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Abstract

Over the past decade, mesenchymal stromal cells (MSCs) found in the bone marrow
microenvironment have been considered to be important candidates in cellular
therapy. However, the application of MSCs in clinical settings is limited by the
difficulty and low efficiency associated with the separation of MSCs from the bone
marrow. Therefore, distinct sources of MSCs have been extensively explored.
Adipose-derived stromal cells (ASCs), a cell line similar to MSCs, have been identified
as a promising source. ASCs have become increasingly popular in many fields, as
they can be conveniently extracted from fat tissue. This review focuses on the
properties of ASCs in hematopoietic regulation and the underlying mechanisms, as
well as the current applications and future perspectives in ASC-based therapy.
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Background
Hematopoiesis occurs mainly in the bone marrow (BM) of adult mice and humans [1],

which makes the microenvironment indispensable for the maintenance of

hematopoietic stem cells (HSCs) [2, 3]. Mesenchymal stromal cells (MSCs) have been

identified as essential components of the HSC niche. MSCs are able to produce cyto-

kines such as stem cell factor (SCF), macrophage colony-stimulating factor (M-CSF),

stromal cell-derived factor 1 (SDF-1), and angiopoietin 1; and adhesion molecules and

extracellular matrix (ECM) proteins such as vascular cell adhesion molecule 1

(VCAM-1), fibronectin, and various selectins, which thus provide support in the self-

renewal, differentiation, and homing of HSCs [4, 5]. In addition, MSCs can differenti-

ate into adipocytes, osteoblasts, and chondrocytes to meet the needs of tissue damage

repair [6]. Although the mechanisms are not fully understood, MSC-based therapy has

been applied in clinical trials, achieving curative outcomes in certain disorders [7].

However, with a relatively lower amount of MSCs being obtained from the BM, MSCs

in other tissues or organs are being urgently explored.
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General properties of adipose-derived stromal cells

The isolation procedure and cytological characterization of adult human adipocyte pre-

cursors from adipose tissue were studied in the early 1970s [8]. These cells were ex-

tracted from diverse anatomical sites, such as superficial abdominal areas, the upper

arm, and inguinal and trochanteric areas [9, 10]. Several similar names were given to

cells isolated from adipose tissue in different studies, such as adipose-derived adult

stem cells, adipose stromal cells, adipose mesenchymal stem cells, preadipocytes, or

processed lipoaspirate cells. In order to eliminate this discrepancy, the International Fat

Applied Technology Society arrived at a consensus that any plastic-adherent, stable-

doubling, and multipotent population of cells derived from lipoaspirate can be referred

to as adipose-derived stromal cells (ASCs) [11]. The current procedure to isolate ASCs

via liposuction surgery is well controlled and minimally invasive. The number of ASCs

found in adipose tissue is notably higher than that of MSCs in bone marrow (BM-

MSCs) at the same tissue volume [12]. Studies have revealed that ASCs were more eas-

ily obtainable than MSCs derived from the BM.

Zuk and colleagues first identified the multilineage differentiation character of ASCs

in 2001 [13]. ASCs were characterized as one kind of adult stem cells, owing to their

pluripotent but restricted differentiation ability. In general, culture expanded ASCs are

positive for markers such as CD13, CD29, CD44, CD90 and CD105, while they lack

hematopoiesis-related markers such as CD14, CD19, CD45, CD106 and HLA-DR [14,

15]. In addition, ASCs have the potential to secrete cytokines and chemokines, such as

SCF, granulocyte colony-stimulating factor (G-CSF), interleukin 6 (IL-6), and tumor ne-

crosis factor alpha (TNF-α). ASCs can give rise to multilineage descendants, including

adipocytes, osteoblasts, and chondrocytes [16, 17]. Moreover, ASCs secrete adipose-

specific proteins, such as leptin and adipsin [18, 19], which are not shared with BM-

MSCs (Table 1).

Hematopoiesis-regulating properties of ASCs

The hypothesis that ASCs regulate hematopoiesis like BM-MSCs stems from the fact

that they are components of the niche. Several research groups have proved this hy-

pothesis by conducting co-culture assays of ASCs and HSCs in vitro. Nakao et al. pro-

posed that mouse ASCs can improve the expansion and proliferation of CD34+

peripheral blood hematopoietic stem/progenitor cells (HSCs/HPCs) as a feeder layer

[26]. In the ASC co-culture system, a higher population count of CD34+ cells was ob-

served, and the total number of colonies was significantly increased. Nishiwaki et al.

drew a similar conclusion using human ASCs from healthy volunteers after a series of

ex vivo experiments [27]. In vitro co-culture assays showed that ASCs not only pro-

moted the frequency of CD34+ cells, but also yielded more hematopoietic progenitors

compared to BM-MSCs. Andreeva et al. also reported that human ASCs supported the

expansion of primitive hematopoietic precursors with the CD34+CD133− phenotype

from the umbilical cord blood [28]. These results suggest that ASCs can act as a feeder

layer in the co-culture system and promote CD34+ HSC/HPC expansion ex vivo. Be-

sides the supportive capacity of ASCs in the maintenance and proliferation of HSCs,

other studies have demonstrated that ASCs help HSCs to differentiate. It was reported

that ASCs showed biases in promoting differentiation of HSCs into myeloid and

Zhang et al. Cellular & Molecular Biology Letters           (2020) 25:16 Page 2 of 11



lymphoid lineages, while erythroid progenitors did not change [23]. ASCs particularly

helped HSCs to expand myeloid and lymphoid progenitor numbers in vitro, especially

granulocytes and their progenitors. However, Zhu et al. suggested that ASCs inhibited

the proliferation of erythroleukemia K562 cells in vitro [29]. It has also been proved

that ASCs can promote development of megakaryocytes and platelets [30]. The recent

studies have not drawn a consistent conclusion on hematopoietic regulation biases of

ASCs.

In order to further explore how ASCs support hematopoiesis in vivo, BM transplanta-

tions were performed in multiple studies. Nakao and colleagues showed that intra-bone

marrow transplantation of ASCs through injection into the tibias facilitated engraft-

ment efficiency and increased homing of donor HSCs [26]. ASCs attracted significantly

more Lineage−Sca-1+c-kit+ cells to the BM in comparison with BM-MSCs. This sup-

portive effect in hematopoietic recovery was a result of the dose-dependent effect of

ASCs [31], but the effective ASC:HSC ratio differed among several research groups [31,

32]. ASCs were also able to help hematopoietic reconstitution when they were directly

Table 1 Comparison between ASCs and BM-MSCs

ASCs BM-MSCs Reference

Source Adipose tissue Bone marrow [20]

Surface markers CD13
CD14
CD19
CD29
CD44
CD45
CD49d
CD90
CD105
CD106
CD166
HLA-DR

+
-
-
+
+
-
+
+
+
-
+
-

+
-
-
+
+
-
-
+
+
+
+
-

[12, 14, 15, 21, 22
]

Cytokines, chemokines,
and specific proteins

SCF
G-CSF
GM-CSF
M-CSF
SDF-1
IL-1α
IL-6
IL-8
IL-12
TNF-α
Leptin
Adipsin

+
+
+
+
+
-
+
+
-
+
+
+

+
+
+
+
+
+
+
+
+
+
-
-

[18, 19, 23]

Differentiation Adipogenesis
Chondrogenesis
Osteogenesis
Myogenesis
Angiopoiesis
Neurogenesis

+
+
+
+
+
+

+
+
+
+
+
+

[16, 17, 20]

Cell yield 0.5 × 104 - 2 × 105

cells per gram
1 × 103 cells per mL [12, 15]

Clinical trials 185 217

Approved products Alofisel Prochymal,
Stempeusel, TEMCELL,
Hearticellgram-AMI

[24, 25]

The number of registered clinical trials is obtained from the website of the U.S. National Library of Medicine under the
terms “adipose-derived stromal/stem cells” and “bone marrow mesenchymal stromal/stem cells” respectively (until
September 2019)
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transplanted into the BM cavity of wild type and NOD/SCID fatally irradiated mice

[26, 27]. Serial transplantations were performed to further elucidate the supportive en-

graftment effect of ASCs. The results revealed that intravenous co-infusion of ASCs

and HSCs improved engraftments in secondary and tertiary transplantation, which indi-

cated that ASCs regulated not only short-term repopulating progenitors but also long-

term HSCs [31]. Besides the supportive effect in BM transplantation, the regulatory

capacity of ASCs in the differentiation of HSCs was also explored. Lee and colleagues

showed that intraperitoneal co-injection with ASCs into NOD/SCID mice promoted

the growth of acute lymphoblastic leukemia cells in vivo [33]. Zhang et al. demon-

strated that ASCs have the potential to ameliorate platelet recovery in irradiated mice

[34]. ASC administration protected BM cells from apoptosis and particularly promoted

the frequency of CD41+ megakaryocytes within 21 days after irradiation. Thus, these

studies indicate that ASCs can support the expansion and specific differentiation of

HSCs in vivo. However, the regulatory effects of ASCs on the downstream progenitors

of HSCs, including common lymphoid progenitors, common myeloid progenitors,

granulocyte-macrophage progenitors, and erythro-myeloid progenitors, should be ex-

plored in future studies. Overall, these results provided evidence that ASCs could facili-

tate hematopoietic reconstitution in vivo, which was consistent with the regulatory

effects of ASCs on HSCs in vitro.

Mechanisms of ASC-mediated regulation in hematopoiesis

The inherent mechanisms by which ASCs regulate hematopoiesis attract much atten-

tion in order to better understand their properties related to hematopoietic regulation

(Fig. 1). It has been widely accepted that ASCs produce a variety of cytokines with dif-

ferent functions that contribute to the quiescence and bias differentiation of HSCs. Re-

tention factors such as SCF and SDF1 helped to maintain self-renewability and

proliferation of HSCs, whereas growth factors such as M-CSF, G-CSF, GM-CSF and

IL-6 helped progenitors to differentiate into functional blood cells [35]. SDF1, which is

highly expressed by ASCs, could bind to the primary physiological receptor CXCR4 on

hematopoietic progenitors. The SDF1-CXCR4 axis played an essential role in maintain-

ing quiescence of HSCs [36]. Similarly, other cytokines could communicate with HSCs

or more mature progenitors by binding to their specific receptors. Taken together,

ASCs exhibited functional properties in hematopoietic regulation by paracrine action.

In addition, mechanisms and signals other than cytokines are also thought to regulate

HSCs. The secretion of extracellular vesicles (EVs) is a possible mechanism for ASC-

mediated regulation in hematopoiesis. EVs are functional particles with RNAs, lipids,

and proteins inside them, wrapped by a lipid bilayer. These vesicle-associated RNAs are

thought to be signaling molecules contributing to intercellular communication [37]. Al-

though there is no report on the function of ASC-derived EVs in hematopoiesis, EVs

secreted by MSCs have shown therapeutic effectiveness, including treatment for graft-

versus-host disease (GVHD), acute kidney injury, and myocardial ischemia [38, 39]. It

has also been proposed by several groups that a type of small, non-coding micro-RNA

(miRNA) is involved in the post-transcriptional regulation for maintenance and differ-

entiation of stem cells [40, 41]. ASCs could function as a feeder layer in an ex vivo cul-

ture with CD34+ cells, and thus promote proliferation of HSCs via overexpression of
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miR-33 and miR-145 and impairment of p53 function [42, 43]. These miRNAs may

have an influence on cell cycle, apoptosis, and senescence of HSCs.

ECM was reported to function as a structural scaffold for cell-to-cell communication

between HSCs and the microenvironment [44]. ECM mediated cell adhesion and signal

transduction of the surrounding cells to provide functional and biochemical support.

TGF-β secreted by ASCs was involved in ECM remodeling and collagen deposition,

while CD44 expressed on ASCs affected ECM reorganization [45]. It was noted that

several signaling pathways (including Notch-Jagged/Delta, MAPK, Wnt, and Jak-Stat)

were activated when HSCs were exposed to MSCs [46]. For example, expression of

both the Notch ligands on MSCs and the receptors on HSCs increased in the co-

culture system. The activation of Notch signals inhibited the differentiation of HSCs.

Wnt signals were involved in Notch activation, which made them vital in self-renewal

and proliferation of HSCs as well [47, 48]. These signaling pathways on ASCs should

be explored further to better understand hematopoiesis.

Application of ASCs and future perspectives

ASCs are considered to be useful for therapies in diverse diseases. Due to the paracrine

function, multilineage differentiation, and immunological benefits, along with advan-

tages of easy extraction and abundance, ASCs have become increasingly popular in cel-

lular therapy. There are 185 clinical trials registered in the U.S. National Library of

Fig. 1 Mechanisms of ASC-mediated regulation in hematopoiesis. The secretion of a variety of cytokines
and chemokines is believed to be the main mechanism by which ASCs regulate hematopoiesis. The
molecules secreted by ASCs (e.g. SCF, SDF-1, etc.) can bind to the receptors on HSCs. The secretion of EVs is
another possible mechanism. The signaling molecules inside the lipid bilayer contribute to intercellular
communication. ECM mediates cell adhesion and signal transduction. The soluble and cell-surface proteins
expressed by ASCs are thought to be involved in ECM remodeling. Several signal pathways can be
activated when HSCs are exposed to ASCs, by which ASCs regulate self-renewal, proliferation, and
differentiation of HSCs
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Medicine thus far (September 2019), which have been conducted in the treatment of

cardiovascular diseases, neurological disorders, skeletal and muscle damage, etc. Among

the laboratory studies and clinical trials, the most promising utilization of ASCs was in

wound healing and tissue repair [49]. It was reported that direct injection of ASCs into

the tissue was effective to cure patients with acute myocardial infarction [50], perianal

fistula [51], and chronic injury [52], and combining them with bio-materials showed fa-

vorable prognosis for bone defects [53, 54]. A new ASC medicine to treat perianal fis-

tulas in patients with Crohn’s disease has been approved by the European Medicines

Agency, indicating that ASC products have moved one step forward in clinical applica-

tion [55]. Moreover, ASC-based therapy has been shown to be effective in the treat-

ment of GVHD [56] and knee osteoarthritis [57] when administered intravenously. The

mechanisms underlying these therapeutic effects include the capability of ASCs to dif-

ferentiate into mesodermal lineages and secrete soluble factors (TGF-β, VEGF, bFGF),

which could enhance tissue regeneration or down-regulate the inflammatory response

[58, 59].

MSCs can be obtained mainly from adult tissues including BM, adipose tissue, dental

pulp, peripheral blood, muscle and skin; and neonatal sources such as umbilical cord

blood (UCB), Wharton’s jelly and placenta [20]. Among the various sources, UCB-

MSCs and BM-MSCs are more applied in BM transplantation due to their comparative

capacity to regulate hematopoiesis. UCB-MSCs are of higher stemness than other types

of adult stem cells with a low immune response. The intravenous administration of

UCB-MSCs has been used to treat GVHD in clinical settings [60]. It has been reported

that UCB-MSCs helped HSC expansion ex vivo and enhanced the engraftment of HSCs

as effectively as BM-MSCs in a murine model [61]. These studies indicated that UCB-

MSCs can be used as an alternative source from birth-derived tissues in BM transplant-

ation. As reported previously, ASCs share many features with BM-MSCs, but differ in

immunophenotype, differentiation potential, transcriptome, proteome, and immuno-

modulatory activity [62], which may lead to heterogeneity in functions. Accordingly,

ASCs promoted engraftment of HSCs more rapidly than BM-MSCs in murine models

[26, 27]. Moreover, among MSCs from all other alternative sources, ASCs exhibited

stronger immunosuppressive capabilities than BM-MSCs [63–65]. Research from our

and other laboratories has shown that MSCs could facilitate engraftment of HSCs and

treat steroid-resistant acute GVHD as well [66, 67]. Both BM-MSCs and ASCs have

proved to be effective for the prevention and treatment of GVHD, according to the pre-

liminary phase I/II clinical studies [68–70]. These advantages mentioned above make

ASCs a promising candidate to promote hematopoietic reconstitution. The BM con-

tains less than 1 × 103 stromal cells per mL, while there are 0.5 × 104–2 × 105 stromal

cells per gram of adipose tissue, which indicates an MSC yield of at least 50-fold more

cells from fat tissue than from the BM [12]. These readily accessible and abundant cells

perfectly meet the requirement for clinical applications in terms of manipulation.

Meanwhile, scientists have explored new frontiers to extend our knowledge on ASC

application. A Japanese group applied a specific culture of ASCs with endogenous TPO

to obtain platelets [30], which might be a new technology to address platelet shortage if

well controlled and fully developed. ASCs have been used in organ reproduction (e.g.

cardiac valves, blood vessels, and bones) in combination with 3D printing. This tech-

nology has been successful after transplantation in mammals [71–74], which made this
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extremely promising to repair damaged organs. ASCs are expected to contribute im-

mensely to cell engineering in future and become one of the main sources of MSCs for

clinical application in coming decades.

Although the accumulated studies suggest a potential future for the clinical applica-

tion of ASCs, several questions need to be answered, with regard to donor and tissue

selection, as well as the manner of isolation, expansion, preservation, and infusion of

ASCs. It is important to determine whether the biological properties of ASCs are

dependent on the donor’s age, gender, body mass index (BMI) and health status. A

negative correlation was found between BMI of donor and the yield of ASCs per gram

[75]. The harvesting site is also believed to affect properties and yield of cells (Table 2).

ASCs from the subcutaneous and omental adipose tissue depot showed differences in

cell number and proliferation, but the in vitro differentiation capacity was not different

[80, 81]. Other studies provided opposite evidence that cells from subcutaneous depots

differentiate faster into adipocytes and osteoblasts than those from visceral depots [78,

79]. Studies have demonstrated that ASCs extracted from superficial abdominal areas

were advantageous in senescence over the cells from the upper arm and inguinal and

trochanteric areas [9, 10]. It has also been reported that ASC yields are much higher

from abdominal subcutaneous tissue than hips and thighs [83]. The above observations

indicated that ASCs from different sources might have diverse features, and abdomen

could be a preferable tissue for harvesting ASCs in clinical trials.

Protocols for isolation procedures and methods varied across institutions and labora-

tories. It has been reported that separation methods (mechanical or enzymatic) played

an important role in cell number counts, heterogeneity, and differentiation capacity of

ASCs. Higher numbers of ASCs can be obtained via a combination of mechanical and

enzymatic procedures [84, 85]. There is a lack of standardized protocols currently;

hence, ASCs isolated by various research groups may have different characteristics.

More evidence should be provided on the evaluation of cell yield, quality, characteris-

tics, and functions of ASCs from different liposuction studies. Meanwhile, it is import-

ant to develop methods to improve the quality and quantity of ASCs.

An ex vivo culture is usually needed for most clinical trials and fundamental studies

with ASCs. However, the lack of standardized culture conditions may affect the

Table 2 Comparison between ASCs from subcutaneous and visceral adipose tissues

Harvesting sites Subcutaneous depots Visceral depots Reference

Source Abdomen, hips,
thighs, knees

Intestines, omentum,
perirenal region

[76, 77]

Homogeneity High Low [78]

Surface markers CD13
CD44
CD90

+
+
+

+
+
+

[78]

Differentiation Adipogenesis
Chondrogenesis
Osteogenesis

+
+
+

+
+
+

[78, 79]

Proliferation + + [80, 81]

Cell yield High Low [81, 82]

High homogeneity indicates that ASCs isolated from subcutaneous depots have spindle-like morphology and uphold
their homogeneity in future passages. Both ASCs from subcutaneous and visceral depots can proliferate and give rise to
adipocytes, chondrocytes and osteoblasts, but the capacity of proliferation and differentiation might be different. High
cell yield indicates that more ASCs can be obtained from subcutaneous adipose tissues, compared to visceral
adipose tissues
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regeneration, proliferation, and differentiation abilities of ASCs. The freshly isolated

and expanded ASCs displayed several distinctions in biomarkers, gene expression, and

biological properties (e.g. secretion of cytokines) [86]. Previous studies have shown that

the expression of cell markers (e.g. CD105) increased during long-term culture, while

others (e.g. CD34) decreased [11]. The genetic integrity was preserved with minimal al-

teration up to five passages [87]. It is vital to obtain primary cells or cultured cells with

fewer passages owing to the dynamic phenotype of ASCs in vitro. Although the selec-

tion of optimal passages has also been studied [87, 88], the researchers did not report a

consistent conclusion. Future studies need to investigate how to isolate, purify, and

characterize ASCs in vitro. Standard protocols, dosage, and manner of administration

must be established to apply ASC-based therapies to clinical trials.

Conclusions
ASCs exhibit properties similar to those of BM-MSCs, including secretion of cytokines,

multi-differentiation, and immunological benefits, which confer great potential in ther-

apy. Thus, an in-depth investigation of heterogenicity of MSCs revealed that ASCs can

be considered as a competitive candidate. Many previous studies have provided evi-

dence on properties of ASCs in hematopoietic regulation; however, there are unre-

solved issues that need to be addressed before they can be widely utilized in clinical

applications.
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