Skip to main content
  • Research Article
  • Published:

The molecular cloning of glial fibrillary acidic protein in Gekko japonicus and its expression changes after spinal cord transection

Abstract

The glial fibrillary acidic protein (GFAP) is an astrocyte-specific member of the class III intermediate filament proteins. It is generally used as a specific marker of astrocytes in the central nervous system (CNS). We isolated a GFAP cDNA from the brain and spinal cord cDNA library of Gekko japonicus, and prepared polyclonal antibodies against gecko GFAP to provide useful tools for further immunochemistry studies. Both the real-time quantitative PCR and western blot results revealed that the expression of GFAP in the spinal cord after transection increased, reaching its maximum level after 3 days, and then gradually decreased over the rest of the 2 weeks of the experiment. Immunohistochemical analyses demonstrated that the increase in GFAP-positive labeling was restricted to the white matter rather than the gray matter. In particular, a slight increase in the number of GFAP positive star-shaped astrocytes was detected in the ventral and lateral regions of the white matter. Our results indicate that reactive astrogliosis in the gecko spinal cord took place primarily in the white matter during a short time interval, suggesting that the specific astrogliosis evaluated by GFAP expression might be advantageous in spinal cord regeneration.

Abbreviations

GFAP:

glial fibrillaryacidic protein

IPTG:

isopropyl-β-D-thiogalactopyranoside

RACE:

rapid amplification of cDNA ends

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  1. Eng, L.F., Vanderheagen, J.J., Bignami, A. and Gerstl, B. An acidic protein isolated from fibrous astrocytes. Brain Res. 28 (1971) 351–354.

    Article  CAS  PubMed  Google Scholar 

  2. Bignami, A., Eng, L.F., Dahl, D. and Uyeda, C.T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43 (1972) 429–435.

    Article  CAS  PubMed  Google Scholar 

  3. Reeves, S.A., Helman, L.J., Allison, A. and Israel, M.A. Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc. Natl. Acad. Sci. 86 (1989) 5178–5182.

    Article  CAS  PubMed  Google Scholar 

  4. Bongcam-Rudloff, E., Nister, M., Betsholtz, C., Wang, J.L., Stenman, G., Huebner, K., Croce, C.M. and Westermark, B. Human glial fibrillary acidic protein: complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes. Cancer Res. 51 (1991) 1553–1560.

    CAS  PubMed  Google Scholar 

  5. Isaacs, A., Baker, M., Wavrant-De, Vrieze, F. and Hutton, M. Determination of the gene structure of human GFAP and absence of coding region mutations associated with frontotemporal dementia with parkinsonism linked to chromosome 17. Genomics 51 (1998) 152–154.

    Article  CAS  PubMed  Google Scholar 

  6. Eng, L.F., Ghirnikar, R.S. and Lee, Y.L. Glial fibrillary acidic protein: GFAP-31 years (1969–2000). Neurochem Res. 25 (2000) 1439–1451.

    Article  CAS  PubMed  Google Scholar 

  7. Nielsen, A.L., Holm, I.E., Johansen, M., Bonven, B., Jorgensen, P. and Jorgensen, A.L. A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J. Biol. Chem. 277 (2002) 29983–29991.

    Article  CAS  PubMed  Google Scholar 

  8. Geisler, N. and Weber, K. The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J. 1 (1982) 1649–1656.

    CAS  PubMed  Google Scholar 

  9. Steinert, P.M. and Roop, D.R. Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 57 (1988) 593–625.

    Article  CAS  PubMed  Google Scholar 

  10. Parry, D.A.D. and Steinert, P.M. Intermediate filament structure. Curr. Opin. Cell Biol. 4 (1992) 94–98.

    Article  CAS  PubMed  Google Scholar 

  11. Liedtke, W., Edelmann, W., Bieri, P.L., Chiu, F.C., Cowan, N.J., Kucherlapati, R. and Raine, C.S. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17 (1996) 607–615.

    Article  CAS  PubMed  Google Scholar 

  12. Kimelberg, H.K. and Norenberg, M.D. Astrocytes. Sci. Am. 260 (1989) 66–76.

    Article  CAS  PubMed  Google Scholar 

  13. Bonni, A., Sun, Y., Nadal-Vicens, M., Bhatt, A., Frank, D.A., Rozovsky, I., Stahl, N., Yancopoulos, G.D. and Greenberg, M.E. Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278 (1997) 477–483.

    Article  CAS  PubMed  Google Scholar 

  14. Eng, L.F. and Ghirnikar, R.S. GFAP and astrogliosis. Brain Pathol. 4 (1994) 229–237.

    Article  CAS  PubMed  Google Scholar 

  15. Ransom, B., Behar, T. and Nedergaard, M. New roles for astrocytes (stars at last). Trends Neurosci. 26 (2003) 520–522.

    Article  CAS  PubMed  Google Scholar 

  16. May, P.C., Boggs, L.N., Fuson, K.S., Bender, M., Li, W., Miller, F.D., Hyslop, P., Calligaro, D., Seubert, P., Johnson-Wood, K., Chen, K., Games, D. and Schenk, D. GFAP as a marker of plaque pathology in PDAPP transgenic mouse. Soc. Neurosci. Abstr. 23 (1997) 1638.

    Google Scholar 

  17. Canady, K.S. and Rubel, E.W. Rapid and reversible astrocytic reaction to afferent activity blockade in chick cochlear nucleus. J. Neurosci. 12 (1992) 1001–1009.

    CAS  PubMed  Google Scholar 

  18. Bignami, A. and Dahl, D. The astrocytic response to stabbing. Immunofluorescence studies with antibodies to astrocytic-specific protein (GFAP) in mammalian and submammalian vertebrates. Neuropathol. Appl. Neurobiol. 2 (1976) 99–110.

    Article  Google Scholar 

  19. Silver, J. and Miller, J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5 (2004) 146–156.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, X., Messing, A. and David, S. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Exp. Neurol. 148 (1997) 568–576.

    Article  CAS  PubMed  Google Scholar 

  21. Menet, V., Prieto, M., Privat, A. and Gimenezy, Ribotta, M. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc. Natl. Acad. Sci. 100 (2003) 8999–9004.

    Article  CAS  PubMed  Google Scholar 

  22. Faulkner, J.R., Herrmann, J.E., Woo, M.J., Tansey, K.E., Doan, N.B. and Sofroniew, M.V. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24 (2004) 2143–2155.

    Article  CAS  PubMed  Google Scholar 

  23. Okada, S., Nakamura, M., Katoh, H., Miyao, T., Shimazaki, T., Ishii, K., Yamane, J., Yoshimura, A., Iwamoto, Y., Toyama, Y. and Okano, H. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat. Med. 12 (2006) 829–834.

    Article  CAS  PubMed  Google Scholar 

  24. Cristino, L., Pica, A., Della, Corte, F. and Bentivoglio, M. Plastic changes and nitric oxide synthase induction in neurons which innervated the regenerated tail of the lizard Gekko gecko II. The response of dorsal root ganglion cells to tail amputation and regeneration. Brain Res. 871 (2000) 83–93.

    Article  CAS  PubMed  Google Scholar 

  25. Pixley, S.K. and De, Vellis, J. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res. 317 (1984) 201–209.

    CAS  PubMed  Google Scholar 

  26. Voigt, T. Development of glial cells in the cerebral walls of ferrets: direct tracing of their transformation from radial glia into astrocytes. J. Comp. Neurol. 289 (1989) 74–88.

    Article  CAS  PubMed  Google Scholar 

  27. Elmquist, J.K., Swanson, J.J., Sakaguchi, D.S., Ross, L.R. and Jacobson, C.D. Developmental distribution of GFAP and vimentin in the Brazilian opossum brain. J. Comp. Neurol. 344 (1994) 283–296.

    Article  CAS  PubMed  Google Scholar 

  28. Lazzari, M. and Franceschini, V. Intermediate filament immunohistochemistry of astroglial cells in the leopard gecko, Eublepharis macularius. Anat. Embryol. 210 (2005) 275–286.

    Article  PubMed  Google Scholar 

  29. Kalman, M. and Pritz, M.B. Glial fibrillary acidic protein-immunopositive structures in the brain of acrocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. J. Comp. Neurol. 431 (2001) 460–480.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Ding, F., Liu, M., Jiang, M., Yang, H., Feng, X. and Gu, X. EST-based identification of genes expressed in brain and spinal cord of Gekko japonicus, a species demonstrating intrinsic capacity of spinal cord regeneration. J. Mol. Neurosci. 29 (2006) 21–28.

    Article  CAS  PubMed  Google Scholar 

  31. Rehm, B.H. Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl. Micro-Biol. Biotechnol. 57 (2001) 579–592.

    Article  CAS  Google Scholar 

  32. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 (1997) 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  33. Felsenstein, J. PHYLIP (phylogeny inference package). version 3.6. Department of Genome Sciences, University of Washington, Seattle (2004).

    Google Scholar 

  34. Engvall, E. and Perlman, P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8 (1971) 871–874.

    Article  CAS  PubMed  Google Scholar 

  35. Rataboul, P., Faucon, Biguet, N., Vernier, P., De, Vitry, F., Boularand, S., Privat, A. and Mallet, J. Identification of a human glial fibrillary acidic protein cDNA: a tool for the molecular analysis of reactive gliosis in the mammalian central nervous system. J. Neurosci. Res. 20 (1988) 165–175.

    Article  CAS  PubMed  Google Scholar 

  36. Hozumi, I., Chiu, F.C. and Norton, W.T. Biochemical and immunocytochemical changes in glial fibrillary protein after stab wounds. Brain Res. 524 (1990) 64–71.

    Article  CAS  PubMed  Google Scholar 

  37. Goncalves, C.A., Leite, M.C. and Nardin, P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin. Biochem. 41 (2008) 755–763.

    Article  CAS  PubMed  Google Scholar 

  38. Norenberg, M.D. Distribution of glutamine synthetase in the rat central nervous system. J. Histochem. Cytochem. 27 (1979) 756–762.

    CAS  PubMed  Google Scholar 

  39. Inagaki, K., Gonda, T., Nishizawa, K., Kitamura, S., Sato, C., Ando, S., Tanabe, K., Kikuchi, K., Tsuiki, S. and Nishi, Y. Phosphorylation sites linked to glial filament disassembly in vitro locate in a non-alpha-helical head domain. J. Biol. Chem. 265 (1990) 4722–4729.

    CAS  PubMed  Google Scholar 

  40. Takemura, M., Gomi, H., Colucci-Guyon, E. and Itohara, S. Protectiverole of phosphorylation in turnover of glial fibrillary acidic protein in mice. J. Neurosci. 22 (2002) 6972–6979.

    CAS  PubMed  Google Scholar 

  41. Chen, W.J. and Liem, R.K. The endless story of the glial fibrillary acidic protein. J. Cell Sci. 107 (1994) 2299–2311.

    CAS  PubMed  Google Scholar 

  42. Bock, E. Nervous system specific proteins. J. Neurochem. 30 (1978) 7–14.

    Article  CAS  PubMed  Google Scholar 

  43. Nesic, O., Lee, J., Johnson, K.M., Ye, Z., Xu, G.Y., Unabia, G.C., Wood, T.G., McAdoo, D.J., Westlund, K.N., Hulsebosch, C.E. and Regino, Perez-Polo, J. Transcriptional profiling of spinal cord injury-induced central neuropathic pain. J. Neurochem. 95 (2005) 998–1014.

    Article  CAS  PubMed  Google Scholar 

  44. Tian, D.S., Dong, Q., Pan, D.J., He, Y., Yu, Z.Y., Xie, M.J. and Wang, W. Attenuation of astrogliosis by suppressing of microglial proliferation with the cell cycle inhibitor olomoucine in rat spinal cord injury model. Brain Res. 1154 (2007) 206–214.

    Article  CAS  PubMed  Google Scholar 

  45. Ritz, M.F. and Hausmann, O.N. Effect of 17beta-estradiol on functional outcome, release of cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats. Brain Res. 1203 (2008) 177–188.

    Article  CAS  PubMed  Google Scholar 

  46. Huang, X., Kim, J.M., Kong, T.H., Park, S.R., Ha, Y., Kim, M.H., Park, H., Yoon, S.H., Park, H.C., Park, J.O., Min, B.H. and Choi, B.H. GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury. J. Neurol. Sci. 277 (2009) 87–97.

    Article  CAS  PubMed  Google Scholar 

  47. Pekny, M., Wilhelmsson, U., Bogestål, Y.R. and Pekna, M. The role of astrocytes and complement system in neural plasticity. Int. Rev. Neurobiol. 82 (2007) 95–111.

    Article  CAS  PubMed  Google Scholar 

  48. Morin-Richaud, C., Feldblum, S. and Privat, A. Astrocytes and oligodendrocytes reactions after a total section of the rat spinal cord. Brain Res. 783 (1998) 85–101.

    Article  CAS  PubMed  Google Scholar 

  49. Collins, G.H. and West, N.R. Glial activity during axonal regrowth following cryogenic injury of rat spinal cord. Brain Res. Bull. 22 (1989) 71–79.

    Article  CAS  PubMed  Google Scholar 

  50. Soriede, A.J. Variations in the perineural glial changes after different types of nerve lesion: light and electron microscopic investigations on the facial nucleus of the rat. Neuropathol. Appl. Neurobiol. 7 (1981) 195–204.

    Article  Google Scholar 

  51. Alonso, G. and Privat, A. Reactive astrocytes involved in the formation of lesional scars differ in the mediobasal hypothalamus and in other forebrain regions. J. Neurosci. Res. 34 (1993) 510–522.

    Article  CAS  PubMed  Google Scholar 

  52. Sofroniew, M.V. and Vinters, H.V. Astrocytes: biology and pathology. Acta Neuropathol. 119 (2010) 7–35.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaosong Gu or Zhengli Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, D., Wang, Y., Liu, Y. et al. The molecular cloning of glial fibrillary acidic protein in Gekko japonicus and its expression changes after spinal cord transection. Cell Mol Biol Lett 15, 582–599 (2010). https://doi.org/10.2478/s11658-010-0029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0029-x

Key words