Skip to main content
  • Review
  • Published:

The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach

Abstract

Protein glycation is initiated by a nucleophilic addition reaction between the free amino group from a protein, lipid or nucleic acid and the carbonyl group of a reducing sugar. This reaction forms a reversible Schiff base, which rearranges over a period of days to produce ketoamine or Amadori products. The Amadori products undergo dehydration and rearrangements and develop a cross-link between adjacent proteins, giving rise to protein aggregation or advanced glycation end products (AGEs). A number of studies have shown that glycation induces the formation of the β-sheet structure in β-amyloid protein, α-synuclein, transthyretin (TTR), copper-zinc superoxide dismutase 1 (Cu, Zn-SOD-1), and prion protein. Aggregation of the β-sheet structure in each case creates fibrillar structures, respectively causing Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, familial amyloid polyneuropathy, and prion disease. It has been suggested that oligomeric species of glycated α-synuclein and prion are more toxic than fibrils. This review focuses on the pathway of AGE formation, the synthesis of different types of AGE, and the molecular mechanisms by which glycation causes various types of neurodegenerative disease. It discusses several new therapeutic approaches that have been applied to treat these devastating disorders, including the use of various synthetic and naturally occurring inhibitors. Modulation of the AGE-RAGE axis is now considered promising in the prevention of neurodegenerative diseases. Additionally, the review covers several defense enzymes and proteins in the human body that are important anti-glycating systems acting to prevent the development of neurodegenerative diseases.

Abbreviations

Aβ:

amyloid beta

AD:

Alzheimer’s disease

AFGPs:

alkylformyl glycosylpyrroles

AG:

aminoguanidne

AGEs:

advanced glycation end products

AKR:

aldo-keto-reductase

ALI:

arginine lysine imidazole

ALS:

amylolateral sclerosis

ALT:

711-alagebrium chloride

APP:

amyloid precursor protein

BSE:

bovine spongiform encelopathy

CD-36:

cluster of differentiation 36

CFD:

Creutzfeldt-Jakob disease

CML:

Nɛ-carboxymethyllysine

Cu, Zn-SOD-1:

copper-zinc superoxide dismutase 1

DETAPAC:

diethylenetriaminepentaacetic acid

3DG:

3-deoxyglucosone

EGCG:

(−)-epigallocatechin gallate

FAP:

familial amyloid polyneuropathy

FN3K:

fructosamine-3-kinase

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

GOLD:

glyoxal lysine dimer

GSH:

glutathione

GSK-3:

glycogen synthase kinase-3

IL-1β:

interleukin-1β

IFA:

isoferulic acid

LBs:

Lewy bodies

LRRK-2:

leucine-rich repeat kinase 2

MG:

methylglyoxal

MOLD:

methylglyoxal lysine dimer

MSR type II:

macrophage scavenger receptor types II

NADPH:

nicotinamide adenine dinucleotide phosphate

NF-κβ:

nuclear factor-κB

NFTs:

neurofibrillary tangles

OM:

origanum majorana

OST-48:

oligosaccharyltransferase-48

PD:

Parkinson’s disease

PM:

pyridoxamine

PrPC:

cellular prion protein

PTB:

phenacylthiazolium bromide

RAGE:

receptor of advanced glycation end products

ROS:

reactive oxygen species

SNCA:

synuclein alpha

sRAGE:

soluble receptor of advanced glycation end products

TTR:

transthyretin

TK:

transketolase

TNFα:

tumor necrosis factor-α

TPP:

thiamine pyrophosphate

References

  1. Forbes, J.M., Cooper, M.E., Oldfield, M.D. and Thomas, M.C. Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 14 (2003) 254–258.

    Google Scholar 

  2. Ahmed, N. Advanced glycation end products-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 67 (2005) 3–21.

    PubMed  CAS  Google Scholar 

  3. Ulrich, P. and Cerami, A. Protein glycation, diabetes and aging. Recent Prog. Horm. Res. 56 (2001) 1–21.

    PubMed  CAS  Google Scholar 

  4. Baynes, J.W. and Thorpe, S.R. Role of oxidative stress in diabetic complications. a new perspective on an old paradigm. Diabetes 48 (1999) 19.

    Google Scholar 

  5. Chellan, P. and Nagaraj, R.H. Early glycation products produce pentosidine cross-links on native proteins. Novel mechanism of pentosidine formation and propagation of glycation. J. Biol. Chem. 276 (2001) 3895–903.

    PubMed  CAS  Google Scholar 

  6. Stitt, A., Gardiner, T.A., Alderson, N.L., Canning, P., Frizzell, N., Duff, N., Boyle, C., Januszewski, A.S., Chachich, M., Baynes, J.W. and Thorpe, S.R. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51 (2002) 2826–2832.

    PubMed  CAS  Google Scholar 

  7. Thornalley, P.J. and Minhas, H.S. Rapid hydrolysis and slow alpha, betadicarbonyl cleavage of an agent proposed to cleave glucose-derived protein cross-links. Biochem. Pharmacol. 57 (1999) 303–307.

    PubMed  CAS  Google Scholar 

  8. Horie, K., Miyata, T., Yasuda, T., Takeda, A., Yasuda, Y., Maeda, K., Sobue, G. and Kurokawa, K. Immunohistochemical localization of advanced glycation end products, pentosidine, and carboxymethyllysine in lipofuscin pigments of Alzheimer’s disease and aged neurons. Biochem. Biophys. Res. Commun. 236 (1997) 327–330.

    PubMed  CAS  Google Scholar 

  9. Takeda, A., Yasuda, T., Miyata, T., Goto, Y., Wakai, M., Watanabe, M., Yasuda, Y., Horie, K. Inagaki, T., Doyu, M., Maeda, K. and Sobue, G. Advanced glycation end products colocalized with astrocytes and microglial cells in Alzheimer’s disease brain. Acta Neuropathol. 95 (1998) 555–558.

    PubMed  CAS  Google Scholar 

  10. Castellani, R.J., Harris, P.L., Sayre, L.M., Fujii, J., Taniguchi, N., Vitek, M.P., Founds, H., Atwood, C.S., Perry, G. and Smith, M.A. Active glycation in neurofibrillary pathology of Alzheimer’s disease: N (epsilon)-(Carboxymethyl) lysine and hexitol-lysine. Free Radic. Biol. Med. 31 (2001) 175–180.

    PubMed  CAS  Google Scholar 

  11. Obayashi, H., Nakano, K., Shigeta, H., Yamaguchi, M., Yoshimori, K., Fukui, M., Fujii, M., Kitagawa, Y., Nakamura, N., Nakamura, K., Nakazawa, Y., Ienaga, K., Ohta, M., Nishimura, M., Fukui, I. and Kondo, M. Formation of crossline as a fluorescent advanced glycation end product in vitro and in vivo. Biochem. Biophys. Res. Commun. 226 (1996) 37–41.

    PubMed  CAS  Google Scholar 

  12. Reddy, S., Bichler, J., Wells-Knecht, J., Thorpe, S.R. and Baynes, J.W. N epsilon-(carboxymethyl) lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 34 (1995) 10872–10878.

    PubMed  CAS  Google Scholar 

  13. Frye, E.B., Degenhardt, T.P., Thorpe, S.R. and Baynes, J.W. Role of the Maillard reaction in aging of tissue proteins. J. Biol. Chem. 273 (1998) 18714–18719.

    PubMed  CAS  Google Scholar 

  14. Miyata, T., Ueda, Y., Yamada, Y., Izuhara, Y., Wada, T., Jadoul, M., Saito, A., Kurokawa, K. and van Ypersele de Strihou, C. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J. Am. Soc. Nephrol. 9 (1998) 2349–2356.

    PubMed  CAS  Google Scholar 

  15. Miyata, T., van Ypersele de Strihou, C., Kurokawa, K. and Baynes, J.W. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long term uremic complications. Kidney Int. 55 (1999) 389–399.

    PubMed  CAS  Google Scholar 

  16. Kaneko, M., Bucciarelli, L., Hwang, Y.C., Lee, L., Yan, S.F., Schmidt, A.M. and Ramasamy, R. Aldose reductase and AGE-RAGE pathways: key players in myocardial ischemic injury. Ann. N. Y. Acad. Sci. 1043 (2005) 702–709.

    PubMed  CAS  Google Scholar 

  17. Vlassara, H. and Palace, M.R. Diabetes and advanced glycation end products. J. Intern. Med. 251 (2002) 87–101.

    PubMed  CAS  Google Scholar 

  18. Rabbani, G., Ahmad, E., Zaidi, N. and Khan, R.H. pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white. Cell Biochem. Biophys. 61 (2011) 551–560.

    PubMed  CAS  Google Scholar 

  19. Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S. and Khan, R.H. pH induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochem. Biophys. 62 (2012) 487–499.

    PubMed  CAS  Google Scholar 

  20. Rabbani, G., Kaur, J., Ahmad, E., Khan, R.H. and Jain, S.K. Structural characteristics of thermostable immunogenic outer membrane protein from Salmonella enterica serovar Typhi (S. Typhi). Appl. Microbiol. Biotechnol. 98 (2014) 2533–2543.

    PubMed  CAS  Google Scholar 

  21. Neeper, M., Schmidt, A.M., Brett, J., Yan, S.D., Wang, F., Pan, Y.C., Elliston, K., Stern, D. and Shaw, A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267 (1992) 14998–15004.

    PubMed  CAS  Google Scholar 

  22. el Khoury, J., Thomas, C.A., Loike, J.D., Hickman, S.E., Cao, L. and Silverstein, S.C. Macrophages adhere to glucose-modified basement membrane collagen IV via their scavenger receptors. J. Biol. Chem. 269 (1994) 10197–10200.

    PubMed  Google Scholar 

  23. Vlassara, H., Li, Y.M., Imani, F., Wojciechowicz, D., Yang, Z., Liu, F.T. and Cerami, A. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGEreceptor complex. Mol. Med. 1 (1995) 634–646.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Li, Y.M., Mitsuhashi, T., Wojciechowicz, D., Shimizu, N., Li, J., Stitt, A., He, C. Banerjee, D. and Vlassara, H. Molecular identity and cellular distribution of advanced glycation end product receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc. Natl. Acad. Sci. USA 93 (1996) 11047–11052.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Ohgami, N., Nagai, R., Ikemoto, M., Arai, H., Miyazaki, A., Hakamata, H., Horiuchi, S. and Nakayama, H. CD36 serves as a receptor for advanced glycation end products (AGE). J. Diabet. Complicat. 16 (2002) 56–59.

    Google Scholar 

  26. Schmidt, A.M., Yan, S.D., Yan, S.F. and Stern, D.M. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 108 (2001) 949–955.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Chen, X., Walker, D.G., Schmidt, A.M., Arancio, O., Lue, L.F. and Yan, S.D. RAGE: a potential target for Aβ-mediated cellular perturbation in Alzheimer’s disease. Curr. Mol. Med. 7 (2007) 735–742.

    PubMed  CAS  Google Scholar 

  28. Grossman, H., Bergmann, C. and Parker, S. Dementia: a brief review. Mt. Sinai J. Med. 73 (2006) 985–992.

    PubMed  Google Scholar 

  29. Campion, D., Dumanchin, C., Hannequin, D., Dubois, B., Belliard, S., Puel, M., Thomas-Anterion, C., Michon, A., Martin, C., Charbonnier, F., Raux, G., Camuzat, A., Penet, C., Mesnage, V., Martinez, M., Clerget-Darpoux, F., Brice, A. and Frebourg, T. Early-onset autosomal dominant Alzheimer’s disease: prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 65 (1999) 664–670.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Rademakers, R. and Rovelet-Lecrux, A. Recent insights into the molecular genetics of dementia. Trends Neurosci. 32 (2009) 45–46.

    Google Scholar 

  31. Obrenovich, M.E. and Monnier, V.M. Glycation stimulates amyloid formation. Sci. Aging Knowledge Environ. 2 (2004) pe3.

    Google Scholar 

  32. Munch, G., Schicktanz, D., Behme, A., Gerlach, M., Riederer, P., Palm, D. and Schinzel, R. Amino acid specificity of glycation and protein-AGE crosslinking reactivities determined with a dipeptide SPOT library. Nat. Biotechnol. 17 (1999) 1006–1010.

    PubMed  CAS  Google Scholar 

  33. Wong, A., Luth, H.J., Deuther-Conrad, W., Dukic-Stefanovic, S., Gasic-Milenkovic, J., Arendt, T. and Munch, G. Advanced glycation end products co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res. 920 (2001) 32–40.

    PubMed  CAS  Google Scholar 

  34. Reddy, V.P., Obrenovich, M.E., Atwood, C.S., Perry, G. and Smith, M.A. Involvement of Maillard reactions in Alzheimer’s disease. Neurotox. Res. 4 (2002) 191–209.

    PubMed  Google Scholar 

  35. Vitek, M.P., Bhattacharya, K., Glendening, J.M., Stopa, E., Vlassara, H., Bucala, R., Manogue, K. and Cerami, A. Advanced glycation end products contribute to amyloidosis in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 91 (1994) 4766–4770.

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Smith, M.A., Taneda, S., Richey, P.L., Miyata, S., Yan, S.D., Stern, D., Sayre, L.M., Monnier, V.M. and Perry, G. Advanced Maillard reaction end products are associated with Alzheimer’s disease pathology. Proc. Natl. Acad. Sci. USA 91 (1994) 5710–5714.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Mattson, M.P., Carney, J.W. and Butterfield, D.A. A tombstone in Alzheimer’s? Nature 373 (1995) 481.

    PubMed  CAS  Google Scholar 

  38. Smith, M.A., Sayre, L.M., Vitek, M.P., Monnier, V.M. and Perry, G. Early AGEing and Alzheimer’s. Nature 374 (1995) 316.

    PubMed  CAS  Google Scholar 

  39. Li, J.J., Dickson, D., Hof, P.R. and Vlassara, H. Receptors for advanced glycosylation end products in human brain: role in brain homeostasis. Mol. Med. 4 (1998) 46–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Sasaki, N., Toki, S., Chowei, H., Saito, T., Nakano, N., Hayashi, Y., Takeuchi, M. and Makita, Z. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res. 888 (2001) 256–262.

    PubMed  CAS  Google Scholar 

  41. Coker L.H. and Wagenknecht, L.E. Advanced glycation end products, diabetes, and the brain. Neurology 77 (2011) 1326–1327.

    PubMed  Google Scholar 

  42. Munch, G., Mayer, S., Michaelis, J., Hipkiss, A.R., Riederer, P., Muller, R., Neumann, A., Schinzel, R. and Cunningham, A.M. Influence of advanced glycation end products and AGE-inhibitors on nucleation-dependent polymerization of beta-amyloid peptide. Biochim. Biophys. Acta 1360 (1997) 17–29.

    PubMed  CAS  Google Scholar 

  43. Li, X.H., Du, L.L., Cheng, X.S., Jiang, X., Zhang, Y., Lv, B.L., Liu, R., Wang, J.Z. and Zhou, X.W. Glycation exacerbates the neuronal toxicity of β-amyloid. Cell Death Dis. 4 (2013) e673.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Ko, S.Y., Lin, Y.P., Lin, Y.S. and Chang, S.S. Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radic. Biol. Med. 49 (2010) 474–480.

    PubMed  CAS  Google Scholar 

  45. Ledesma, M.D., Bonay, P. and Avila, J. Tau protein from Alzheimer’s disease patients is glycated at its tubulin-binding domain. J. Neurochem. 65 (1995) 1658–1664.

    PubMed  CAS  Google Scholar 

  46. Li, X. H., Lv, B. L., Xie, J. Z., Liu, J. X., Zhou, W. and Wang, J. Z. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGEmediated GSK-3 activation. Neurobiol. Aging 33 (2012) 400–410.

    Google Scholar 

  47. Chen, K., Maley, J. and Yu, P.H. Potential implications of endogenous aldehydes in β-amyloid misfolding oligomerization and fibrillogenesis. J. Neurochem. 99 (2006) 1413–1424.

    PubMed  CAS  Google Scholar 

  48. Jack, M.M., Ryals, J.M. and Wright, D.E. Protection from diabetes-induced peripheral sensory neuropathy — A role for elevated glyoxalase I? Exp. Neurol. 234 (2012) 62–69.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Kuhla, B., Boeck, K., Schmidt, A., Ogunladem, V., Arendt, T., Munch, G. and Luth, H.J. Age-and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer’s disease brains. Neurobiol. Aging 28 (2007) 29–41.

    PubMed  CAS  Google Scholar 

  50. Butterfield, D.A., Hardas, S.S. and Lange, M.L. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: many pathways to neurodegeneration. J. Alzheimers Dis. 20 (2010) 369–393.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Sato, T., Shimogaito, N., Wu, X., Kikuchi, S., Yamagishi, S. and Takeuchi, M. Toxic advanced glycation end products (TAGE) theory in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 21 (2006) 197–208.

    PubMed  Google Scholar 

  52. Takeuchi, M., Kikuchi, S., Sasaki, N., Suzuki, T., Watai, T., Iwaki, M., Bucala, R. and Yamagishi, S. Involvement of advanced glycation endproducts (AGEs) in Alzheimer’s disease. Curr. Alzheimer Res. 1 (2004) 39–46.

    PubMed  CAS  Google Scholar 

  53. Guerrero, E., Vasudevaraju, P., Hegde, M.L., Britton, G. B. and Rao, K.S. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson’s disease. Mol. Neurobiol. 47 (2013) 525–536.

    PubMed  CAS  Google Scholar 

  54. Defebvre, L. Parkinson’s disease: role of genetic and environment factors. Involvement in everyday clinical practice. Rev. Neurol (Paris) 166 (2010) 764–769.

    CAS  Google Scholar 

  55. Nuytemans, K., Theuns, J., Cruts, M. and Van Broeckhoven, C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum. Mutat. 31 (2010) 763–780.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Martin, I., Dawson, V.L. and Dawson, T.M. The impact of genetic research on our understanding of Parkinson’s disease. Prog. Brain. Res. 183 (2010) 21–41.

    PubMed  CAS  Google Scholar 

  57. Martin, I., Dawson, V.L. and Dawson, T.M. Recent advances in the genetics of Parkinson’s disease. Annu. Rev. Genomics Hum. Genet. 12 (2011) 301–325.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Hegde, M.L., Vasudevaraju P. and Rao, K.J. DNA induced folding/fibrillation of alpha-synuclein: new insights in Parkinson’s disease. Front. Biosci. 15 (2010) 418–436.

    CAS  Google Scholar 

  59. Hegde, M.L. and Jagannatha Rao, K.S. Challenges and complexities of alpha-synuclein toxicity: new postulates in unfolding the mystery associated with Parkinson’s disease. Arch. Biochem. Biophys. 418 (2003) 169–178.

    PubMed  CAS  Google Scholar 

  60. Vicente Miranda, H. and Outeiro, T.F. The sour side of neurodegenerative disorders: the effects of protein glycation. J. Pathol. 221 (2010) 13–25.

    PubMed  Google Scholar 

  61. Padmaraju, V., Bhaskar, J.J., Prasada Rao, U.J., Salimath, P.V. and Rao, K.S. Role of advanced glycation on aggregation and DNA binding properties of alpha-synuclein. J. Alzheimers Dis. 24 (2011) 211–221.

    PubMed  CAS  Google Scholar 

  62. Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D., Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA 96 (1999) 11404–11409.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Choonara, Y.E., Pillay, V., du Toit, L.C. Modi, G., Naidoo, D., Ndesendo, V.M. and Sibambo, S.R. Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int. J. Mol. Sci. 10 (2009) 2510–2557.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Ve’ronique, V.B., Hussein, D., Patrick, A.D., Edor, K., Rouleau Guy, A.R. and Paul, V.N. TDP-43, protein aggregation, and amyotrophic lateral sclerosis. US Neurology 5 (2010) 35–38.

    Google Scholar 

  65. Gros-Louis, F., Gaspar, C. and Rouleau, G.A. Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim. Biophys. Acta 1762 (2006) 956–972.

    PubMed  CAS  Google Scholar 

  66. Chou, S.M., Wang, H.S., Taniguchi, A. and Bucala, R. Advanced glycation end products in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol. Med. 4 (1998) 324–332.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Shibata, N., Hirano, A., Hedley-Whyte, E.T., Dal Canto, M.C., Nagai, R., Uchida, K., Horiuchi, S., Kawaguchi, M., Yamamoto, T. and Kobayashi, M. Selective formation of certain advanced glycation end products in spinal cord astrocytes of humans and mice with superoxide dismutase-1 mutation. Acta Neuropathol. 104 (2002) 171–78.

    PubMed  CAS  Google Scholar 

  68. Iłzecka, J. Serum-soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 120 (2009) 119–122.

    PubMed  Google Scholar 

  69. Sakaguchi, T., Yan, S.F., Yan, S.D., Belov, D., Rong, L.L., Sousa, M., Andrassy, M., Marso, S.P., Duda, S., Arnold, B., Liliensiek, B., Nawroth, P.P., Stern, D.M. Schmidt, A.M. and Naka, Y. Central role of RAGE-dependent neointimal expansion in arterial restenosis J. Clin. Invest. 11 (2003) 959–972.

    Google Scholar 

  70. Takamiya, R., Takahashi, M., Myint, T., Park, Y.S., Miyazawa, N., Endo, T., Fujiwara, N., Sakiyama, H., Misonou, Y., Miyamot, Y., Fujii, J. and Taniguchi, N. Glycation proceeds faster in mutated Cu, Zn superoxide dismutases related to familial amyotrophic lateral sclerosis. FASEB J. 17 (2003) 938–940.

    PubMed  CAS  Google Scholar 

  71. Kaufmann, E., Boehm, B.O., Süssmuth, S.D., Kientsch-Engel, R., Sperfeld, A.C., Ludolph, A. and Tumani, H. The advanced glycation end product N epsilon-(carboxymethyl) lysine level is elevated in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Neurosci. Lett. 371 (2004) 226–229.

    PubMed  CAS  Google Scholar 

  72. Andrade, C.A. Peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75 (1952) 408–427.

    PubMed  CAS  Google Scholar 

  73. Saraiva, M.J., Birken, S., Costa, P.P. and Goodman, D.S. Amyloid fibril protein in familial amyloidotic polyneuropathy, Portuguese type. Definition of molecular abnormality in transthyretin (prealbumin). J. Clin. Invest. 74 (1984) 104–119.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. da Costa, G., Gomes, R.A., Guerreiro, A., Mateus, É., Monteiro, E., Barroso, E., Coelho, A.V., Freire, A.P. and Cordeiro, C. Beyond genetic factors in familial amyloidotic polyneuropathy: protein glycation and the loss of fibrinogen’s chaperone activity. PLoS One 6 (2011) e24850.

    PubMed  PubMed Central  Google Scholar 

  75. Matsunaga, N., Anan, I., Forsgren, S., Nagai, R., Rosenberg, P., Horiuchi, S., Ando, Y. and Suhr, O.B. Advanced glycation end products (AGE) and the receptor for AGE are present in gastrointestinal tract of familial amyloidotic polyneuropathy patients but do not induce NF-κB activation. Acta Neuropathol. 104 (2002) 441–447.

    PubMed  CAS  Google Scholar 

  76. Sousa, M.M., Du Yan, S., Fernandes, R., Guimaraes, A., Stern, D. and Saraiva, M.J. Familial amyloid polyneuropathy, receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J. Neurosci. 21 (2001) 7576–7586.

    PubMed  CAS  Google Scholar 

  77. Shorter, J. and Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet. 6 (2005) 435–450.

    PubMed  CAS  Google Scholar 

  78. Knight, R.S. and Will, R.G. Prion diseases. J. Neurol. Neurosurg. Psychiat. 75 (2004) 36–42.

    Google Scholar 

  79. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95 (1998) 13363–13383.

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Soto, C. and Castilla, J. The controversial protein-only hypothesis of prion propagation. Nat. Med. 10 (2004) 63–67.

    Google Scholar 

  81. Didonna, A. Prion protein and its role in signal transduction. Cell. Mol. Biol. Lett. 18 (2013) 209–230.

    PubMed  CAS  Google Scholar 

  82. Sasaki, N., Takeuchi, M., Chowei, H., Kikuchi, S., Hayashi, Y., Nakano, N., Ikeda, H., Yamagishi, S., Kitamoto, T., Saito, T. and Makita, Z. Advanced glycation end products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt-Jakob disease with prion plaques. Neurosci. Lett. 326 (2002) 117–120.

    PubMed  CAS  Google Scholar 

  83. Choi, Y.G., Kim, J.I., Jeon, Y.C., Park, S.J., Choi, E.K., Rubenstein, R., Kascsak, R.J., Carp, R.I. and Kim, Y.S. Nonenzymatic glycation at the N-terminus of pathogenic prion protein in transmissible spongiform encephalopathies. J. Biol. Chem. 279 (2004) 30402–30409.

    PubMed  CAS  Google Scholar 

  84. Southern, L., Williams, J. and Esiri, M.M. Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML) in human brain: relation to vascular dementia. BMC Neurol. 7 (2007) 35.

    PubMed  PubMed Central  Google Scholar 

  85. Yaffe, K., Lindquist, K., Schwartz, A.V., Vitartas, C., Vittinghoff, E., Satterfield, S., Simonsick, E.M., Launer, L., Rosano, C., Cauley, J.A. and Harris, T. Advanced glycation end product level, diabetes, and accelerated cognitive aging. Neurology 77 (2011) 1351–1356.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Srikanth, V.., Westcott, B., Forbes, J., Phan, T.G., Beare, R., Venn, A., Pearson, S., Greenaway, T., Parameswaran, V. and Münch, G. Methylglyoxal, cognitive function and cerebral atrophy in older people. J. Gerontol. A Biol. Sci. Med. Sci. 68 (2013) 68–73.

    PubMed  Google Scholar 

  87. Vlassara, H. and Uribarri, J. Glycoxidation and diabetic complications: modern lessons and a warning? Rev. Endocr. Metab. Disord. 5 (2004) 181–188.

    PubMed  CAS  Google Scholar 

  88. Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B.S., Uribarri, J. and Vlassara, H. Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet. Assoc. 104 (2004) 1287–1291.

    PubMed  CAS  Google Scholar 

  89. Wautier, J.L. and Schmidt, A.M. Protein glycation: a firm link to endothelial cell dysfunction. Circ. Res. 95 (2004) 233–238.

    PubMed  CAS  Google Scholar 

  90. Vlassara, H., Cai, W., Crandall, J., Goldberg, T., Oberstein, R., Dardaine, V., Peppa, M. and Rayfield, E.J. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. USA 99 (2002) 15596–15601.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Förster, A., Kuhne, Y. and Henle, T. Studies on absorption and elimination of dietary Maillard reaction products. Ann. N. Y. Acad. Sci. 1043 (2005) 474–481.

    PubMed  Google Scholar 

  92. Henle, T. AGEs in foods: do they play a role in uremia?. Kidney Int. Suppl. 63 (2003) S145–S147.

    Google Scholar 

  93. Cai, W., Gao, Q.D., Zhu, L., Peppa, M., He, C. and Vlassara, H. Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol. Med. 8 (2002) 337–346.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Miyata, T., Ishikawa, N. and van Ypersele de Strihou, C. Carbonyl stress and diabetic complications. Clin. Chem. Lab. Med. 41 (2003) 1150–1158.

    PubMed  CAS  Google Scholar 

  95. Cai, W., Uribarri, J., Zhu, L., Chen, X., Swamy, S., Zhao, Z., Grosjean, F., Simonaro, C., Kuchel, G.A., Schnaider-Beeri, M., Woodward, M., Striker, G.E. and Vlassara, H. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc. Natl. Acad. Sci. USA 111 (2014) 4940–4945.

    PubMed  CAS  Google Scholar 

  96. van Boekel, M.A., van den Bergh, P.J. and Hoenders, H.J. Glycation of human serum albumin: inhibition by diclofenac. Biochim. Biophys. Acta 1120 (1992) 201–204.

    PubMed  Google Scholar 

  97. Baynes, J.W. Role of oxidative stress in development of complication in diabetes. Diabetes 40 (1991) 405–412.

    PubMed  CAS  Google Scholar 

  98. Price, D.L., Rhett, P.M., Thorpe, S.R. and Baynes, J.W. Chelating activity of advanced glycation end product (AGE) inhibitors. J. Biol. Chem. 276 (2001) 48967–48972.

    PubMed  CAS  Google Scholar 

  99. Nagai, R., Murray, D.B., Metz, T.O. and Baynes, J.W. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes 61 (2012) 549–559.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Webster, J., Urban, C., Berbaum, K., Loske, C., Alpar, A., Gärtner, U., Garcia de Arriba, S., Arendt, T. and Munch, G. The carbonyl scavengers aminoguanidine and tenilsetam protect against the neurotoxic effects of methylglyoxal. Neurotox. Res. 7 (2005) 95–101.

    PubMed  CAS  Google Scholar 

  101. Munch, G., Taneli, Y., Schraven, E., Schindler, U., Schinzel, R., Palm, D. and Riederer, P. The cognition-enhancing drug tenilsetam is an inhibitor of protein crosslinking by advanced glycosylation. J. Neural. Transm. Park. Dis. Dement. Sect. 8 (1994) 193–208.

    PubMed  CAS  Google Scholar 

  102. Jakus, V., Hrnciarova, M., Carsky, J., Krahulec, B. and Rietbrock, N. Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with anti-oxidant activity. Life Sci. 65 (1999) 1991–1993.

    PubMed  CAS  Google Scholar 

  103. Keita, Y., Michailova, M., Kratzer, W., Wörner, G., Wörner, W. and Rietbrock, N. Influence of penicillamine on the formation of early nonenzymatic glycation products of human serum proteins. Int. J. Clin. Pharmacol. Ther. Toxicol. 30 (1992) 441–442.

    PubMed  CAS  Google Scholar 

  104. Stevens, A. The effectiveness of putative anti-cataract agents in the prevention of protein glycation. J. Am. Optom. Assoc. 66 (1995) 744–749.

    PubMed  CAS  Google Scholar 

  105. Vasan, S., Zhang, X., Zhang, X., Kapurniotu, A., Bernhagen, J., Teichberg, S., Basgen, J., Wagle, D., Shih, D., Terlecky, I., Bucala, R., Cerami, A., Egan, J. and Ulrich, P. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382 (1996) 275–278.

    PubMed  CAS  Google Scholar 

  106. Sajithlal, G.B., Chittra, P. and Chandrakasan, G. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem. Pharmacol. 56 (1998) 1607–1614.

    PubMed  CAS  Google Scholar 

  107. Wilkinson-Berka, J.L., Kelly, D.J., Koerner, S.M., Jaworski, K., Davis, B., Thallas, V. and Cooper, M.E. ALT-946 and aminoguanidine, inhibitors of advanced glycation, improve severe nephropathy in the diabetic transgenic (mREN-2)27 rat. Diabetes 51 (2002) 3283–3289.

    PubMed  CAS  Google Scholar 

  108. Forbes, J.M., Soulis, T., Thallas, V., Panagiotopoulos, S., Long, D.M., Vasan, S., Wagle, D., Jerums, G. and Cooper, M. E. Renoprotective effects of a novel inhibitor of advanced glycation. Diabetologia 44 (2001) 108–114.

    PubMed  CAS  Google Scholar 

  109. Kikuchi, S., Shinpo, K., Moriwaka, F., Makita, Z., Miyata, T. and Tashiro, K. Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J. Neurosci. Res. 57 (1991) 280–289.

    Google Scholar 

  110. Dukic-Stefanovic, S., Schinzel, R., Riederer, P. and Munch, G. AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs? Biogerontology 2 (2001) 19–34.

    PubMed  CAS  Google Scholar 

  111. Ihl, R., Perisic, I., Maurer, K. and Dierks, T. Effect of 3 months treatment with tenilsetam in patients suffering from dementia of Alzheimer’s type (DAT). J. Neural. Trans. 1 (1989) 84–85.

    Google Scholar 

  112. Ruggiero-Lopez, D., Lecomte, M., Moinet, G., Patereau, G., Lagarde, M. and Wiernsperger, N. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem. Pharmacol. 58 (1999) 1765–1773.

    PubMed  CAS  Google Scholar 

  113. Beisswenger, P. and Ruggiero-Lopez, D. Metformin inhibition of glycation processes. Diabetes Metab. 29 (2003) 6S95–6S103.

    PubMed  CAS  Google Scholar 

  114. Beisswenger, P.J., Howell, S.K., Touchette, A.D., Lal, S. and Szwergold, S. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 48 (1999) 198–202

    PubMed  CAS  Google Scholar 

  115. Kiho, T., Kato, M., Usui, S. and Hirano, K. Effect of buformin and metformin on formation of advanced glycation end products by methylglyoxal. Clin. Chim. Acta 358 (2005) 139–145.

    PubMed  CAS  Google Scholar 

  116. Bonnefont-Rousselot, D. Antioxidant and anti-AGE therapeutics: evaluation and perspectives. J. Soc. Biol. 195 (2001) 391–398.

    PubMed  CAS  Google Scholar 

  117. Hipkiss, A.R. Carnosine, a protective, anti-ageing peptide? Int. J. Biochem. Cell Biol. 30 (1998) 863–868.

    PubMed  CAS  Google Scholar 

  118. Sobal, G., Menzel, E.J. and Sinzinger, H. Calcium antagonists as inhibitors of in vitro low density lipoprotein oxidation and glycation. Biochem. Pharmacol. 61 (2001) 373–379.

    PubMed  CAS  Google Scholar 

  119. Akira, K., Amano, M., Okajima, F., Hashimoto, T. and Oikawa, S.S. Inhibitory effects of amlodipine and fluvastatin on the deposition of advanced glycation end products in aortic wall of cholesterol and fructosefed rabbits. Biol. Pharm. Bull. 29 (2006) 75–81.

    PubMed  CAS  Google Scholar 

  120. Verbeke, P., Siboska, G.E., Clark, B.F. and Rattan, S.I. Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem. Biophys. Res. Commun. 276 (2000) 1265–1270.

    PubMed  CAS  Google Scholar 

  121. Jung, Y.S., Joe, B.Y., Cho, S.J. and Konishi, Y. 2,3-Dimethoxy-5-methyl-1,4-benzoquinones and 2-methyl-1,4-naphthoquinones: glycation inhibitors with lipid peroxidation activity. Bioorg. Med. Chem. Lett. 15 (2005) 1125–1129.

    PubMed  CAS  Google Scholar 

  122. Culbertson, S.M., Enright, G.D. and Ingold, K.U. Synthesis of a novel radical trapping and carbonyl group trapping anti-AGE agent: a pyridoxamine analogue for inhibiting advanced glycation (AGE) and lipoxidation (ALE) end products. Org. Lett. 5 (2003) 2659–2662.

    PubMed  CAS  Google Scholar 

  123. Meeprom, A., Sompong, W., Chan, C.B. and Adisakwattana, S. Isoferulic acid, a new anti-glycation agent, inhibits fructose- and glucose-mediated protein glycation in vitro. Molecules 18 (2013) 6439–6454.

    PubMed  CAS  Google Scholar 

  124. Freedman, B.I., Wuerth, J.P., Cartwright, K., Bain, R.P., Dippe, S., Hershon, K., Mooradian, A.D. and Spinowitz, B.S. Design and baseline characteristics for the aminoguanidine Clinical trial in overt type 2 diabetic nephropathy (ACTION II). Control. Clin. Trials 20 (1999) 493–510.

    PubMed  CAS  Google Scholar 

  125. Thornalley, P.J. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation end products. Arch. Biochem. Biophys. 419 (2003) 31–40.

    PubMed  CAS  Google Scholar 

  126. Williams, M.E. Clinical studies of advanced glycation end product inhibitors and diabetic kidney disease. Curr. Diab. Rep. 4 (2004) 441–446.

    PubMed  Google Scholar 

  127. Hager, K., Marahrens, A., Kenklies, M., Riederer, P. and Münch, G. Alphalipoic acid as a new treatment option for Azheimer type dementia. Arch. Gerontol. Geriat. 32 (2001) 275–282.

    CAS  Google Scholar 

  128. Zhao, J. and Zhong, C.J. A review on research progress of transketolase. Neurosci. Bull. 25 (2009) 94–99.

    PubMed  Google Scholar 

  129. Shangari, N., Bruce, W.R., Poon, R. and O’Brien, P.J. Toxicity of glyoxalsrole of oxidative stress, metabolic detoxification and thiamine deficiency. Biochem. Soc. Trans. 31 (2003) 1390–393.

    PubMed  CAS  Google Scholar 

  130. Tarwadi, K.V. and Agte, V.V. Effect of micronutrients on methylglyoxal mediated in vitro glycation of albumin. Biol. Trace. Elem. Res. 143 (2011) 717–725.

    PubMed  CAS  Google Scholar 

  131. Breslow, R. The mechanism of thiamine action: predictions from model experiments. Ann. N. Y. Acad. Sci. 98 (1962) 445–452.

    PubMed  CAS  Google Scholar 

  132. Pohl, M., Sprenger, G.A. and Muller, M. A new perspective on thiamine catalysis. Curr. Opin. Biotechnol. 15 (2004) 335–342.

    PubMed  CAS  Google Scholar 

  133. Voziyan, P.A. and Hudson, B.G. Pyridoxamine as a multifunctional pharmaceutical: targeting pathogenic glycation and oxidative damage. Cell Mol. Life Sci. 62 (2005) 1671–1681.

    PubMed  CAS  Google Scholar 

  134. Chandler, D., Woldu, A., Rahmadi, A., Shanmuga, K., Steiner, N., Wright, E., Benavente-García, O., Schulz, O., Castillo, J. and Münch, G. Effects of plant-derived polyphenols on TNF-alpha and nitric oxide production induced by advanced glycation end products. Mol. Nutr. Food Res. 54 (2010) 141–150.

    Google Scholar 

  135. Kim, J., Lee, H.J. and Lee, K.W. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J. Neurochem. 112 (2010) 1415–1430.

    PubMed  CAS  Google Scholar 

  136. Weinreb, O., Amit, T., Mandel, S. and Youdim, M.B. Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate, a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr. 4 (2009) 283–296.

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Dorsey, P.G. and Greenspan, P. Inhibition of nonenzymatic protein glycation by pomegranate and other fruit juices. J. Med. Food 17 (2014) 447–454

    PubMed  CAS  Google Scholar 

  138. Lv, L., Shao, X., Chen, H., Ho, C.T. and Sang, S. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem. Res. Toxicol. 24 (2011) 579–586.

    PubMed  CAS  Google Scholar 

  139. Perez Gutierrez, R.M. Inhibition of advanced glycation end product formation by Origanum majorana l. in vitro and in streptozotocin-induced diabetic rats. Evid. Based Complement Alternat. Med. 598638 (2012) 18.

    Google Scholar 

  140. Aldini, G., Vistoli, G., Stefek, M., Chondrogianni, N., Grune, T., Sereikaite, J., Sadowska-Bartosz, I. and Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic. Res. 1 (2013) 93137.

    Google Scholar 

  141. Deane, R., Singh, I., Sagare, A.P., Bell, R.D., Ross, N.T., LaRue, B., Love, R., Perry, S., Paquette, N., Deane, R.J., Thiyagarajan, M., Zarcone, T., Fritz, G., Friedman, A.E., Miller, B.L. and Zlokovi, B.V. A multimodal RAGE specific inhibitor reducesamyloid β-mediated brain disorder in a mouse model of Alzheimer’s disease. J. Clin. Invest. 122 (2012) 1377–1392.

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Han, Y.T., Choi, G.I., Son, D., Kim, N.J., Yun, H., Lee, S., Chang, D.J., Hong, H.S., Kim, H., Ha, H.J., Kim, Y.H., Park, H.J., Lee, J., Suh, Y.G. Ligand-based design, synthesis, and biological evaluation of 2-aminopyrimidines, a novel series of receptor for advanced glycation end products (RAGE) inhibitors. J. Med. Chem. 55 (2012) 9120–9135.

    PubMed  CAS  Google Scholar 

  143. Gospodarska, E., Kupniewska-Kozak, A., Goch, G. and Dadlez, M. Binding studies of truncated variants of the A β peptide to the V-domain of the RAGE receptor reveal A β residues responsible for binding. Biochim. Biophys. Acta 1814 (2011) 592–609.

    PubMed  CAS  Google Scholar 

  144. Webster, S.J., Mruthinti, S., Hill, W.D., Buccafusco, J.J. and Terry. A.V.J. An aqueous orally active vaccine targeted againsta RAGE/AB complex as a novel therapeutic for Alzheimer’s disease. Neuromolecular Med. 14 (2012) 119–130.

    PubMed  CAS  Google Scholar 

  145. Yu, W., Wu, J., Cai, F., Xiang, J., Zha, W., Fan, D., Guo, S., Ming, Z. and Liu, C. Curcumin alleviates diabetic cardiomyopathy in experimental diabeticrats. PLoS One 7 (2012) e52013.

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Yan, F.L., Zheng, Y. and Zhao, F.D. Effects of Ginkgo biloba extract EGb761 on expression of RAGE and LRP-1 in cerebral microvascular endothelial cells under chronic hypoxia and hypoglycemia. Acta Neuropathol. 116 (2008) 529–535.

    PubMed  Google Scholar 

  147. Preston, J.E., Hipkiss, A.R., Himsworth, D.T., Romero, I.A. and Abbott, J.N. Toxic effects of beta-amyloid (25–35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine. Neurosci. Lett. 242 (1998) 105–108.

    PubMed  CAS  Google Scholar 

  148. Delpierre, G., Rider, M.H., Collard, F., Stroobant, V., Vanstapel, F., Santos, H. and Van Schaftingen, E. Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes 49 (2000) 1627–1634.

    PubMed  CAS  Google Scholar 

  149. Szwergold, B.S., Howell, S. and Beisswenger, P.J. Human fructosamine-3-kinase. Purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes 50 (2001) 2139–2147.

    PubMed  CAS  Google Scholar 

  150. Delpierre, G., Collard, F., Fortpied, J. and van Schaftingen, E. Fructosamine-3-kinase is involved in an intracellulardeglycation pathway in human erythrocytes. Biochem. J. 365 (2002) 801–808.

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Delpierre, G. and Van Schaftingen, E. Fructosamine 3-kinase, an enzyme involved in protein deglycation. Biochem. Soc. Trans. 31 (2003) 1354–1357.

    PubMed  CAS  Google Scholar 

  152. Delpierre, G., Vertommen, D., Communi, D., Rider, M.H. and Van Schaftingen, E. Identification of fructosamine residues deglycated by fructosamine 3-kinase in human hemoglobin. J. Biol. Chem. 279 (2004) 27613–27620.

    Google Scholar 

  153. Veiga-da-Cunha, M., Jacquemin, P., Delpierre, G., Godfraind, C., Theate, I., Vertommen, D., Clotman, F., Lemaigre, F., Devuys, O. and Van Schaftingen, E. Increased protein glycation in fructosamine 3-kinasedeficient mice. Biochem. J. 399 (2006) 257–264.

    PubMed  CAS  Google Scholar 

  154. Sakiyama, H., Takahashi, M., Yamamoto, T., Teshima, T., Lee, S.H., Miyamoto, Y., Misonou, Y. and Taniguchi, N. The internalization and metabolism of 3-deoxyglucosone in human umbilical vein endothelial cells. J. Biochem. 139 (2006) 245–253.

    PubMed  CAS  Google Scholar 

  155. Mannervik, B. Molecular enzymology of the glyoxalase system. Drug Metabol. Drug Interact. 23 (2008) 13–27.

    PubMed  CAS  Google Scholar 

  156. Kuhla, B., Luth, H.J., Haferburg, D., Boeck, K., Arendt, T. and Munch, G. Methylglyoxal, glyoxal and their detoxification in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1043 (2005) 211–216.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Hasan Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahuddin, P., Rabbani, G. & Khan, R.H. The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell Mol Biol Lett 19, 407–437 (2014). https://doi.org/10.2478/s11658-014-0205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-014-0205-5

Keywords