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Background
Chemotherapy is an effective method of tumor therapy, but some tumors cannot be 
treated effectively due to multidrug resistance (MDR) [1, 2]. A chemotherapeutic failure 
of about 85–90% has been reported for solid tumors [3], making this the main reason 
for tumor relapse, metastasis and poor clinical outcomes for patients. Various molec-
ular and cellular processes, including membrane transporters, oncogenes, tumor sup-
pressors, DNA repair, apoptosis and epithelial–mesenchymal transition (EMT), are 
associated with chemoresistance in tumor cells [4]. In addition to this challenge, chemo-
therapeutic drugs can themselves cause severe side effects in patients, including cardio-
myopathy, typhlitis and acute myelotoxicity [5, 6].

Doxorubicin (DOX; brand name Adriamycin) is an anthracycline that is widely used 
as an anticancer agent for various tumors. It inhibits DNA replication and transcription 
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by causing DNA damage that prevents mitosis in tumor cells. It also promotes apoptosis 
by stimulating topoisomerase II to cut DNA strands. However, despite its wide clinical 
application, DOX is a double-edged sword: it damages normal tissues, thus negatively 
affecting the quality of patients’ lives during and after treatment. It has toxic effects on 
normal heart, brain, kidney and liver tissues [7].

Clarifying the molecular basis of DOX resistance could enable the development and 
introduction of novel therapeutic modalities with fewer and/or lower-impact side effects 
in cancer patients. Various genetic mutation and epigenetic mechanisms can be related 
with DOX resistance. Mutations in ABC transporter family members such as ABCB1 
[8], ABCBG2 [9] and MRP1 [10], as well as DNA repair factors such as p53 [11–14] are 
considered to be the major causes of DOX resistance. There is also evidence for a role of 
epigenetic aberration in chemoresistance [15–17].

Long non-coding RNAs (lncRNAs) are involved in various cellular processes via tran-
scriptional regulation of their target genes. They can also function as oncogenes or 
tumor suppressors [18, 19]. Based on their biogenesis, lncRNAs are categorized as inter-
genic, antisense, intronic, overlapping or full lapping [18]. Antisense (AS) lncRNAs are 
the largest category, making up about 70% of the long non-coding transcriptome [20].

LncRNAs have important effects on tumorigenesis through their modulation of vari-
ous pathophysiological processes, including the stability of mRNA, RNA splicing, chro-
matin remodeling and miRNA sponging (Fig.  1) [21–26]. Their deregulation is one of 
the main obstacles for the effectiveness of chemotherapy [27–29]. They are involved in 
chemotherapeutic responses through their regulation of histone modification and DNA 
methylation. Since epigenetic signatures are inheritable and reversible, they have been 
suggested as effective biomarkers for the prediction of chemotherapeutic outcomes 
[29]. This review summarizes the molecular mechanisms whereby lncRNAs affect DOX 
responses in tumor cells (Fig. 2, Table 1).

Fig. 1  The molecular mechanisms of lncRNA actions in pathophysiological processes
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Breast cancer

Various screening and therapeutic methods have been used against breast cancer [30], 
but in advanced stages, many patients still develop invasive carcinoma and have poor 
prognosis [31]. Although Doxorubicin is one of the most efficient drugs for breast cancer 
treatment, drug resistance can be observed after several treatments [32]. About 30% of 
breast cancer patients who receive chemotherapy experienced the poor prognosis that is 
associated with the expression of multidrug resistance proteins [33].

It has been reported that XIST increases tumor cells proliferation and suppresses 
apoptosis in DOX-treated MDA-MB-231 cells through upregulation of the anillin actin-
binding protein (ANLN). XIST was suggested to be a competitive endogenous RNA that 
increases the levels of ANLN expression via miR-200c-3p targeting [34].
Linc00152 is a critical factor during the progression of various cancers, including lung, 

liver, and colorectal cancer (CRC) [35–37]. Mitosis and the cell cycle could be modulated 
by Linc00152 in Hela cells [38]. During EMT, epithelial tumor cells gain mesenchymal 
properties through reduced adhesion and increased motility. This process is involved in 
early stages of tumor metastasis [39, 40]. Linc00152 upregulation has been reported in 
breast cancer tissues and cell lines, where it increased the levels of cell growth, migra-
tion, EMT and DOX-resistance [41].

Multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette 
(ABC) C superfamily, which is involved in MDR of different tumors [42, 43]. Increased 
linc00518 and MRP1 expression levels have been reported in breast cancer tissue and 
cell lines. Higher expressions of linc00518 and MRP1 were also observed in MDR breast 
tumor cells (MCF-7/DOX) in comparison with parental cells (MCF-7). Drug resistance 
could be improved through regulation of the miR-199a/MRP1 axis in breast cancer tis-
sue. Linc00518 upregulated the MRP1 via MiR-199a sponging. The resistance of the 

Fig. 2  The molecular mechanisms for lncRNA regulation of doxorubicin (DOX) resistance
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Table 1  All of the long non-coding RNAs associated with Doxorubicin response in different cancers

Cancer type DOX response LncRNA Target Samples Function References

Breast cancer (BC)

 BC Resistance XIST miR-200c-3p /
ANLN

MDA-MB-231/
ADM and 
MDA-MB-231 
cell lines

XIST up regu‑
lated ANLN 
by sponging 
miR-200c-3p 
and inhibited 
cell prolifera‑
tion as well 
as promoted 
apoptosis

[34]

 BC Resistance Linc00152 - 40 NT*
MDA-MB-231 

and MCF-7 
cell lines

Knockdown 
of Linc00152 
suppressed 
tumor 
growth, cell 
migration, 
invasion, and 
chemo-
resistance

[41]

 BC Resistance Linc00518 miR-199a/MRP1 30 NT
MCF-10A, 

MCF-7/ADR 
and MCF-7 
cell lines

Linc00518 
Knockdown 
suppressed 
MRP1 expres‑
sion and 
induced cell 
apoptosis

[44]

 BC Resistance HOTAIR PI3K/AKT MCF-7 and 
DOXR-MCF-7 
cell lines

HOTAIR sup‑
pressed PI3K/
AKT pathway, 
reduced cell 
survival and 
promoted 
apoptosis

[48]

 BC Resistance Linc00668 SND1 HMEC-hTERT, 
MCF-10A, 
MCF-7, T47D, 
MDA-MB-231, 
HS578t, 
and 293T, 
SUM149, and 
SUM159 cell 
lines

Linc00668 inter‑
acted with 
SND1 and 
regulated 
SMAD2/3/4 
expression, 
and also 
decreased 
invasion, 
self-renewal, 
and chemo-
resistance

[54]

 BC Resistance DCST1-AS1 ANXA1 MDA-MB-231, 
BT-549, T-47D, 
and MCF7 cell 
lines

DCST1-AS1 tar‑
geted ANXA1 
and induced 
EMT

[61]

 BC Resistance LINC00160 C/EBPβ/TFF3 47 NT
MCF‐7, MCF‐7/

Tax, BT474, 
BT474/Dox 
and MCF10A 
cell lines

LINC00160 
knockdown 
reduced cell 
migration 
and invasion

[64]
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Table 1  (continued)

Cancer type DOX response LncRNA Target Samples Function References

 BC Resistance LINP1 CASP9/BAX MDA-MB-231, 
MDA-MB-
231/5FU, 
MDA-MB-231/
DOX, MDA-
MB-468 and 
MCF7 cell 
lines

LINP1 
knockdown 
suppressed 
tumor 
growth and 
metastasis 
as well as 
promoted 
apoptosis

[65]

 BC Resistance H19 CUL4A /ABCB1/
MDR1

MCF-7 cell lines H19 up regu‑
lated CUL4A 
and ABCB1/
MDR1 genes

[69]

 BC Resistance H19 PARP-1 63 NT
MCF-7 and 

MCF-7/Dox 
cell lines

Knockdown of 
H19 increased 
PARP-1 
expression 
and induced 
cell death

[71]

Osteosarcoma (OS)

 OS Resistance TUG1 AKT Saos-2 and 
MG-63 cell 
line

Polydatin 
inhibited 
TUG1/AKT 
axis and pro‑
liferation and 
promoted 
apoptosis

[83]

 OS Resistance FOXC2-AS1 FOXC2 68 NT
MG63, SaoS2 

and HOS cell 
lines

FOXC2-AS1 
facilities 
ABCB1 
expression 
by increas‑
ing FOXC2 
expression

[86]

 OS Resistance FOXC2-AS1 ABCB1 MG63, SaoS2 
and U-2OS 
cell lines

Silencing of 
FOXC2-AS1 
and ABCB1 
repressed 
tumor 
growth

[89]

 OS Resistance OIP5-AS1 miR-137-3p 56 tumor 
tissues and 
16 normal 
tissues

hFOB1.19, 
MG63, and 
MG63/DOX 
cell lines

OIP5-AS1 
knockdown 
inhibited pro‑
liferation and 
metastasis

[93]

 OS Resistance OIP5‐AS1 miR‐200b‐3p 80 patients
MG63, KHOS 

and U2OS cell 
lines

OIP5‐AS1 
sponged 
miR‐200b‐3p 
and regu‑
lated FN1 
expression. 
Overexpres‑
sion of FN1 
contributed 
to the 
sensitivity of 
OS cells to 
doxorubicin

[97]
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Table 1  (continued)

Cancer type DOX response LncRNA Target Samples Function References

 OS Resistance SNHG12 miR-320a / 
MCL1

32 doxorubicin-
resistant 
patients and 
32 doxoru‑
bicin-sensitive 
patients

MG-63, U2OS, 
HOS, SAOS-2 
and hFOB cell 
lines

SNHG12 modu‑
lated Wnt/β-
catenin 
pathway, 
so inhibited 
miR-320a 
expression 
and pro‑
moted MCL1 
expression

[103]

 OS Resistance LINC00426 miR-4319 MG63, KHOS, 
U2OS, MG63/
DXR, and 
KHOS/DXR 
cell lines

Knockdown of 
LINC00426 
significantly 
decreased 
cell viability 
and prolifera‑
tion

[104]

 OS Sensitivity CTA​ miR-210 30 patients
Saos-2, U-2OS, 

MG-63 and 
MG-63/DOX 
cell lines

Overexpres‑
sion of CTA​ 
reduced 
autophagy 
and 
promoted 
apoptosis

[105]

 OS Sensitivity FENDRR ABCB1/ ABCC1 80 patients
MG63, SaoS2, 

HOS and 
MG63/DXR 
cell lines

FENDRR down 
regulated 
ABCB1 and 
ABCC1 as 
well as sup‑
pressed DOX 
resistance 
and induced 
cells apop‑
tosis

[108]

Gastric cancer (GC)

 GC Resistance HOTAIR miR-217 30 NT
BGC-823, SGC-

7901, KATO-3, 
MGC-803, and 
GES1

Knockdown 
of HOTAIR 
inhibited cell 
proliferation 
and migra‑
tion

[116]

 GC Sensitivity UCA1 PARP 77 NT
GES-1, BGC-823 

and SGC7901 
cell lines

Knockdown of 
UCA1 caused 
repression of 
proliferation 
in cancerous 
cells

[120]

 GC Resistance UCA1 miR-27b 28 patients
SGC-7901, SGC-

7901/ADR, 
SGC-7901/
DDP and 
SGC-7901/FU

Knockdown 
of UCA1 
induced the 
expression 
of miR-27b, 
resulting in 
reduction of 
Bcl2 expres‑
sion and 
promotion 
of CASP3 
expression

[123]
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Table 1  (continued)

Cancer type DOX response LncRNA Target Samples Function References

 GC Resistance D63785 miR-422a 21 patients
GES-1, 

SGC7901, 
MGC803, 
BGC823, NCI-
N87, HEK293 
and HEK293T 
cell lines

Reduced 
lncR-D63785 
expression 
repressed 
proliferation, 
invasion, and 
metastasis

[128]

 GC Resistance NEAT1 – 76 NT
SGC790, GES-1, 

SGC7901/
ADR cell lines

NEAT1 
repressed cell 
proliferation, 
apoptosis, 
and invasion

[131]

 GC Resistance MRUL P-gp SGC7901/ADR, 
SGC7901/
VCR, 
SGC7901/
ADR, and 
SGC7901 cell 
lines

MRUL deple‑
tion induced 
apoptosis

[132]

Leukemia and lymphoma

 AML Resistance KCNQ1OT1 miR-193a3p / 
Tspan3

74 patients and 
37 healthy 
subjects

HS-5, HL60, 
HL60/ADR, 
K562, and 
K562/ADR cell 
lines

KCNQ1OT1 
knockdown 
suppressed 
the cell pro‑
liferation and 
invasion

[139]

 AML Resistance TUG1 miR-34a 36 patients and 
23 healthy 
subject

HS-5, HL60, and 
HL60/ADR

TUG1 knock‑
down over‑
came ADR 
resistance 
of AML by 
epigenetically 
enhancing 
miR-34a 
expression

[141]

 AML Resistance HOXA-AS2 miR-520c-3p / 
S100A4

48 patients
U937, U937/

ADR, THP-1, 
and THP-1/
ADR cell lines

HOXA-AS2 
acted as 
ceRNA of 
miR-520c-3p 
and induced 
S100A4 
expression. 
Knockdown 
of HOXA-AS2 
expression 
significantly 
suppressed 
cell prolifera‑
tion

[144]

 AML Resistance Linc00239 PI3K/ATK/mTOR HL-60 and KG-1 
cell lines

Linc00239 acti‑
vated PI3K/
ATK/mTOR 
pathway. 
Linc00239 
knockdown 
suppressed 
the cell pro‑
liferation and 
migration

[147]
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Table 1  (continued)

Cancer type DOX response LncRNA Target Samples Function References

 CML Sensitivity FENDRR HuR K562 and KCL22 
cell lines

FENDER over‑
expression 
promoted 
cell apoptosis 
and sup‑
pressed cell 
proliferation

[155]

 BL Resistance MCM3AP-AS1 miR-15a/EIF4E 41 patients
B-NHL cell line

MCM3AP-AS1 
knockdown 
decreased 
cell viability 
and increased 
apoptosis

[160]

Hepatocellular carcinoma (HCC)

 HCC Resistance MALAT1 miR-216b BEL-7402 
and BEL-
7402/5-FU 
cell lines

MALAT1 
knockdown 
decreased 
proliferation 
and migra‑
tion

[169]

 HCC Resistance lncARSR miR-34/ miR-
449/ PTEN

92 NT
SMMC-7721 

and HepG2 
cell lines

lncARSR pro‑
moted PTEN 
mRNA deg‑
radation and 
modulated 
PTEN-PI3K/
Akt pathway

[177]

 HCC Resistance MALAT1 miR-3129-5p / 
Nova1

36 patients
Huh-7 and 

Hep3B cell 
lines

MALAT1 
knockdown 
suppressed 
proliferation, 
migration, 
invasion, and 
promoted 
apoptosis

[174]

 HCC Resistance NEAT1 – HepG2, PLC/
PRF/5, and 
Huh7 cell 
lines

NEAT1 up 
regulation in 
DOX resistant 
HCC cells

[175]

 HCC Sensitivity GAS5 miR-21/PTEN HepG2 and 
HepB3 cell 
lines

GAS5 regulated 
PTEN expres‑
sion through 
binding to 
miR-21 and 
reduced cell 
proliferation

[178]

 HCC Sensitivity H19 – 32 NT H19 inhibited 
HCC cell 
proliferation 
following the 
doxorubicin 
treatments

[179]

Colorectal cancer (CRC)

 CRC​ Resistance XIST miR-124 31 patients
HCT116 and 

LoVo cell lines

XIST inhibited 
miR-124 
expression 
through 
spong‑
ing. XIST 
knockdown 
enhanced the 
anti-tumor 
effect of DOX

[187]
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Table 1  (continued)

Cancer type DOX response LncRNA Target Samples Function References

 CRC​ Resistance BANCR miR-203 32 NT
HCT116, LoVo, 

NCM460 and 
HEK293T cell 
lines

BANCR 
knockdown 
suppressed 
tumor 
growth

[191]

 CRC​ Resistance GASS NODAL HCT116 cell line GASS knock‑
down 
suppressed 
proliferation 
of cancer 
stem cells

[194]

Thyroid and gallbladder cancers

 ATC​ Sensitivity PTCSC3 STAT3/ INO80 20 FTC tissues 
and 20 ATC 
tissues

8505C, FTC 238, 
and FTC 133 
cell lines

PTCSC3 
regulated 
STAT3/ INO80 
pathway and 
inhibited 
drug resist‑
ance

[203]

 GBC Resistance GBCDRlnc1 ATG5-ATG12 45 NT
NOZ and GBC-

SD cell lines

GBCDRlnc1 
knockdown 
inhibited 
autophagy

[205]

Prostate and urothelial cancers

 RCC​ Resistance LINC-PINT EZH1/ EZH2 98 tumor 
tissues and 
16 healthy 
tissues

HKC, 786-O, 
A498, 769P, 
Caki-2, Caki-
1, ACHN, 
OS-RC-2, and 
SN12-PM6 
cell lines

LINC-PINT 
knockdown 
decreased 
proliferation, 
cell progres‑
sion, and 
promoted 
apoptosis

[208]

 BCa Sensitivity GAS5 BCL2 82 tumor 
tissues and 
37 healthy 
tissues

BTCC T24, J82, 
CCC-HB-2, 
and T24/DOX 
cell lines

GAS5 
knockdown 
increased 
BCL2 expres‑
sion and 
apoptosis

[212]

 TCC​ Resistance HOTAIR – 35 TCC tissues 
and 16 
healthy tis‑
sues

TCC T24, J82, 
and SV-HUC-1 
cell lines

HOTAIR 
knockdown 
inhibited 
cell prolif‑
eration and 
promoted 
apoptosis

[213]

 PCA Resistance LOXL1-AS1 miR-let-7a-5p DU-145 and 
DU-145/DOX 
cell lines

LOXL1-AS1 
knockdown 
inhibited cell 
proliferation 
and migra‑
tion as well 
as promoted 
apoptosis

[219]

*Normal (N) and Tumor (T) tissues
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MCF-7/DOX cell line was also increased toward DOX, VCR, and PTX treatments via 
the miR-199a/MRP1 axis [44].

AKT is a Ser/Thr kinase involved in cell proliferation, apoptosis, and migration. It 
inhibits BAD pro-apoptotic factor via phosphorylation, which results in disassembly 
from BCL-2/BCL-X. AKT also upregulates the pro-survival genes via NF-κB activa-
tion. There are significant correlations between increased levels of AKT1 expression 
and resistance toward paclitaxel [45]. The PI3K/AKT/mTOR pathway has a pivotal reg-
ulatory role in the cell cycle, cell proliferation, metabolism, and protein synthesis [46, 
47]. It has been reported that HOTAIR promoted DOX sensitivity via repression of the 
PI3K/AKT/mTOR axis. Inhibition of HOTAIR markedly decreased the expression of 
MDR proteins, which resulted in reduced cell survival and the promotion of apoptosis 
in DOXR-MCF-7 cells. Moreover, the CASP3, BCL-2, and BAX expression levels were 
significantly altered following HOTAIR inhibition, which increased apoptosis in DOXR-
MCF-7 cells [48].

Breast cancer stem cells are a sub-population of tumor cells that have the ability of 
self-renewal, EMT, and chemoresistance [49]. Since SND1 is able to bind with other pro-
teins and nucleic acids, it can regulate various proteins, including transcription factors 
and co-regulatory factors [50]. STAT6, STAT5, and c-MYB are SND1-associated cofac-
tor proteins [51]. SND1 is also involved in splicing through its Tudor-SN domain [52], 
and mRNA stabilization through staphylococcal nuclease-like domains [53]. It has been 
reported that there is a correlation between linc00668 upregulation and lymph node 
metastasis in BC patients. Linc00668 induces cell invasion, self-renewal properties, and 
DOX resistance in BC cells through SND1 binding to upregulate SMAD2/3/4 [54].

The most significant signs of the EMT process are vimentin upregulation and E-cad-
herin downregulation [55]. There is a negative correlation between the E-cadherin 
expression and tumor progression in breast cancer patients [56]. EMT progression 
is regulated by SNAI1, which is an EMT-specific transcription factor that represses 
E-cadherin expression and promotes tumor invasion [57]. Vimentin is a type III inter-
mediate filament produced by fibroblasts and endothelial cells. Tumor invasion can be 
decreased through vimentin downregulation as a consequence of re-epithelialized cells 
[58]. Annexin A1 (ANXA1) is in the calcium-dependent phospholipid-binding protein 
family involved in anti-inflammation [59]. It has also pivotal roles in the regulation of 
cell proliferation, adhesion, and metastasis [60]. The canonical TGF-β signaling path-
way modulates EMT. Moreover, TGF-β can induce EMT via non-canonical pathways, 
including the ERK1/2, GTPase, and p38 MAPK pathways [55]. It has been reported that 
DCST1-AS1 increases TGF-β-induced EMT and DOX resistance via ANXA1 targeting 
in breast cancer cells. DCST1-AS1 inhibition also regulates TGF-β-induced production 
of MMP2 and MMP9 [61].

LncRNAs have a critical role in the chemoresistance of breast tumor cells through 
interactions with transcription factors. C/EBPβ is a transcription factor regulated by 
LINC00160, which targets TFF3. C/EBPβ is associated with a poor prognosis in estrogen 
receptor-negative and metastatic mammary tumors [62]. TFF3 is more highly expressed 
in metastatic breast cancer than in the non-metastatic type [63]. LINC00160 is associ-
ated with paclitaxel resistance and DOX resistance in MCF-7 and BT474 cells, respec-
tively. Overexpression of LINC00160 is correlated with poor overall survival in BC 
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tissues. LINC00160 upregulated TFF3 via C/EBPβ, which resulted in DOX-resistance in 
BT474 cells [64].

LncRNA in non-homologous end-joining pathway 1 (LINP1) is an oncogene that sup-
presses tumor growth and metastasis. LINP1 upregulation has a positive association 
with drug-resistance and unfavorable prognosis, and is seen in breast cancer cells resist-
ant to 5-FU and doxorubicin. It has been reported that LINP1 regulates the cell cycle 
via CDK4, CCND1 and CCND3 modulations. LINP1 suppresses apoptosis and induces 
EMT process. There is a negative correlation between P53 and LINP1. The 5-FU and 
DOX resistance of breast cancer cells are increased by LINP1. LINP1 represses CASP9/
BAX and CASP8/9 expressions induced by 5-FU and DOX, respectively. There is also a 
correlation between the levels of LINP1 expression and tumor metastasis and stage [65].
H19 is an imprinted lncRNA that is only active when inherited maternally. H19 

imprinting is regulated by a cis-acting upstream sequence that is involved in the reg-
ulation of DNA methylation and replication of parental chromosomes [66]. H19 has a 
pivotal role during tumorigenesis: its upregulation is observed in about 70% of breast 
cancer patients [67, 68]. It has been reported that there is a significant H19 upregula-
tion in DOX-resistant BC cells. H19 regulates DOX-resistance through upregulation 
of CUL4A and ABCB1/MDR1 [69]. Poly (ADP-ribose) polymerase (PARP) is involved 
in the detection of DNA damage. It employs DNA repair proteins through ADP-ribose 
binding. It is also involved in cell cycle and transcriptional regulations [70]. It has been 
reported that there is a significant H19 upregulation in BC tissues compared with their 
normal margins. There is also significant H19 upregulation in DOX-resistant tissues and 
cell lines. H19 increases DOX-resistance via PARP-1 targeting in breast tumor cells [71].

Osteosarcoma

Osteosarcoma (OS) is the most frequent bone tumor among adolescents and children, 
accounting for up to 20% of bone malignancies. Cisplatin, doxorubicin, or methotrex-
ate is considered to be the standard treatment methods for advanced osteosarcoma. 
However, 40–45% of osteosarcoma patients are resistant toward doxorubicin treatment 
[72]. Taurine upregulated gene 1 (TUG1) is an oncogenic lncRNA that is associated with 
chemoresistance in various cancers [73, 74]. TUG1 functions in post-transcriptional 
regulation through miRNA sponging and interacting with PRC2 complex [75]. TUG1 
recruits EZH2 to downregulate CDK inhibitors such as p16 and p21 in gastric carcinoma 
(GC) [76]. It is also involved in tumor cell proliferation and migration through regulation 
of the Hedgehog, PI3K/AKT, and WNT signaling pathways in HCC and OS cells [77, 
78]. Polydatin is a stilbenoid glucoside isolated from some plants that is involved in cell 
proliferation inhibition and apoptosis induction [79, 80]. AKT phosphorylation is criti-
cal for cell survival. TUG1 promotes osteosarcoma proliferation and invasion via AKT 
activation. In a positive feedback, AKT also upregulates TUG1 [81]. Polydatin inhibits 
tumor cells through suppression of the PI3K/AKT and PDGF/AKT pathways [81, 82]. 
It has been reported that polydatin inhibits osteosarcoma cell proliferation and reduces 
DOX-resistance via TUG1 downregulation. Since polydatin treatment in TUG1-silenced 
cells decreases AKT phosphorylation, inhibition of TUG1/AKT axis is required for its 
regulation of DOX-resistance in osteosarcoma cells [83].
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Forkhead box C2 (FOXC2) is a critical transcription factor in tumor angiogenesis 
and MDR, functioning through EMT promotion [84]. ABCB1 plays a significant role in 
pumping external molecules through ATP hydrolysis that reduces the chemosensitivity 
of tumor cells [85]. FOXC2-AS1 is an lncRNA that regulates FOXC2 to promote DOX 
resistance via ABCB1 upregulation [86]. It is involved in the regulation of intracellular 
Ca2+ levels and the activation of the Ca2+-FAK signaling pathway [87]. It downregulates 
p15 and inhibits apoptosis via recruitment of EZH2 and SU212 [88]. FOXC2-AS1 and 
FOXC2 upregulations were observed in DOX-resistant osteosarcoma tissues and cell 
lines. FOXC2-AS1 is involved in FOXC2 upregulation through the formation of a sta-
ble RNA duplex, which upregulates ABCB1 in DOX-resistant osteosarcoma cells [86]. 
Simultaneous high expression levels of FOXC2-AS1 and ABCB1 are the main reason for 
DOX-resistance in OS cells. Silencing FOXC2-AS1 and ABCB1 reduces tumor growth 
during doxorubicin treatment. FOXC2-AS1 regulates the methylation of ABCB1 via 
PRC2, which results in ABCB1 downregulation [89].

As a ceRNAs, OIP5-AS1 upregulates WNT-7b and triggers the WNT pathway by tar-
geting miR-410 [90]. It also regulates various signaling pathways, including NOTCH and 
PI3K/AKT [91, 92]. Significant OIP5-AS1 upregulations were shown in DOX-resistant 
OS tissues and cells compared to those in normal cells and chemosensitive tumor cells. 
Knockdown of OIP5-AS1 suppresses proliferation and promotes apoptosis. OIP5-AS1 
has a pivotal role in the miR-137-3p sponging-mediated regulation of PTN expres-
sion [93]. Fibronectin‐1 (FN1) is a pivotal glycoprotein associated with cell adhesion 
and motility [94]. It has a critical role in cisplatin, paclitaxel and gemcitabine responses 
through EMT regulation [95, 96]. Significant FN1 upregulations have been reported in 
DOX-resistant OS cell lines and tissues. OIP5-AS1 regulates FN1 expression through 
miR-200b-3p sponging [97].
SNHG12 is an lncRNA involved in the tumorigenesis of various cancers, including 

papillary thyroid carcinoma (PTC), GC, OS, and glioma [98–101]. It can affect the Wnt/
β-catenin pathway in PTC proliferation and metastasis [99]. It can also modulate the 
NOTCH2 pathway, which promotes OS metastasis and growth [101]. SNHG12 upregu-
lates CRKL through miR-320 targeting that results in AKT/ERK activation in GC [102]. 
As a member of the BCL2 protein family, MCL1 plays a pivotal role in chemoresistance 
and apoptosis. It has been reported that SNHG12 decreases DOX sensitivity through 
miR-320a downregulation and MCL1 upregulation [103].

In vivo and in  vitro experiments confirmed that doxorubicin-resistant OS cell lines 
and patients have higher expression levels of LINC00426 than their parental counter-
parts. Therefore, an unfavorable prognosis and no effective response to DOX are the 
consequences of LINC00426 overexpression. LINC00426 increases DOX resistance by 
targeting miR-4319 in OS cells [104].

CTA downregulation has been reported in DOX-resistant OS cells. CTA promotes 
apoptosis and suppresses autophagy by targeting miR-210 in OS cells. Its downregula-
tion correlates with poor prognosis in OS patients. CTA significantly upregulates Cas-
p8ap2 and AIFM3 [105].

ABCB1 is one of the MDR-associated genes involved in drug efflux from tumor 
cells [106]. FENDRR is an lncRNA involved in heart development through its binding 
to PRC2 and TrxG/MLL complexes [107]. A significant association has been reported 
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between FENDRR downregulation and DOX-resistance in OS cells. FENDRR downreg-
ulates ABCB1 and ABCC1. It suppresses DOX resistance and induces OS cells apoptosis 
[108].

Gastric cancer

Gastric cancer (GC) remains one of the most frequent malignancies and the third lead-
ing cause of neoplasm-related death globally [109, 110]. Approximately two-thirds of 
patients are detected in advanced tumor stages [111, 112]. Although, there is an effective 
response to chemotherapy in GC patients with advanced tumors, drug resistance is also 
a major cause of tumor growth [113].
HOTAIR is a lncRNA that binds to PRC2 and the LSD1/CoREST/REST complex [114]. 

It also increases HOXA1 hypermethylation via DNMT1 and DNMT3b upregulations 
[115]. An association between HOTAIR upregulation and advanced stage GC tumors 
has been reported. HOTAIR increases DOX resistance, cell proliferation and migration 
by targeting miR-217, resulting in GPC5 and PTPN14 upregulations in GC cells [116].

Urothelial carcinoma associated 1 (UCA1) is a non-coding RNA that has been 
detected in bladder cancer for the first time [117]. It is in human endogenous retrovi-
rus H gene family, which is highly expressed in malignant bladder cancer [117]. UCA1 
upregulation promotes cell survival in bladder cancer during treatment with cisplatin 
[118]. It also induces DOX resistance in breast cancer tissue [119]. Its upregulation also 
positively correlates with poor differentiation, high grade, and poor overall survival. 
Knockdown of UCA1 inhibits tumor cell proliferation. DOX can promote apoptosis in 
SGC7901/DOX cells by silencing UCA1, and also lead to cleavage of PARP protein and 
BCL-2 downregulation. UCA1 had an oncogenic role in GC via regulation of cell prolif-
eration and DOX resistance [120].
MiR-27b is known as a tumor suppressor that is downregulated in GC [121, 122]. It 

acts as an anti-angiogenic factor through its targeting of VEGF-C in GC [122]. Signifi-
cant UCA1 upregulation has been observed in GC tissues, which was negatively corre-
lated with miR-27b. Downregulation of UCA1 induces expression of miR-27b, resulting 
in a reduction in the level of anti-apoptotic proteins such as BCL2 and promotion of 
apoptotic proteins such as CASP3 in gastric tumor cells [123].

Myocyte enhancer factor 2D (MEF2D) is a transcription factor that is upregulated in 
various cancers, such as osteosarcoma [124], leukemia [125] and GC [126]. MEF2D has 
a key role in tumorigenesis, promoting proliferation, invasion and metastasis via repres-
sion of cell cycle arrest proteins, apoptosis, and the induction of the VEGF and TGF-b1 
signaling pathways [126, 127]. LncR-D63785 upregulation has been reported in gastric 
tumor cells. Reduced lncR-D63785 expression represses cell proliferation, invasion and 
metastasis. LncR-D63785 downregulation promotes the DOX-sensitivity of GC cells 
to apoptosis via the miR-422a/MEF2D axis. The expression levels of KLK4, FOXG1, 
FOXQ1 and FOXE1 are also reduced by miR-422a. Positive correlations exist between 
the lncR-D63785, miR422a and MEF2D expressions in DOX-resistant GC cells [128].
NEAT1 is a component of the paraspeckle nuclear bodies involved in the transcrip-

tional regulation of various genes. It has an oncogenic role in various tumors, includ-
ing GC [129, 130]. NEAT1 upregulation that inhibited cell proliferation and invasion has 
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been reported in GC. Its upregulation has also been observed in DOX-resistant GC cells 
[131].
MRUL is an lncRNA that upregulates P-gp in MDR gastric tumor cells. MRUL silenc-

ing significantly downregulate the Bcl-2/Bax ratio, RPS13, and RPL23 while signifi-
cantly upregulating JNK1 and CPP32 in the presence of DOX. Drug-induced apoptosis 
increases following MRUL depletion in GC cells [132].

Leukemia and lymphoma

Acute myeloid leukemia (AML) is a heterogeneous bone marrow malignancy [133]. 
DOX is the most commonly prescribed chemotherapeutic agent for AML treatment, but 
chemoresistance is a big challenge [134].
KCNQ1OT1 is reported in vaious tumors [135, 136]. It has interactions with G9a 

methyltransferase and the PRC2 complex [137]. Tetraspanin3 (Tspan3) is a cell-surface 
protein that regulates signal transductions in cell development, growth, the immune 
response and tumorigenesis [138]. Significant KCNQ1OT1 upregulation has been 
observed in DOX-resistant AML tissues. Its knockdown increases the DOX sensitivity 
and suppresses the cell proliferation and invasion of AML cells. It regulates the DOX 
response through miR-193a-3p targeting that inhibits Tspan3 [139].

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase component of 
the PRC2 complex that can epigenetically methylate H3K27 to inhibit gene expression 
[140]. TUG1 overexpression has been reported in DOX-resistant AML tissues and cells. 
Interestingly, EZH2 is recruited through TUG1 to methylate and downregulate miR-34a, 
resulting in DOX resistance in AML cells [141].
HOXA-AS2 is located between the HOXA3 and HOXA4 genes. It acts as an oncogenic 

factor in promoting cell survival, proliferation and invasion [142, 143]. It is upregulated 
in various types of tumors and this state significantly correlates with poor prognosis. Its 
overexpression has been seen in patients who received DOX. HOXA-AS2 functions as a 
ceRNA of miR-520c-3p to upregulate S100A4, resulting in DOX-resistance of AML cells 
[144].

The PI3K/AKT/mTOR signaling pathway plays a pivotal role in the proliferation, 
differentiation and viability of hematopoietic cells [145, 146]. A correlation between 
linc00239 expression and tumor cell proliferation and migration in AML cells has been 
observed. Linc00239 significantly increases the DOX-resistance of KG-1 and HL-60 cells 
through phosphorylation of AKT and mTOR, resulting in PI3K/ATK/mTOR pathway 
activation [147].

Chronic myeloid leukemia (CML) is a hematological malignancy resulting from BCR-
ABL fusion [148]. Although CML cases respond effectively to tyrosine kinase inhibitors 
and chemotherapy [149], multidrug resistance proteins such as MDR1, P-gp and ABCB1 
play a vital role in chemoresistance [150–152].

HuR is a member of RBP family. It stabilizes mRNA via binding to AU-rich elements, 
located in the 3′-UTRs of RNA [153, 154]. An association between FENDRR downregu-
lation and MDR1 expression in DOX resistant CML cells has beenreported. FENDRR 
decreases the DOX-resistance of tumor cells by downregulating MDR1 through HuR 
and targeting miR-184 in CML cells [155].



Page 15 of 25Khalili‑Tanha and Moghbeli ﻿Cell Mol Biol Lett           (2021) 26:39 	

DOX is one of the common treatments for Burkitt lymphoma (BL) [156], although 
the majority of patients have no DOX response [157]. PI3K/AKT/mTOR is a nomi-
nated pathway in lymphoma chemoresistance. Eukaryotic translation initiation factor 4E 
(EIF4E) is a target of the mTOR pathway, which can affect numerous cancer phenotypes 
[158, 159]. MCM3AP-AS1 reportedly increases the DOX resistance of BL cells through 
miR-15a sponging and EIF4E upregulation [160].

Liver cancer

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death in 
the world [161, 162]. MALAT1 is an oncogenic lncRNA that promotes tumor progres-
sion and chemoresistance through various mechanisms, such as miRNA sponging and 
autophagy induction [163]. It is involved in alternative splicing via regulation of SR pro-
teins [164]. It has also critical roles in various signaling pathways, such as Hippo, PI3K-
AKT, MAPK, WNT and NF-κB [165–168]. MALAT1 upregulation has been shown in 
MDR-HCC cells. HIF-2a upregulates MALAT1, which subsequently targets miR-216b 
during MDR regulation in HCC cells [169].

Neuro-oncological ventral antigen 1 (Nova1) is a neuron-specific RNA-binding pro-
tein that functions as an oncogene involved in the aberrant immune response [170], the 
resistance of cancer cells to hypoxia-related apoptosis induction [171], and tumor pro-
gression [172]. Nova1 upregulation has been observed in Huh-7 cells, and is associated 
with cell proliferation, migration, invasion and poor prognosis in HCC [173].
MALAT1 and Nova1 upregulations have been reported for DOX-resistant hepatic 

tumor cells in comparison with DOX-sensitive cells. MALAT1 upregulation correlates 
with tumor cell proliferation, invasion and chemoresistance through Nova1 regulation. 
It sponges miR-3129-5p in DOX-resistant cells. MALAT1 depletion triggered DOX-
resistance in HCC cells by repressing the proliferation, migration, invasion and promo-
tion of apoptosis through the MALAT1/miR-3129-5p/Nova1 axis [174].
NEAT1 has an important role in the integrity of paraspeckles. Its upregulation has 

been observed in sorafenib- and DOX-resistant HCC cells. Paraspeckles have been 
observed in DOX-resistant HCC cells [175].
LncARSR is activated by AKT to target miR-34 and miR-449, which results in suni-

tinib resistance of renal cancer cells through AXL and c-MET upregulations [176]. Cor-
relations have been shown between lncARSR upregulation and the large tumor size, 
advanced BCLC stage, poor prognosis, and DOX resistance of HCC cells. LncARSR 
induces DOX resistance in both in vitro and in vivo studies through PTEN targeting that 
activates the PI3K-AKT signaling pathway [177].

Growth arrest-specific 5 (GAS5) is an lncRNA associated with a variety of biological 
mechanisms, such as cell proliferation, survival and DOX resistance, via regulation of 
The miR-21/PTEN axis. GAS5 upregulation in HCC cells is associated with metastasis 
to lymph nodes and shorter overall survival time in HCC patients. It also has a key role 
in DOX-resistance in both in vitro and in vivo studies. GAS5 inhibits the expression of 
miR-21, which results in PTEN upregulation [178]. H19 is a maternally expressed gene 
product that functions as a tumor suppressor or oncogene. H19 reportedly inhibits HCC 
cell proliferation following sorafenib or doxorubicin treatments [179].
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Colorectal cancer

LncRNA X-inactive specific transcript (XIST) is considered the most significant regula-
tor of X chromosome inactivation in mammals via the PRC complex [180]. It also pro-
motes NOTCH signaling by targeting miR-137, which results in NOTCH-1 upregulation 
[181]. It has been suggested that the deregulation of XIST plays an important role in 
tumor progression and prognosis [182].

Overexpression of serum and glucocorticoid-regulated kinase 1 (SGK1; one of the 
AGC serine/threonine protein kinases) has been associated with proliferative activity, 
apoptosis, adhesion and drug-resistance in numerous types of epithelial cancer [183, 
184]. There is a correlation between SGK1 and DOX-mediated apoptosis in renal can-
cer [185]. Downregulation of SGK1 reduces cell proliferation and migration and pro-
motes 5-FU-mediated apoptosis induction [186]. XIST upregulation has been reported 
in DOX-resistant CRC cells. XIST increases DOX resistance through miR-124 sponging 
that results in SGK1 upregulation in CRC cells [187].

BRAF-activated noncoding RNA (BANCR) is an lncRNA involved in tumorigenesis in 
various cancer types, such as lung cancer, GC, thyroid cancer and osteosarcoma [188]. 
Chromosomal segregation 1-like (CSE1L) plays a critical role in apoptosis, survival, 
chromosome assembly, nuclear transportation, microvesicle formation and metastasis 
[189, 190]. BANCR and CSE1L overexpressions have been observed in CRC cells. Direct 
correlations have been found between CSE1L and BANCR expressions and the clinico-
pathological features of CRC. BANCR increases CSE1L expression through miR-203 
sponging in CRC tissue. There is significant miR-203 downregulation in CRC cells in 
comparison with controls. BANCR downregulation inhibits tumor progression and pro-
motes the sensitivity of CRC cells to DOX by modulating the miR-203/CSE1L axis [191].

The NODAL signaling pathway has a key role in the regulation of chemoresistance in 
cancer stem cells (CSCs) [192, 193]. NODAL signaling can be protected by GAS5, con-
tributing to the preservation and chemoresistance of CSCs. GAS5 is a pivotal factor in 
the proliferation of CSCs, and thus to tumor promotion and metastasis. It also plays a 
key role in drug-resistance. Knockdown of GAS5 improves chemo-sensitivity and apop-
tosis in the tumor cells treated with 5-FU and DOX [194].

Thyroid and gall bladder cancers

Thyroid cancer remains the most frequent endocrine malignancy worldwide. It has a 
high mortality rate [195]. Anaplastic thyroid carcinoma (ATC) is the most aggressive 
and recurrent type of thyroid tumor that is commonly treated with DOX [196]. How-
ever, overexpression of multidrug resistance proteins causes drug resistance in such 
patients [197].

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor 
activated by cytokines and growth factors involved in inflammation, tumor cell pro-
liferation and invasion [198–200]. INO80 is involved in DNA repair and transcription 
[201]. Lipoprotein receptor-related protein 6 (LRP6) is targeted by PTCSC3, resulting in 
repression of glioma cell proliferation via suppression of WNT signaling pathway [202]. 
It has been reported that PTCSC3 downregulates INO80 by targeting STAT3, which 
reduces the DOX-resistance of ATC [203].
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Gallbladder cancer is the most aggressive cancer type observed in the biliary tract. It 
ranks as the fifth most frequent malignancy in digestive tracts worldwide. Many patients 
have poor prognosis because of diagnosis in the advanced stage due to the unclear and 
non-specific symptoms. Autophagy has a paradoxical role in oncogenesis. The cytopro-
tective role of autophagy leads to stress tolerance which enables tumor resistance toward 
chemotherapy [204].

Gallbladder cancer drug resistance-associated lncRNA1 (GBCDRlnc1) is a unique 
lncRNA mediating resistance to chemotherapy. GBCDRlnc1 upregulation has been 
reported in gallbladder tumor cells. GBCDRlnc1 maintained PGK1 stability by inhibiting 
its ubiquitination leading to ATG5 and ATG12 downregulations in DOX-resistant tumor 
cells. GBCDRlnc1 upregulation correlates with poorer histological grade and advanced 
tumor stage [205].

Prostate and urothelial cancers

PRC2 is in the methyltransferase protein family, which methylates lysine of histone H3 
to suppress gene expression. The PRC2 complex is comprised of several components, 
including EZH1, EZH2, SUZ12 and EED [206, 207]. Significant LINC-PINT upregula-
tion has been observed in clear cell renal cell carcinoma (ccRCC) cells, correlating with 
sex, pT and tumor stage. The LINC-PINT levels also negatively correlate with DFS and 
OS in patients. LINC-PINT induces cell proliferation, but represses apoptosis via EZH2 
targeting in ccRCC cells. DOX upregulates P53 and LINC-PINT in ccRCC tissues [208].
GAS5 is a tumor suppressor that is downregulated in HCC, GC and ovarian cancer 

[209–211]. Its downregulation has also been reported in bladder transitional cell car-
cinoma (BTCC) tissues and cells, where it is associated with higher grades of cancer. It 
inhibits cell proliferation and DOX resistance in BTCC cells through downregulation of 
BCL-2 [212]. There are also HOTAIR upregulations in transitional cell carcinoma (TCC) 
tissues and cells and these correlate with higher histological grades, shorter overall sur-
vival, and reduced DOX sensitivity [213].

Lysyl oxidase-like 1 (LOXL1) is an extracellular matrix (ECM) protein in the the cop-
per-dependent monoamine lysyl oxidase family, which is involved in oxidation of colla-
gens and elastin [214]. LOXL1-AS1 is located in the opposite strand of LOXL1 [215]. The 
epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinases 
(RTK) family, participating in cell proliferation, differentiation and tumor progression 
[216, 217]. Overexpression of EGFR has been reported in a variety of tumor types [218]. 
It has been reported that EGFR regulates LOXL1-AS1 expression via miR-let-7a-5p in 
prostate cancer (PCa) cells. LOXL1-AS1 is downregulated in DOX-resistant PCa cells 
compared with DOX-sensitive cells. There is a significant miR-let-7a-5p upregulation in 
DOX-resistant PCa cells. MiR-let-7a-5p reduces the promoting role of LOXL1-AS1 on 
DOX-resistant cell proliferation [219].

Conclusions
Despite its wide clinical applications, DOX can affect the quality of life of cancer 
patients due to side effects during and after treatment. Clarifying the molecular basis 
of DOX resistance is essential for the development of novel therapeutic strategies 
with fewer and less impactful side effects in cancer patients. LncRNAs have critical 
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roles in drug resistance in various tumors. In this review, we have summarized the 
current state of knowledge on all the lncRNAs associated with DOX resistance in var-
ious tumors. This should pave the way to introducing an lncRNA panel marker for 
the prediction of the DOX response among cancer patients. The majority of lncRNAs 
promote DOX-resistance in the various tumor types.
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