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Background
Naïve CD4+T cells polarized into various effector T-helper (Th) cell subsets are charac-
terized by the production of different cytokines and functions through signature tran-
scription factors and cytokines [1]. Previous studies have shown that naïve CD4+ T cells 
can differentiate into Th1, Th2, Th9, Th17, Th22, regulatory T (Treg), and follicular 
helper T (Tfh) cells based on their respective transcription factors, environmental cues 
including cytokines, and ligand-receptor interactions from cell-cell contact [2–5]. For 
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instance, naïve CD4+T cells can differentiate and develop into Th17 cells when treated 
with IL-6, TGF-β, IL-1β, and IL-23 via the transcription factor retinoid-related orphan 
receptor-γt (RORγt) [6], and release IL-17A, IL-17F, IL-21, and IL-22, which are involved 
in various autoimmune diseases. Additionally, naïve CD4+ T cells were stimulated by 
TGF-β via Foxp3 skewing in Treg production of IL-10, which inhibited inflammation 
[7]. After naïve CD4+ T cells are exposed to IL-6 and TNF-α, the Th22 cells are induced, 
and the transcription factor aryl hydrocarbon receptor (AHR) is activated [8–11]. Th22 
secretes a primary cytokine, IL-22, which is crucial for maintaining skin immunity [12], 
mucosal antimicrobial host defense, and autoimmune disease [11, 13]. In addition to 
these classical key cytokines that induce naïve CD4+ T cells into different Th subsets, 
other factors such as NOTCH signaling also contribute to Th differentiation [14].

Cell-cell communication plays an essential role in metazoan development and is medi-
ated by the NOTCH signaling pathway [15]. In mammalian cells, there are four highly 
conserved trans-membrane receptors, i.e. NOTCH-1, -2, -3, and − 4, and five ligands, 
i.e. jagged-1, -2, delta-like-1, -3, and − 4 [16]. The NOTCH signaling is initiated from 
two adjacent cells, and involves NOTCH ligands and receptors that are noncovalently 
bound. In the transmembrane region of NOTCH proteins, two successive cleavages 
occur at S2 and S3 sites by disintegrin and metalloproteinase (ADAM) and γ-secretase, 
respectively. This process triggers the release of the NOTCH intracellular domain 
(NICD) into the cytoplasm. Then, the NICD travels to the nucleus and activates the tar-
get genes hairy and enhancer of split 1 (HES-1), HES-1 related with the YRPW motif 
(Hey-1), cyclin D1 and p21. These genes mediate multiple cellular processes such as cell 
differentiation, migration, proliferation, apoptosis, and the cell cycle [17]. The NOTCH 
signaling pathway is blocked by γ-secretase, in turn inhibiting downstream target gene 
expression, and suppressing cell growth and proliferation [18, 19]. On the other hand, 
activation of NOTCH signaling promotes proliferation of breast cancer cells and differ-
entiation of stem cells [20, 21]. Also, NOTCH signaling has been shown to play an essen-
tial role in maintaining cell fate decisions.

NOTCH signaling is important in the development and differentiation of T cells [21, 
22]. This signaling is the interplay with signal transducer and activator of transcription 3 
(STAT3) and mediates cell differentiation [23–25]. A previous study suggested that the 
NOTCH-AHR-IL-22 axis is involved in the pathogenesis of lung adenocarcinoma [26]. 
Similarly, NOTCH signaling has also been shown to promote secretion of interleukin 
(IL)-22 in CD4+ T cells [14, 27]. However, IL-22 is released from both Th17 and Th22 
cells during cytokine production [9]. Further, how the NOTCH signaling regulates this 
process, and the molecular mechanisms involved in Th22 cell differentiation, are not 
clearly understood. In this study, we aim to better understand the mechanism of the 
NOTCH signaling pathway in the differentiation of naïve CD4+T cells into Th22 cells.

Materials and methods
Reagents

Roswell Park Memorial Institute (RPMI) 1640 medium and fetal bovine serum (FBS) 
were purchased from Gibco (Gaithersburg, MD, USA). Jagged-1 and ((2S)-N-[(3,5-
difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl ester) DAPT were 
purchased from R&D (Minneapolis, MN, USA). Anti-CD4-conjugated fluorescein 
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isothiocyanate (FITC), anti-CD62L-conjugated eFluor 450, anti-IL-17A-conjugated PE, 
anti-IL-22-conjugated APC, anti-IFN-γ-conjugated PerCP-Cyanine5.5, anti-CD3 and 
anti-CD28 monoclonal antibodies, brefeldin A, fixation/permeabilization buffer, and 
Trizol reagent were obtained from Invitrogen (CA, USA). IL-6, TNF-α, IL-23, anti-IL-4 
antibody, and anti-IFN-γ antibody were purchased from Peprotech (London, UK). Pri-
meScript RT reagent Kit (TaKaRa, Otsu, Japan). Naïve CD4+ T Cell Isolation Kit (Milte-
nyi Biotec, Germany), ionomycin, and phorbol myristate acetate (PMA) were obtained 
from Sigma-Aldrich (St. Louis, MO, USA). Nucleofector Solution (VCA-1003) was pur-
chased from (Lonza Amaxa, Germany). Radioimmunoprecipitation assay buffer (RIPA) 
and phenylmethylsulfonylfluoride (PMSF) were obtained from Beyotime (Shanghai, 
China).

Mice

  C57BL/6 male mice (male) were purchased from the Guangdong Medical Laboratory 
Animal Facility (Foshan, China). Eight-week-old animals were used.  Animal care and 
experimental protocols were approved by the Ethics Committee of Southern Medical 
University.

Immunomagnetic bead isolation, cell culture, and Th22 differentiation

Mice were sacrificed, and the bodies were rinsed with 75 % ethanol. Subsequently, only 
lymph nodes without fat tissue were collected using forceps. The collected lymph nodes 
were put into a tissue culture dish with 4 mL of PBS with 2 % FBS and ground to obtain 
single-cell suspension with a syringe plunger. A stainless wire net with 200 meshes was 
used to filter the lymphocytes. The cells were harvested, centrifuged at 300 g for 5 min, 
and the supernatant was discarded. The cells were resuspended in 2 mL of red blood cell 
lysis buffer, and kept on ice for 5 min. The cells were then resuspended with RPMI 1640 
supplemented with 10 % fetal bovine serum, 100 U/mL penicillin, 100 mg/mL strepto-
mycin, and cell number was counted at a concentration of 1 × 108 cells/mL. Finally, the 
buffer was discarded.

According to the manufacturer’s instructions, from separated lymphocytes, naïve 
CD4+ (CD4+CD62L+) T cells were isolated using a mouse naïve CD4+ T cell isolation 
kit. The freshly harvested naïve CD4+ T cells were double-stained with anti-CD4-con-
jugated FITC and anti-CD62L-conjugated eFluor 450 to a purity of 94 % under a flow 
cytometer. The cells were then cultured in RPMI 1640 complete medium and main-
tained at 37 °C in an incubator containing 5 % CO2.

The obtained purified CD4+ T cells were stimulated by anti-mouse CD3 Ab and anti-
mouse CD28 Ab in a ratio of 1:1 (1 µg/mL), combined with factors such as IL-6 (30 ng/
ml),TNF-α (50 ng/mL), IL-23 (50 ng/mL), anti-IL-4 (10 µg/mL), and anti-IFN-γ (10 µg/
mL) to differentiate into Th22 cells. In a set of experiments, different concentrations 
of jagged-1 (0, 0.5, 1, 5 µg/mL) or the NOTCH signaling inhibitor γ-secretase inhibi-
tor DAPT (0, 1, 5, 10 µM) were added to the culture medium for 6 days. Cells treated 
with anti-mouse CD3 /CD28 Ab with an equal volume of RPMI 1640 complete medium 
served as a control. The cells treated with a combination of factors (IL-6, TNF-α, IL-23) 
formed the Th22 group, and jagged-1 (1 µg/mL) or jagged-1 (1 µg/mL) plus DAPT (10 
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µmoL/L) treated cells formed the jagged-1 group or DAPT group for qPCR, Western 
blotting and flow cytometry, respectively.

RNA interference

The HES-1 siRNA and mismatch HES-1 siRNA were synthesized by RiboBio (Guang-
zhou, China). The sequences of the HES-1 siRNA and the mismatch HES-1 siRNA 
were 5ʹ-CGA​GGU​GACC CGC​UUC​CUGdTdT-3ʹ and 5ʹ-CGA​GGU​CAC​CCG​GUU​
CCU​GdTdT-3ʹ, respectively. Freshly naïve CD4+ T cells were transfected with 100 nM 
of HES-1-targeting siRNA or 100 nM of mismatch HES-1 siRNA (M-HES-1-siRNA) 
according to the manufacturer’s instructions. Subsequently, the cells were cultured in 
RPMI 1640 complete medium with a combination of factors that induced Th22 cells for 
6 days.

Nuclear transfection with HES‑1 overexpression vector

The obtained naive CD4+ T cells (1 × 106 cells per sample) were resuspended in 100 
µL of room-temperature Nucleofector Solution (VCA-1003) (Lonza Amaxa, Ger-
many) according to the manufacturer’s instructions. The obtained cell suspension was 
combined with 2 µg of the pCVM6-HES-1 vector or 2 µg of the vector control (GeneP-
harma, Shanghai, China). Subsequently, the naïve CD4+ T cells and DNA suspension 
were transfected into a certified cuvette without air bubbles. The Nucleofector Program 
X-001 was used, and the cuvette with the above mixture was inserted for transfection. 
The transfected or untransfected cells were treated for 6 days with a combination of fac-
tors that induced Th22 cells.

Flow cytometry analysis

Later, the cells were treated with different culture conditions for inducing Th22 cells 
(described above). Six hours before the end of the above treatment (with a combina-
tion of factors), 50 ng/mL (PMA) and 1 mg/mL of ionomycin were added to the cells. 
Brefeldin A (10 µg/mL) was added to block protein transportation to the Golgi complex 
and protein accumulation in the endoplasmic reticulum. Surface staining was performed 
using anti-CD4-conjugated FITC at 37 °C for 15 min. The cells were washed, resus-
pended, fixed, and permeabilized with fixation/permeabilization buffer according to the 
manufacturer’s instructions. Intracellular staining with anti-IL-17A-conjugated PE, anti-
IL-22-conjugated APC, and anti-IFN-γ-conjugated PerCP-Cyanine5.5 was performed, 
also according to the manufacturer’s protocol. Flow cytometry was used to analyze the 
cells by applying a CD4+IFN-γ− gate on a flow cytometer (FACSAria, Becton Dickinson, 
Franklin Lakes, NJ, USA). Experiments were performed in triplicate, and Flow Jo Ver-
sion 7.6.1 was used for data analysis.

For some experiments, naïve CD4+ T cells cultured in Th22 cell culture conditions and 
treated with 1 µg/mL jagged-1 and 10 µM DAPT were used. For some experiments, naïve 
CD4+ T cells were transfected with M-HES-1-siRNA, HES-1-siRNA, vector control, 
and pCMV6-AC-HES-1, with a combination of factors that induced Th22 cells as in the 
previous description. Flow cytometry was used to analyze the percentage of Th22 cells.
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Quantitative real‐time PCR

   The total RNA was extracted from different treatment cells using Trizol Reagent, 
according to the manufacturer’s instructions. Reverse transcription (RT) was performed 
in a 20 µL reaction system using a TaKaRa PrimeScript reagent kit with the gDNA eraser 
(TaKaRa, Otsu, Japan) to synthesize cDNA, according to the manufacturer’s recommen-
dation. The cDNA was then amplified with a PrimeScript RT reagent kit according to the 
manufacturer’s instructions. Primers used in this study are listed as follows: Nicd sense 
5ʹ-TGA​ATG​GCG​GGA​AGT​GTG​AA-3ʹ, Nicd antisense 5’-ATA​GTC​TGC​CAC​GCC​TCT​
G-3, Il-22 sense 5ʹ-ATG​AGT​TTT​TCC​CTT​ATG​GGGAC-3ʹ, Il-22 antisense 5ʹ-GCT​
GGA​AGT​TGG​ACA​CCT​CAA-3ʹ, Ahr sense 5ʹ- CAA​ATC​CTT​CCA​AGCGG.

CATA-3ʹ, Ahr antisense 5ʹ-CGC​TGA​GCC​TAA​GAA​CTG​AAAG − 3ʹ, Hes-1 sense 
5ʹ-CAG​CCA​GTG​TCA​ACA​CGA​CAC​CGG​ACA​AAC​-3ʹ, Hes-1 antisense 5ʹ-TGC​CCT​
TCG​CCT​.

CTT​CTC​CAT​GAT​A-3ʹ, β-actin sense 5ʹ-AAC​AGT​CCG​CCT​AGA AGCAC-3ʹ, β-actin 
antisense 5ʹ-CGT​TGA​CAT​CCG​TAA​AGA​CC-3ʹ. Fluorescence was detected using a 
CFX96 Touch instrument (Bio-Rad, Hercules, CA). Each sample was run in triplicate 
and was compared with β-actin as the reference gene. Results were analyzed by the 2−

ΔΔCT method for the relative quantification of mRNA expression.

  Western blotting analysis

Cells from the treatment and control groups were harvested, and washed once with 
cold PBS for total protein extraction. The cells were lysed with RIPA containing 1 mM 
PMSF for 20 min on ice. Then, the lysates were centrifuged (12,000 × g 30 min at 4 °C). 
The supernatants were transferred to new tubes. Bicinchoninic acid (BCA) assay was 
used to determine protein concentration. Then, the sample was denatured by boil-
ing it at 95℃ for 5 min with a loading buffer. The protein analysis was carried out on 
12 % sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels and 
transferred electrophoretically to polyvinylidene difluoride (PVDF) membranes. After 
blocking with 5 % bovine serum albumin (BSA) dispensed with Tris-buffer saline con-
taining 0.1 % Tween-20 (TBST) for 1 h at room temperature, the PVDF membranes 
were incubated overnight at 4 °C with the indicated primary antibodies: anti-STAT3 
(1:1000, #sc-8019, Santa Cruz), anti-p-STAT3 (1:1000, #sc-8059, Santa Cruz), anti-NICD 
(1:1000, #sc-32,745, Santa Cruz), anti-HES-1 (1:2000, #ab108937, Abcam), anti-AHR 
(1:2000, #ab85666, Abcam), anti-IL-22 (1:2000, # ab134035, Abcam) and anti-Actin 
(1:1000,#AA128, Beyotime). The membranes were washed three times with TBST and 
then incubated with the appropriate horseradish peroxidase (HRP)-conjugated second-
ary antibody for 1 hour at room temperature. An enhanced chemiluminescence detec-
tion kit (#35,050, Thermo Fisher) was used to visualize specific bands on the membranes 
according to the manufacturer’s instructions. ChemiDoc Touch (Bio-Rad, Hercules, CA) 
was used to quantify the band density. Quantity One analysis software (Bio-Rad, Hercu-
les, CA) was used to analyze the protein band.

Statistical analysis

Statistical analysis of data was performed using GraphPad Prism 6.0 (GraphPad Software 
Inc., San Diego, CA, United States). Student’s t test was used to compare two groups. 
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Non-parametric one-way analysis of variance (ANOVA) followed by Tukey’s post hoc 
test was used to analyze the statistical significance among multiple groups. Results are 
expressed as the mean ± SD, with p < 0.05 being considered as statistically significant. All 
experiments were performed at least three times independently, with one representative 
experiment shown here.

Results
IL‑6, TNF‑α, and IL‑23 treatment promoted differentiation of naïve CD4+ T cells into Th22 

cells

Immunomagnetic separation was used to isolate and purify naïve CD4+ T cells. First, 
polarized Th22 (CD4+IL22+IFNγ−IL17A−) cells were established by culturing purified 
naïve CD4+ T cells which were treated with anti-mouse CD3/CD28, anti-IL-4, anti-
IFN-γ antibodies, simultaneously with a combination of factors (IL-6, TNF-α, and IL-23) 
in vitro. Later, extracellular and intracellular staining of the cells was done to investigate 
the frequencies of Th22 cells. The obtained results showed that after the presence of a 
combination of factors on the naïve CD4+ T cells, they were obviously converted into 
Th22 cells compared with the control (p < 0.001 ) (Fig. 1a, b). As assessed by RT PCR, 
mRNA expression of Ahr and Il-22 significantly increased after the treatment with a 
combination of factors compared with the control (p<0.001, p<0.01) (Fig. 1c). However, 
treatment with a combination of factors did not affect the mRNA expression of Nicd 
and Hes-1 when compared with the control (p > 0.05) (Fig. 1c). Furthermore, the western 
blotting analysis was used to analyze the expression of p-STAT3, STAT3, NICD, HES-1, 
AHR, and IL-22. The protein expression was consistent with the expression seen in the 
qPCR analysis. After treatment with the combination of factors, both AHR and IL-22 
expression levels were significantly increased (p>0.001) (Fig. 1d, h − i), and the activity 
of STAT3 was enhanced (Fig. 1d, e). However, treatment with a combination of factors 
did not affect the expression levels of NICD and HES-1, when compared with control 
treatment (p > 0.05) (Fig.  1d, f − g). Treatment with a combination of factors elevated 
p-STAT3, AHR and IL-22 compared with the control. These results show that IL-6, 
TNF-α, and IL-23 might strongly activate the STAT3 pathway, and promote the differen-
tiation of naïve CD4+ T cells into Th22.

NOTCH signaling governed IL‑22 expression

To investigate the role of NOTCH signaling in CD4+ T cells expression of IL-22 was 
assessed. The purified naïve CD4+ T cells were treated with various cytokines as men-
tioned above, and then exposed to jagged-1 at various concentrations (0, 0.5, 1, 5 µg/
mL) for 6 days. Subsequently, flow cytometry and western blotting were performed to 
analyze the cells and protein of IL-22. The proportion of IL-22+ cells gradually increased 
with increasing jagged-1 concentration (Fig. 2a). A concentration-dependent increase in 
the level of IL-22 was also detected in naïve CD4+ T cells exposed to jagged-1 (Fig. 2b, 
c). Since the main objective of this study was to identify the change in IL-22 expression 
rather than toxicity, an exposure dose of up to 1 µg/mL was used as the optimum con-
centration for inducing IL-22.

To further confirm the role of NOTCH signaling in the expression of IL-22, we used 
DAPT (0, 1, 5, 10 µM), a γ-secretase inhibitor, which suppresses NOTCH signaling, to 
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Fig. 1    Naïve CD4+ T cells could be differentiated into Th22 cells with multiple cytokines in vitro. Naïve 
CD4+ T cells were collected from mice and cultured for 6 days in conditions designed to induce Th22 
differentiation (anti-CD3/CD28 Abs, anti-IFN-γ Ab, anti-IL-4 Ab, IL-6, TNF-α, and IL-23). a Representative 
plots of naïve CD4+T cells stimulated for 6 days under optimal Th22 conditions. CD4+ T cells and Th (CD4+ 
IFN-γ−) were gated by flow cytometry to analyze the Th22 cells. b Percentage quantitation of Th22 cells. c 
The alterations of Nicd, Hes-1, Ahr, and Il-22 mRNAs were evaluated by RT-PCR. d Western blotting of the 
expression of p-STAT3, STAT3, NICD, HES-1, AHR, and IL-22 in total protein lysates from different treatment 
cells. e–i Representative densitometric quantification of p-STAT3, STAT3, NICD, HES-1, AHR, and IL-22 
expression in T cells, β-ACTIN was used as an endogenous control for protein expression. The results show 
a typical experiment; each bar represents the mean ± S.E.M. of at least three independent experiments. 
**p < 0.01, ***p < 0.001, compared with control group
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analyze the alteration of IL-22. The results demonstrated that DAPT could reduce the 
proportion of IL-22+ cells, and reduce the level of IL-22 in a concentration-dependent 
manner (Fig. 2d−f ). A 10 µM concentration of DAPT was sufficient for inhibiting the 
expression of IL-22. Thus, the activation of NOTCH signaling with jagged-1  increased 
the level of IL-22 in a dose-dependent manner, and blockade with DAPT resulted in it 
declining, also in a dose-dependent manner.

Blocked NOTCH signaling pathway inhibited Th22 cell polarization

To address the involvement of possible molecular mechanisms with NOTCH signaling 
in the polarization of Th22 cells, jagged-1 (1 µg/mL) and DAPT (10 µM) were used. Flow 

Fig. 2    Effect of different concentrations of jagged-1 and DAPT on mediated expression of IL-22. After 
the naïve CD4+ T cells were pretreated with a combination of factors, different concentrations of jagged-1 
(0, 0.1, 0.5, 1, 5 µg/mL) were added to culture medium. a Flow cytometric analysis of the positive IL-22 cell 
proportion in different doses of jagged-1 treatment. b, c IL-22 proteins were determined by Western blotting. 
d Naïve CD4+ T cells were treated with the combination of factors, and exposure with or without jagged-1 
(1 µg/mL), and different doses of DAPT added (0, 1, 5, 10, 20 µM). Then, the percentages of positive IL-22 cells 
were assayed by flow cytometry. e, f Following the treatment, expression of IL-22 protein was determined 
by Western blotting. Data are presented as the mean ± SD of three independent experiments. **p < 0.01, 
***p < 0.001 vs. untreated control, ##p < 0.01 vs. jagged-1 (1 µg/mL) without DAPT group
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cytometry was performed to analyze the effect of phenotypes of CD4+ T cells treated 
with jagged-1 alone or jagged-1 combined with DAPT on the frequency of Th22 cells. 
Treatment with a combination of factors significantly increased the percentage of Th22 
cells, and jagged-1 further increased it (Fig. 3a, b), whereas treatment with jagged-1 plus 

Fig. 3  NOTCH signaling pathway was involved in differentiation of CD4+ T cells towards Th22 cells. Naïve 
CD4+ T cells were cultured in conditions designed to induce Th22 differentiation, either 1 µg/mL jagged-1 
treatment alone or jagged-1 combined with DAPT (10 µM). a The percentage of Th22 (CD4+IL-22+IFNγ−IL-17ˉ) 
cells was analyzed by flow cytometry in naïve CD4+ T cells treated with PBS, jagged-1 or jagged-1 plus DAPT. 
b Percentage quantitation of Th22 cells. c Gene expression of Nicd, Hes-1, Ahr, and Ii-22 was analyzed by 
RT-PCR. d Representative western blot showing protein levels of p-STAT3, STAT3, NICD, HES-1, AHR, and IL-22 
extracted from different groups. e−i Densitometric analysis of p-STAT3, STAT3 NICD, HES-1, AHR, and IL-22 
levels was performed with Quantity One software and data were represented as the means ± S.E.M. of three 
different experiments. **p < 0.01, ***p < 0.001, compared with control group; #p < 0.5, ##p < 0.01, ###p < 0.001, 
for jagged-1 versus Th22 groups; △△p < 0.01, △△△p < 0.001, for DAPT versus jagged-1 groups
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DAPT markedly decreased the proportion of Th22 compared to the jagged-1 group 
(Fig. 3a, b). Simultaneously, this treatment also inhibited the mRNA expression of Nicd, 
Hes-1, Ahr, and Il-22 (Fig. 3c), and significantly reduced the protein levels of p-STAT3, 
NICD, HES-1, AHR, and IL-22 (Fig. 3d − f ) compared with the jagged-1 group (p<0.001, 
p<0.05). Thus, these findings provided further evidence that NOTCH signaling plays an 
important role, and inhibiting it would contribute to a reduction in the differentiation of 
naïve CD4+ T cells towards Th22 cells.

HES‑1 plays an essential role in mediating naïve CD4+ T cell differentiation into Th22

HES-1  is a downstream target gene of the NOTCH signaling pathway [28]. We fur-
ther explored whether alteration of HES-1 expression affects the proportions of naïve 
CD4+ T cells to Th22 cells. Naïve CD4+ T cells were transfected with HES-1 plasmid or 
HES-1-siRNA and then exposed to the combination of factors for inducing Th22 cells 
as described in the "Materials and Methods" section. The results show that both HES-1 
siRNA and HES-1 plasmid were able to remarkably alter the expression of HES-1  in 
naïve CD4+ T cells (p<0.001, p<0.05) (Additional file  1: Fig.  1a, b). The percentage of 
Th22 cells was analyzed by flow cytometry. We observed that knock down of the Hes-1 
gene with HES-1 siRNA resulted in the reduction of Th22 frequency, whereas overex-
pression of HES-1 significantly promoted the elevation of Th22 cells (p<0.001, p<0.05) 
(Fig. 4a, b). Compared with the M-HES-1 siRNA group the HES-1 siRNA treatment not 
only significantly suppressed the level of Hes-1, but also reduced the expression of Ahr 
and Il-22 (p<0.01) (Fig. 4c). In contrast, as assessed by qRT-PCR, the overexpression of 
HES-1 was able to boost the level of Hes-1, Ahr, and Il-22 levels compared to the vec-
tor control (p<0.01, p<0.001) (Fig. 4c). We also found that no matter how high or low, 
the expression of HES-1 did not affect the level of NICD (p > 0.05) (Fig.  4c−d, f ), but 
the level of p-STAT3 could be changed (Fig.  4d, e). The total protein levels of HES-1, 
AHR, and IL-22 were consistent with the changes observed in their mRNA expression 
(p<0.01) (Fig. 4c, g−i). These results demonstrated that the NOTCH signaling pathway 
downstream target gene Hes-1 plays a role in the differentiation of naïve CD4+ T cells 
into Th22 cells.

Discussion
Various studies have reported that Th22 cells are a new subset of Th cells that are phe-
notypically different from Th17 cells [11, 29]. Th22 produces only high levels of IL-22 
and neither IL-17A nor interferon-γ [9, 29]. A previous study showed that a combina-
tion of four factors and an inhibitor [IL-6, IL-23, IL-1β, FICZ (aryl hydrocarbon receptor 
ligands), and TGF-βR inhibitor] could significantly differentiate naïve CD4+ T cells into 
Th22 cells [29]. This treatment increased the expression of IL-22 significantly and sup-
pressed the production of IL-17A. They also found that IL-6, IL-23, and IL-β increased 
the production of both IL-22 and IL-17. However, a study by Thomas Duhen [9] showed 
that treatment with IL-6 alone or combined stimulation with IL-6 and TNF-α initiated 
the differentiation of Th22 cells and elevated the production of IL-22. When the com-
bined stimulation with IL-1β added further enhanced IL-22, IL-17 was also strongly 
induced at the same time. Furthermore, the addition of high doses of TGF-β markedly 
suppressed the differentiation of Th22 cells. The study of autoimmune diseases such as 
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rheumatoid arthritis has shown that a combination of TNF-α, IL-1β, and IL-6 effectively 
promotes the differentiation of Th22 cells [30]. Although many cytokines have been 
suggested to induce naïve CD4+ T cells to express IL-22 [9, 29, 31], this has not been 
achieved. Based on previous studies, we employed IL-6, IL-23, and TNF-α combined 
stimulation of naïve CD4+ T cells to induce their differentiation into Th22 cells. Flow 
cytometry analysis of the naïve CD4+ T cells exposed to TNF-α, IL-6, and IL-23 showed 

Fig. 4    HES-1 was indispensable in naïve CD4+ T cell differentiation into Th22 cells. Naïve CD4+ T cells 
were transfected with HES-1-siRNA, HES-1 plasmid, or their controls. Subsequently, the transfection cells 
were cultured in conditions designed to induce Th22 differentiation. a The intracellular IL-17A and IL-22 in 
transfection CD4+ T cells were assayed by flow cytometry 6 days after the combination of factors induced 
Th22 cells. b Quantitative analysis of the percentage of IL-22+ IL-17A− cells was performed. c RT-PCR was 
performed to evaluate the expression of Nicd, Hes-1, Ahr, and Il-22. d Western blot for p-STAT3, STAT3, 
NICD, Hes-1, AHR, and IL-22 was performed to assess the alteration. e−i The relatively quantified protein 
bands from western blot were executed with the Quantity One software and data were represented as the 
means ± S.E.M. of three different experiments. *p < 0.05, ***p < 0.001, compared with the control group; 
#p < 0.5, ##p < 0.01, for HES-1 siRNA versus M-HES-1siRNA groups; △p < 0.05, △△p < 0.01, △△△p < 0.001, for 
pCMV6-AC-HES-1 versus vector control groups
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that this treatment could obviously increase the proportion of Th22 cells, up-regulate 
the expression of AHR and IL-22, and cause phosphorylation of STAT3. Therefore, the 
role of TNF-α, IL-6, and IL-23 in inducing Th22 cells is further verified.

The NOTCH signaling pathway plays a significant role in the modulation and differen-
tiation of T cells [32]. Previous studies have suggested that NOTCH signaling mediates 
the production of IL-22 from CD4+ T cells [14, 26, 33]. Muhammad Shamsul Alama 
et al. found that the level of IL-22 increased due to overexpression of NICD or NOTCH 
ligand in CD4+ T cells, and the expression of IL-22 remained unaltered by γ-secretase 
inhibitor treatment or RBP-J-deficient, in vitro and in vivo[14]. This study showed that 
treatment of naïve CD4+ T cells with a combination of factors promoted the differen-
tiation of Th22 cells, and the addition of the NOTCH signaling ligand jagged-1 further 
enhanced the proportion of Th22 cells, as well as elevating the mRNA and protein level 
of AHR and IL-22.  Our findings are in accordance with those of Muhammad Shamsul 
Alama, who showed that the NOTCH signaling pathway promotes the differentiation of 
Th22 cells.

In contrast, pharmacological inhibitors were used to block this pathway, with DAPT 
downregulating the proportion of Th22 cells, along with NICD and HES-1 mRNA and 
protein, transcription factor AHR and IL-22. Similarly, studies on lung adenocarci-
noma and hepatitis C virus-infected patients also support the observation that activated 
NOTCH signaling increases the percentage of Th22 cells [26, 33]. Furthermore, it was 
proposed that the NOTCH-AHR-IL-22 axis was involved in this process. Consistent 
with this finding, our study indicated that the expression of both AHR and IL-22 was up-
regulated in the Th22 and jagged-1 groups after activation of NOTCH signaling. Inter-
estingly, upregulation of the NOTCH signaling target protein HES-1 was also observed, 
and expression of NICD, HES-1, AHR, and IL-22 was reduced by DAPT. This study 
focused on the NOTCH signaling downstream target protein HES-1 to demonstrate its 
role in mediating naïve CD4+ T cells’ differentiation into Th22 cells.

According to a previous study, retroviral overexpression of the NOTCH signal-
ing downstream target gene Hes-1 does not influence T cell differentiation in human 
CD34+ hematopoietic stem cells [34]. However, a later study reported that inhibition 
of NOTCH1 signaling with DAPT could decrease the population of splenic Th17 cells, 
mRNA expression of Th17 cell-specific transcription factor RORγt, Hes-1, as well as IL-
17A mRNA and IL-17A serum concentration in a mouse model of psoriasis-like skin 
inflammation [35]. In addition, another study [32] also supported the view that activat-
ing NOTCH signaling would promote the differentiation of Th17 cells in experimental 
autoimmune encephalomyelitis. Hence, there might be no consensus on the effect of 
NOTCH signaling in T cells’ development and differentiation. In this study we focused 
on Th22 cells, which showed that overexpression of HES-1 improved the proportion of 
Th22 cells as well as the mRNA and protein expression of AHR and IL-22, and promoted 
STAT3 phosphorylation. On the other hand, Hes-1 knockdown with siRNA reduced 
the percentage of Th22 and inhibited both AHR and IL-22, and decreased STAT3 phos-
phorylation. Furthermore, neither overexpression nor knockdown of HES-1 could alter 
the mRNA and protein expression of NICD. Thus, the results of this study suggest the 
possibility of the role of NOTCH signaling and the downstream gene Hes-1 in regulat-
ing Th22 cells. A schematic diagram showing the action of IL-6, IL-23, and TNF-α in 



Page 13 of 15Zeng et al. Cell Mol Biol Lett            (2021) 26:7 	

inducing naïve CD4+ T cells into Th22 cells with NOTCH signaling is shown in Fig. 5. 
However, a limitation of this study is that we have not precisely explored the role of the 
STAT3 signaling pathway in this process.

Conclusions
  This study indicates that the NOTCH signaling pathway plays an essential role in the 
development and differentiation of T cells, especially Th22 cells. Activated NOTCH 
signaling or overexpression of the NOTCH downstream target HES-1  induces naïve 
CD4+ T cells toward differentiation of Th22. These results expand our knowledge about 
the NOTCH signaling in T cells and may provide an additional therapeutic intervention 
approach to autoimmune disease.
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