., Al-Dhalimy, M., Lagasse, E., Finegold, M., Olson, S. and Grompe, M. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422 (2003) 897–901.

    Article  CAS  PubMed  Google Scholar 

  3. Vassilopoulos, G., Wang, P.R. and Russell, D.W. Transplanted bone marrow regenerates liver by cell fusion. Nature 422 (2003) 901–904.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G. and Mavilio, F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279 (1998) 1528–1530.

    Article  CAS  PubMed  Google Scholar 

  5. Gibson, A.J., Karasinski, J., Relvas, J., Moss, J., Sherratt, T.G., Strong, P.N. and Watt, D.J. Dermal fibroblasts convert to a myogenic lineage in mdx mouse muscle. J. Cell. Sci. 108(Pt 1) (1995) 207–214.

    CAS  PubMed  Google Scholar 

  6. Gussoni, E., Bennett, R.R., Muskiewicz, K.R., Meyerrose, T., Nolta, J.A., Gilgoff, I., Stein, J., Chan, Y.M., Lidov, H.G., Bonnemann, C.G., Von Moers, A., Morris, G.E., Den Dunnen, J.T., Chamberlain, J.S., Kunkel, L.M. and Weinberg, K. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J. Clin. Invest. 110 (2002) 807–814.

    CAS  PubMed  Google Scholar 

  7. Gussoni, E., Soneoka, Y., Strickland, C.D., Buzney, E.A., Khan, M.K., Flint, A.F., Kunkel, L.M. and Mulligan, R.C. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401 (1999) 390–394.

    CAS  PubMed  Google Scholar 

  8. Ishikawa, F., Shimazu, H., Shultz, L.D., Fukata, M., Nakamura, R., Lyons, B., Shimoda, K., Shimoda, S., Kanemaru, T., Nakamura, K., Ito, H., Kaji, Y., Perry, A.C. and Harada, M. Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion. FASEB J. 20 (2006) 950–952.

    Article  CAS  PubMed  Google Scholar 

  9. Okamura, K., Asahina, K., Fujimori, H., Ozeki, R., Shimizu-Saito, K., Tanaka, Y., Teramoto, K., Arii, S., Takase, K., Kataoka, M., Soeno, Y., Tateno, C., Yoshizato, K. and Teraoka, H. Generation of hybrid hepatocytes by cell fusion from monkey embryoid body cells in the injured mouse liver. Histochem. Cell Biol. 125 (2006) 247–257.

    Article  CAS  PubMed  Google Scholar 

  10. Quintana-Bustamante, O., Alvarez-Barrientos, A., Kofman, A.V., Fabregat, I., Bueren, J.A., Theise, N.D. and Segovia, J.C. Hematopoietic mobilization in mice increases the presence of bone marrow-derived hepatocytes via in vivo cell fusion. Hepatology 43 (2006) 108–116.

    Article  PubMed  Google Scholar 

  11. Rizvi, A.Z., Swain, J.R., Davies, P.S., Bailey, A.S., Decker, A.D., Willenbring, H., Grompe, M., Fleming, WH. and Wong, M.H. Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 6321–6325.

    Article  CAS  PubMed  Google Scholar 

  12. Medvinsky, A. and Smith, A. Stem cells: Fusion brings down barriers. Nature 422 (2003) 823–825.

    Article  CAS  PubMed  Google Scholar 

  13. Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J.M., Fike, J.R., Lee, H.O., Pfeffer, K., Lois, C., Morrison, S.J. and Alvarez-Buylla, A. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425 (2003) 968–973.

    Article  CAS  PubMed  Google Scholar 

  14. Broyles, R.H., Roth, A.C., Todd, M. and Belegu, V. Nuclear reprogramming by cell fusion. Methods Mol. Biol. 325 (2006) 47–57.

    PubMed  Google Scholar 

  15. Silva, J., Chambers, I., Pollard, S. and Smith, A. Nanog promotes transfer of pluripotency after cell fusion. Nature 441 (2006) 997–1001.

    Article  CAS  PubMed  Google Scholar 

  16. Cowan, C.A., Atienza, J., Melton, D.A. and Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309 (2005) 1369–1373.

    Article  CAS  PubMed  Google Scholar 

  17. Strelchenko, N., Kukharenko, V., Shkumatov, A., Verlinsky, O., Kuliev, A. and Verlinsky, Y. Reprogramming of human somatic cells by embryonic stem cell cytoplast. Reprod. Biomed. Online 12 (2006) 107–111.

    Article  PubMed  Google Scholar 

  18. Do, J.T. and Scholer, H.R. Comparison of neurosphere cells with cumulus cells after fusion with embryonic stem cells: reprogramming potential. Reprod. Fertil. Dev. 17 (2005) 143–149.

    Article  PubMed  Google Scholar 

  19. Tada, M., Morizane, A., Kimura, H., Kawasaki, H., Ainscough, J.F., Sasai, Y., Nakatsuji, N. and Tada, T. Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev. Dyn. 227 (2003) 504–510.

    Article  CAS  PubMed  Google Scholar 

  20. Sumer, H., Jones, K.L., Liu, J., Heffernan, C., Tat, P.A., Upton, K. and Verma, P.J. Reprogramming of somatic cells after fusion with iPS and ntES cells. Stem Cells Dev. 19 (2009) 239–246.

    Article  Google Scholar 

  21. Frimberger, D., Morales, N., Gearhart, J.D., Gearhart, J.P. and Lakshmanan, Y. Human embryoid body-derived stem cells in tissue engineering-enhanced migration in co-culture with bladder smooth muscle and urothelium. Urology 67 (2006) 1298–1303.

    Article  PubMed  Google Scholar 

  22. Kim, S.J., Kim, B.S., Ryu, S.W., Yoo, J.H., Oh, J.H., Song, C.H., Kim, S.H., Choi, D.S., Seo, J.H., Choi, C.W., Shin, S.W., Kim, Y.H. and Kim, J.S. Hematopoietic differentiation of embryoid bodies derived from the human embryonic stem cell line SNUhES3 in co-culture with human bone marrow stromal cells. Yonsei Med. J. 46 (2005) 693–699.

    Article  PubMed  Google Scholar 

  23. Ma, F., Wang, D., Hanada, S., Ebihara, Y., Kawasaki, H., Zaike, Y., Heike, T., Nakahata, T. and Tsuji, K. Novel method for efficient production of multipotential hematopoietic progenitors from human embryonic stem cells. Int. J. Hematol. 85 (2007) 371–379.

    Article  CAS  PubMed  Google Scholar 

  24. Robinson, S.N., Ng, J., Niu, T., Yang, H., McMannis, J.D., Karandish, S., Kaur, I., Fu, P., Del Angel, M., Messinger, R., Flagge, F., de Lima, M., Decker, W., Xing, D., Champlin, R. and Shpall, E.J. Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant. 37 (2006) 359–366.

    Article  CAS  PubMed  Google Scholar 

  25. Vodyanik, M.A., Bork, J.A., Thomson, J.A. and Slukvin, II. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105 (2005) 617–626.

    Article  CAS  PubMed  Google Scholar 

  26. Ying, Q.L., Nichols, J., Evans, E.P. and Smith, A.G. Changing potency by spontaneous fusion. Nature 416 (2002) 545–548.

    Article  CAS  PubMed  Google Scholar 

  27. Chang, M.G., Tung, L., Sekar, R.B., Chang, C.Y., Cysyk, J., Dong, P., Marban, E. and Abraham, M.R. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 113 (2006) 1832–1841.

    Article  PubMed  Google Scholar 

  28. Islam, M.Q., Islam, K. and Sharp, C.A. Epigenetic reprogramming of nonreplicating somatic cells for long-term proliferation by temporary cell-cell contact. Stem Cells Dev. 16 (2007) 253–268.

    Article  CAS  PubMed  Google Scholar 

  29. Koh, S.H., Choi, H.S., Park, E.S., Kang, H.J., Ahn, H.S. and Shin, H.Y. Co-culture of human CD34+ cells with mesenchymal stem cells increases the survival of CD34+ cells against the 5-aza-deoxycytidine- or trichostatin A-induced cell death. Biochem. Biophys. Res. Commun. 329 (2005) 1039–1045.

    Article  CAS  PubMed  Google Scholar 

  30. Nabeshima, Y., Hiragun, T., Morita, E., Mihara, S., Kameyoshi, Y. and Hide, M. IL-4 modulates the histamine content of mast cells in a mast cell/fibroblast co-culture through a Stat6 signaling pathway in fibroblasts. FEBS Lett. 579 (2005) 6653–6658.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Z., Lv, J., Zhang, R., Zhu, Y., Zhu, D., Sun, Y., Zhu, J. and Han, X. Co-culture with fat cells induces cellular insulin resistance in primary hepatocytes. Biochem. Biophys. Res. Commun. 345 (2006) 976–983.

    Article  CAS  PubMed  Google Scholar 

  32. Gerrard, L., Zhao, D., Clark, A.J. and Cui, W. Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23 (2005) 124–133.

    Article  CAS  PubMed  Google Scholar 

  33. Xu, D., Alipio, Z., Fink, L.M., Adcock, D.M., Yang, J., Ward, D.C. and Ma, Y. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 808–813.

    Article  CAS  PubMed  Google Scholar 

  34. Labelle, M., Schnittler, H.J., Aust, D.E., Friedrich, K., Baretton, G., Vestweber, D. and Breier, G. Vascular endothelial cadherin promotes breast cancer progression via transforming growth factor beta signaling. Cancer Res. 68 (2008) 1388–1397.

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi, K. and Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (2006) 663–676.

    Article  CAS  PubMed  Google Scholar 

  36. Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M. and Jaenisch, R. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318 (2007) 1920–1923.

    Article  CAS  PubMed  Google Scholar 

  37. Lewitzky, M. and Yamanaka, S. Reprogramming somatic cells towards pluripotency by defined factors. Curr. Opin. Biotechnol. 18 (2007) 467–473.

    Article  CAS  PubMed  Google Scholar 

  38. Maherali, N,S.R., Xie, W., Utikal, J., Eminli, S. and Arnold, K. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1 (2007) 55–70.

    Article  CAS  PubMed  Google Scholar 

  39. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N. and Yamanaka, S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26 (2007) 101–106.

    Article  PubMed  Google Scholar 

  40. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 (2006) 861–872.

    Article  Google Scholar 

  41. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B. E. and Jaenisch, R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448 (2007) 318–324.

    Article  CAS  PubMed  Google Scholar 

  42. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, II. and Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science 318 (2007) 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  43. Okita, K., Ichisaka, T. and Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448 (2007) 313–317.

    Article  CAS  PubMed  Google Scholar 

  44. Pells, S., Di Domenico, A.I., Gallagher, E.J. and McWhir, J. Multipotentiality of neuronal cells after spontaneous fusion with embryonic stem cells and nuclear reprogramming in vitro. Cloning Stem Cells 4 (2002) 331–338.

    Article  CAS  PubMed  Google Scholar 

  45. Soto-Gutierrez, A., Navarro-Alvarez, N., Zhao, D., Rivas-Carrillo, J.D., Lebkowski, J., Tanaka, N., Fox, I.J. and Kobayashi, N. Differentiation of mouse embryonic stem cells to hepatocyte-like cells by co-culture with human liver nonparenchymal cell lines. Nat. Protoc. 2 (2007) 347–356.

    Article  CAS  PubMed  Google Scholar 

  46. Ghosh, Z., Wilson, K.D., Wu, Y., Hu, S., Quertermous, T. and Wu, J.C. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One 5 (2010) e8975.

    Article  PubMed  Google Scholar 

  47. Dahlke, M.H., Popp, F.C., Larsen, S., Schlitt, H.J. and Rasko, J.E. Stem cell therapy of the liver—fusion or fiction? Liver Transpl. 10 (2004) 471–479.

    Article  PubMed  Google Scholar 

  48. Fujino, H., Hiramatsu, H., Tsuchiya, A., Niwa, A., Noma, H., Shiota, M., Umeda, K., Yoshimoto, M., Ito, M., Heike, T. and Nakahata, T. Human cord blood CD34+ cells develop into hepatocytes in the livers of NOD/SCID/gamma(c)null mice through cell fusion. FASEB J. 21 (2007) 3499–3510.

    Article  CAS  PubMed  Google Scholar 

  49. Spees, J.L., Olson, S.D., Ylostalo, J., Lynch, P.J., Smith, J., Perry, A., Peister, A., Wang, M.Y. and Prockop, D.J. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 2397–2402.

    Article  CAS  PubMed  Google Scholar 

  50. Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D.M., Nakano, Y., Meyer, E.M., Morel, L., Petersen, B.E. and Scott, E.W. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416 (2002) 542–545.

    Article  CAS  PubMed  Google Scholar 

  51. Parris, G.E. The cell clone ecology hypothesis and the cell fusion model of cancer progression and metastasis: history and experimental support. Med. Hypotheses 66 (2006) 76–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D., Wang, F., Gu, H. et al. Hybrid cells differentiate to hepatic lineage cells and repair oxidative damage. Cell Mol Biol Lett 15, 451–472 (2010). https://doi.org/10.2478/s11658-010-0018-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0018-0

Key words