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Abstract

Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4
(CSPG4), is a surface type I transmembrane core proteoglycan that is crucially involved
in cell survival, migration and angiogenesis. NG2 is frequently used as a marker for the
identification and characterization of certain cell types, but little is known about the
mechanisms regulating its expression. In this review, we provide evidence that the
regulation of NG2 expression underlies inflammation and hypoxia and is mediated by
methyltransferases, transcription factors, including Sp1, paired box (Pax) 3 and Egr-1,
and the microRNA miR129-2. These regulatory factors crucially determine NG2-mediated
cellular processes such as glial scar formation in the central nervous system (CNS) or
tumor growth and metastasis. Therefore, they are potential targets for the establishment
of novel NG2-based therapeutic strategies in the treatment of CNS injuries, cancer and
other conditions of these types.
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Introduction
In the last 40 years, many studies have analyzed the structure and functions of neuron-

glial antigen 2 (NG2), which is also known as chondroitin sulphate proteoglycan 4

(CSPG4), high molecular weight melanoma-associated antigen (HMW-MAA) or

melanoma chondroitin sulfate proteoglycan (MCSP) [1–4]. The NG2 or CSPG4 gene

encodes a surface type I transmembrane core protein of ~300 kDa [5]. The extracellu-

lar N-terminal domain of this protein is post-translationally modified by chondroitin

sulfate glycosaminoglycan chains and disulfide bonds. It also contains putative proteo-

lytic cleavage sites [6]. The function of the extracellular domain fragments is still

widely unknown. However, a growing body of evidence suggests that they are involved

in the regulation of neuronal networks [7] or endothelial and pericyte functions [8].

The intracellular C-terminal domain of NG2 acts as an acceptor site for the extracellu-

lar signal-regulated kinases (ERK) 1/2 and protein kinase C-alpha (PKC-α) as well as a

binding site for multi-PZD domain protein 1 (MUPP-1). These interactions activate

key signaling pathways involved in cell migration, cell survival and angiogenesis [9, 10].

NG2-mediated signaling has been shown to play an important role in the progres-

sion of several tumor types. For instance, elevated NG2 expression is predominantly

found in glioblastoma and this correlates with a poor prognosis due to increased NG2-

mediated chemo- and radioresistance of the tumor cells [11, 12]. In addition, NG2

serves as a key intermediate of tumor cells with extracellular matrix molecules and
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thus crucially determines metastatic formation in soft-tissue sarcoma and melanoma

patients [13, 14]. Accordingly, NG2 is a promising target for the development of novel

tumor therapies [15–17].

NG2 is also expressed in certain benign cell types. In particular, high levels are

detected in NG2-glia of the central nervous system (CNS) [18, 19]. NG2-glia are non-

neuronal, non-vascular cells that underlie a complex interplay of epigenetic mecha-

nisms and transcription factors in distinct developmental stages [20, 21]. They are

sometimes called polydendrocytes because of their branched morphology or oligo-

dendrocyte precursor cells (OPCs) due to their contribution to the renewal and main-

tenance of the oligodendrocyte population [22, 23]. Mesenchymal stem cells,

osteoblasts, melanocytes, smooth muscle cells and macrophages have also been shown

to express NG2 [3, 24, 25]. Finally, the proteoglycan is a typical marker for vessel-

surrounding pericytes, which contribute to the stabilization of microvessels, the regula-

tion of capillary blood flow and angiogenesis [26]. Interestingly, the expression pattern

of NG2 markedly differs between distinct pericytes depending on the type of analyzed

tissue. For instance, only arteriolar but not venular pericytes are positive for NG2 in

the mesenteric microvascular network [27, 28]. By contrast, the proteoglycan is

expressed in pericytes of all of the microvascular segments in the retina: arterioles,

capillaries and venules [29].

These findings indicate that the expression of NG2 underlies a finely balanced regula-

tion dependent on specific cell functions in different tissues. However, which factors

are involved in this regulation and how they interact with each other remains elusive.

As outlined in the following review, NG2 expression is influenced by inflammation and

hypoxia and is intracellularly regulated by methyltransferases, transcription factors and

miRNAs (Table 1).
Inflammation

Different NG2-positive cell types in the CNS express receptors for inflammatory cyto-

kines [30–32]. Studies indicate that these cytokines are directly involved in the regula-

tion of NG2 expression and function in response to CNS injuries. For instance,

disruption of the blood–brain barrier has been shown to stimulate the release of tumor

necrosis factor-alpha (TNF-α), interleukin 1-alpha (IL-1α) and interferon-gamma (IFN-

γ) from platelets and other blood components, resulting in increased NG2 levels in

OPCs [33]. Gao et al. [34] further detected a higher mRNA and protein level of NG2 in

microglial cells following stimulation with lipopolysaccharide (LPS). This was associ-

ated with a higher expression of inducible nitric oxide synthase (iNOS), IL-1β and

TNF-α, which could be reversed by treatment with NG2 siRNA. In addition, neuroin-

flammatory disorders, such as autoimmune encephalomyelitis, elevate the expression of

NG2 in OPCs, macrophages and CNS-resident microglia, which is mediated by trans-

forming growth factor-beta (TGF-β) [35, 36]. Inhibition of TFG-β activity by decorin

[37, 38] or TGF-β1 receptor signaling by SB525334 attenuates this TGF-β-induced

NG2 expression [39].

Taken together, these studies indicate that cytokine-mediated NG2 expression is a

major response mechanism to various destructive processes in the CNS. In this context,

it should be considered that NG2 is an important contributor to glial scar
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formation [40], during which increased expression levels of extracellular matrix

components and chondroitin sulfate proteoglycans, including NG2, form an inhibitory

barrier to regenerating axons, blocking their outgrowth in the surrounding tissue [41, 42].

Accordingly, the modulation of this process may be a promising approach to promote

neuronal repair after traumatic or inflammation-induced CNS injuries.

In addition, van Sinderen et al. [43] recently analyzed the role of NG2 in the pla-

centa and extravillous trophoblasts. They found that IL-11 and leukemia inhibitory

factor (LIF), known to be produced by the placenta in the first trimester [44, 45],

stimulate NG2 expression specifically in the placental villi and deciduas. They spec-

ulated that these two cytokines stimulate the early differentiation of the cytotro-

phoblast cells towards the migratory extravillous trophoblast phenotype via the

upregulation of NG2 levels.
Hypoxia

Several studies show that NG2 expression may be regulated by hypoxia-induced signal

transduction. Under normoxic conditions, NG2 expression is only found in pericytes

located along the arterioles and capillaries but not along the venules of adult rat mesen-

teric microvascular networks [28]. Exposure of these networks to chronic hypoxia is as-

sociated with additional expression of the proteoglycan in venular pericytes [46]. This

indicates an important function of NG2 in these activated cells during hypoxia-induced

angiogenesis and vascular remodeling [46]. Concurrent with this view, Ozerdem et al.

[47] found a substantially reduced neovascularization in the ischemic retinas of NG2

knockout mice when compared to wild-type controls.

Hypoxia-inducible factors (HIFs) are the most important transcription factors mediat-

ing hypoxic expression of target genes [48]. Accordingly, they may also be involved in

the regulation of NG2. Under normoxia, HIFs are constitutively expressed in the cyto-

plasm with a very short half-life, because they are hydroxylated. This promotes their

binding to von Hippel-Lindau protein (VHL), which targets HIFs for rapid proteasomal

degradation. Under hypoxia, non-hydroxylated HIFs translocate to the nucleus, result-

ing in increased target gene expression [49]. Concurrent with these findings, Keleg

et al. [50] could demonstrate that NG2 mRNA and protein levels are already overex-

pressed in the normoxic pancreatic cancer cell lines Panc1 and HS766T, which exhibit

mutations of VHL. Exposure of these cells to chronic hypoxia further enhances these

high NG2 mRNA and protein expression levels.
DNA methylation

DNA methylation has recently been identified as a major epigenetic mechanism for the

regulation of gene expression [51]. It is characterized by the transfer of a methyl group

to the 5’ cytosine of a CpG dinucleotide by DNA methyltransferases, resulting in the

suppression of gene transcription [52]. Promoter methylation of tumor suppressor

genes is particularly found during carcinogenesis, indicating that this process induces

the development of many types of tumor [53–55]. Interestingly, Luo et al. [56] found

that the promoter of the NG2 gene also contains many 5’CpG methylation sites. It has

further been demonstrated that reduced methylation of this promoter increases the ex-

pression of NG2 in melanoma cell lines, primary melanoma lesions, and head and neck
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squamous cell carcinoma [56, 57]. Since high NG2 expression is often associated with

elevated multi-drug resistance [11, 12, 58], methylation of the NG2 promoter may thus

determine the therapy response and prognosis of many cancer types.
Transcription factors

In addition to DNA methylation, NG2 expression is also regulated by several transcrip-

tion factors. In 2009, Sellers et al. [59] described the regulatory region (1585 bp) up-

stream of the mouse NG2 coding sequence in detail. The TATA-box of the NG2

promoter is 1299 bp upstream of the transcriptional start. Putative binding sites for

transcription factors are located within this region. As identified by Transcriptional

Element System Search (TESS), these transcription factors may include C/EBP, p300,

CBP and Sp1. The latter seems to have a particularly crucial role in the regulation of

NG2 gene expression. Sellers et al. [59] showed that transfection of COS cells with lu-

ciferase reporter gene constructs that contain the NG2 promoter without a TATA-box

and the upstream located Sp1 binding sites, results in increased cellular luciferase activ-

ity. On the other hand, Leung et al. [60] found that silencing Sp1 downregulates the

transcription of the proteoglycan in keratinocytes. These contradictory findings suggest

that additional post-transcriptional modifications of the constitutively expressed tran-

scription factor Sp1 determine its function as a transcriptional activator or repressor of

NG2 [61].

Paired box 3 (Pax 3) is another transcription factor capable of influencing target gene

transcription in a positive [62] or negative [63] manner. However, Pax3 has only been

shown to increase the expression of NG2 in melanocytes [64]. Pax3 silencing results in

a diminished expression of the proteoglycan in these cells [65]. It has further been re-

ported that TGF-β suppresses the expression of Pax3 in melanocytes via a smad-

dependent pathway [66]. Since this growth factor upregulates NG2 levels in CNS-

resident microglia [35, 36, 39], this finding indicates that other transcription factors

must be involved in TGF-β-induced NG2 expression or that its regulation markedly

differs between individual cell types.

The transcription factor Egr-1 is a crucial mediator in ERK-dependent signaling dur-

ing cell survival, apoptosis and differentiation [67]. ERK phosphorylates and activates

the transcription factor Elk-1 [68, 69], which increases the expression of Egr-1 [70].

Egr-1 regulates the expression of different genes encoding for adhesion proteins and cy-

tokines [71]. Beck et al. [42] demonstrated that after cerebral ischemia, reactive astro-

cytes exhibit high levels of Egr-1. Silencing Egr-1 in these cells diminished the

expression of genes that are important for glial scar formation, including NG2. They

concluded that this transcription factor may represent a potential target for the modu-

lation of neuronal tissue repair and regeneration.
miRNAs

In the last decade, microRNAs (miRNAs) have been identified as novel, powerful regu-

lators of protein expression. They are endogenously expressed small non-coding RNA

molecules that suppress protein expression by interacting with the target messenger

RNA (mRNA) [52]. miR129-2 belongs to the group of tumor suppressor miRNAs, be-

cause its transcription is downregulated in some types of cancer due to increased



Fig. 1 Known regulatory factors of NG2 (CSPG4) expression. NG2 expression underlies inflammatory cytokines
and hypoxic stress and is mediated by methyltransferases, transcription factors such as Sp1, Egr1 and Pax3,
and miR129-2
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methylation [72]. It was recently reported that overexpression of miR129-2 decreases

NG2 levels in diffuse intrinsic pontine gliomas [73]. miR129-2 also suppresses the ex-

pression of platelet-derived growth factor receptor-alpha (PDGFR-α) in glioma cells

[74]. This receptor stimulates the proliferation of various mesenchymal and glial cells

and is one of the most amplified genes in glioblastoma [75]. In addition, interaction of

NG2 with PDGFR-α has been shown to promote cell proliferation in response to PDGF

[76, 77]. These findings suggest that miR129-2 may represent a promising candidate for

NG2-targeting tumor therapy.
Conclusion
Although NG2 is important for cell function and frequently used as a marker for the

characterization and identification of certain cell types, there is little knowledge about

the mechanisms that regulate the expression of this proteoglycan. The reports dis-

cussed here provide the first evidence that this regulation underlies inflammation and

hypoxia and is mediated by methyltransferases, transcription factors and miRNAs

(Fig. 1). In the future, the identification of additional regulatory factors may further

improve our understanding of NG2-mediated cellular functions, such as cell sur-

vival, migration and angiogenesis. In addition, it may also contribute to the estab-

lishment of NG2 as a novel therapeutic target in the treatment of CNS injuries,

cancer and other conditions.
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