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The biological function of ERp57/PDIA3
Protein disulfide isomerases (PDIs) are an important cellular oxidoreductase enzyme 
family including several structurally related components. The members of this family 
are characterized by thioredoxin-like domains containing one or more active sites [1], 
with the canonical Cys–X–X–Cys sequence. Phylogenetic analysis of the human PDI 
family and subfamilies revealed a high correlation among the members along with an 
evident evolutionary divergence [2]. PDIs are involved in protein folding, catalyzing the 
formation and remodeling of disulfide bonds, and are mainly located in the endoplas-
mic reticulum (ER). Several studies have established that at least some members of this 
family may also be found in small quantities in different subcellular [3] and extracellular 
[4] locations, even though an ER retention sequence is present at the C-terminus of the 
protein sequences. To escape from the ER, the PDIs use different pathways, and KDEL 
endoplasmic reticulum protein retention receptor 1 (KDELR1) could be responsible for 
the transport of PDIs to the cell surface, plausibly near their target molecules [5]. Due to 
their conformational plasticity, PDIs display distinct substrate specificities and chaper-
one activities [6].

The human PDI family members display, beyond the presence of a thioredoxin-
like domain, considerable differences in length and domain arrangement [2]. The 
first identified member of this protein family is PDIA1 (prolyl 4-hydroxylase subunit 
beta, P4HB gene), and it is structurally characterized by two thioredoxin-like active 
domains (a, a′), two substrate-binding domains (b, b′) with a hydrophobic pocket in 
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the b′ domain, a linker sequence between the b′ and the a′ domains, and a C-terminal 
extended domain. The two PDI members, PDIA1 and ERp57/PDIA3, have consider-
able overlap in their whole protein structure, but their differences are due to their 
different evidenced cellular biochemical roles in cellular homeostasis. For instance, 
PDIA1 catalyzes oxidative folding of non-glycoproteins via binding to the hydropho-
bic pocket of the b′ domain, while ERp57/PDIA3 promotes oxidative folding of gly-
coproteins selectively in concert with lectin chaperones calnexin and calreticulin [2, 
6, 7]. Moreover, their enzymatic activity varies due to their differing redox potentials 
[8].

The ERp57/PDIA3 protein is a pleiotropic member of the PDIs family, also known 
as P58, ER60, ERp57, ERp60, ERp61, GRP57, GRP58, PI-PLC, HsT17083, HEL-S-269, 
HEL-S-93n, and 1,25D3-MARRS (https://​www.​ncbi.​nlm.​nih.​gov/​gene/​2923), which 
henceforth we will call ERp57/PDIA3. Of note, PDIA3 was erroneously named phos-
pholipase C alpha when first sequenced [9], attributing a phospholipase activity to it, 
while the name GRP58 was attributed from the evidence that PDIA3 increases after glu-
cose depletion [10] and the name 1,25D3-MARRS is linked to the discovery that this 
protein is likewise a cell membrane receptor of 1α,25(OH)2D3 (vitamin D3) associated 
with the rapid actions of vitamin D [11, 12]. The ERp57/PDIA3 has a noncanonical ER 
retention signal (QEDL) on the C-terminal domain and a Lys-rich nuclear localization 
signal, which binds with high affinity to a specific site of importin, responsible for the 
nuclear import process [13]. ERp57/PDIA3, found in different extracellular and subcel-
lular locations, is involved in multiple processes [14]. To date, specific transcriptional or 
post-transcriptional regulators of ERp57/PDIA3 are not well known, but a study, con-
ducted with high-throughput sequencing of small RNA libraries (from liver tissues of 
rainbow trout specimens), identified and characterized some miRNAs that are probably 
important in the response to heat stress, and three of them (let-7b, let-7c, and miR-145) 
appeared to downregulate ERp57/PDIA3 [15].

ERp57/PDIA3 is characterized by four domains, called respectively a, b, b′, and a′, 
each one with a thioredoxin-like fold [1, 16]. The first and the fourth domain (a and 
a′ domains), carry a thioredoxin-like active site, with a C–G–H–C sequence, and are 
responsible for ERp57/PDIA3 redox properties [17]. The b and b′ domains are neces-
sary for the full activity of the protein and provide the binding sites for calreticulin or 
its membrane-bound homologous calnexin. The binding of glycoproteins to the calreti-
culin–PDIA3 complex is necessary for the catalytic redox activity of PDIA3. The inter-
action of calreticulin and ERp57/PDIA3, important for the assembling of the human 
MHC-I peptide-loading complex, has recently been well studied with low-resolution 
cryo-electron microscopy (cryo-EM) [18]. Moreover, ERp57/PDIA3 is involved in the 
redox activation of protein kinase RNA-like ER kinase (PERK) in response to protein 
unfolding [19]. This involvement is particularly interesting considering the role of ER 
stress and unfolded protein response (UPR) in cardiovascular diseases as described in 
a review by Ren et al. The review summarizes the genes involved in ER functions, ER 
stress, or the UPR that (modified in mouse models) often provides pathological cardio-
vascular phenotypes [20]. Moreover, other roles and functions of ERp57/PDIA3 com-
plexed with calreticulin and calnexin [21, 22] are well described in a recent review by 
Lam and Lim [23].

https://www.ncbi.nlm.nih.gov/gene/2923
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Recently, a reflux of proteins from the ER to the cytosol was analyzed by Sicari et al. 
[24]. They found that this reflux mechanism is conserved in mammalian cells and in can-
cer cells (i.e., human and murine cells). Moreover, this process is constitutively activated 
in cancer cells, where refluxed ER proteins play a gain-of-function role in the cytosol, 
acting as inhibitors of tumor suppressor. Among refluxed ER proteins, the cytosolic frac-
tion of ERp57/PDIA3 in cancer cells is enriched up to ∼ 70% compared with only ∼ 10% 
enrichment in non-cancer control cells.

Localization and functions of ERp57/PDIA3 outside of the ER
Although ERp57/PDIA3 is predominantly located in the ER, it has indeed been found 
in other cellular compartments, such as the nucleus and the cell membrane. The release 
of ERp57/PDIA3 from the ER was first observed by Hirano and collaborators [25], who 
noticed that the protein was being secreted from 3T3 cells.

Nucleus

The nuclear localization of ERp57/PDIA3 was discovered many years ago [3, 26] and is 
not unusual; nevertheless, the role of the protein in the nuclear compartment is not well 
understood. It has subsequently emerged that PDIA3 participates in the signal transduc-
tion processes of STAT3 pathways [27, 28]. Sehgal et al. found ERp57/PDIA3 in the lipid 
raft fraction of the cell membrane associated with STAT3 [29] (a member of the fam-
ily of signaling and transcription factors 3 with a significant role in inflammation and 
deregulated in numerous tumors) and caveolin-1 [30]. Various studies conducted on 
cancer cells have shown ERp57/PDIA3 involvement in signal transduction of STAT3 [26, 
28, 31–33]. A study on clear cell renal cell carcinoma (ccRCC) highlighted the increased 
levels of ERp57/PDIA3 and interleukin enhancer-binding factor 3 (ILF3) in ccRCC tis-
sue, which were correlated with poor patient survival. The research article found evi-
dence that ILF3 expression is transcriptionally regulated by a ERp57/PDIA3–STAT3 
complex and that ILF3 may bind to the 3′ UTR of ERp57/PDIA3 mRNA to positively 
regulate ERp57/PDIA3 expression by enhancing its mRNA stability. These data indicate 
a PDIA3/STAT3/ILF3 feedback loop with a key role in the proliferation mechanism of 
ccRCC, providing a potential target for therapeutic treatment [31]. Moreover, another 
study on hepatocellular carcinoma (HCC), where the increased expression of ERp57/
PDIA3 was a marker of poor prognosis, revealed a specific role of ERp57/PDIA3 in 
association with phosphorylated (pY705) STAT3 on HCC progression. In particular, the 
research suggested that ERp57/PDIA3 contributes to the aggressive phenotype of HCC 
through its association with the STAT3 signaling pathway by the regulation of STAT3 
transcriptional potential [34].

In HepG2 (hepatocellular carcinoma) cancer cells, ERp57/PDIA3 undergoes a nuclear 
translocation after tumor necrosis factor-α treatment [35]. It may also cooperate with 
Ref-1/APE in the reductive activation of transcription factors [36], and in this regard the 
flavonoid silibinin appears to enhance the formation of a ERp57/PDIA3–Ref-1 complex 
and affect its intracellular distribution [37]. Our group showed a specific interaction of 
ERp57/PDIA3 with several different DNA sequences in HeLa (cervix adenocarcinoma) 
[38] and melanoma [39] cell lines. Jung et al. associated the ERp57/PDIA3 protein with 
the expression of dyskerin pseudouridine synthase 1 (DKC1), a RNA-binding protein 
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and an essential component of the telomerase holoenzyme. In HCC cells, the authors 
identified ERp57/PDIA3 as a repressor of DKC1 by recognizing a G-quadruplex struc-
ture at the DKC1 locus. Moreover, they observed that oxidative modification of ERp57/
PDIA3 at the level of Met338 residue caused its redistribution to the cytosol. Therefore, 
reactive oxygen species (ROS) levels affected ERp57/PDIA3 cytosolic levels, and this can 
result in HCC cell survival through DKC1 upregulation [40].

Mitochondrion

ERp57/PDIA3 is present in mitochondria-associated membranes (MAM), the regions of 
ER that are closely associated with mitochondria [41, 42]. ERp57/PDIA3 has also been 
found in the mitochondrial compartment complexed with μ-calpain, and this complex 
is able to cleave apoptosis-inducing factor (AIF), a protein that in the truncated form 
is involved in the DNA fragmentation process in programmed cell death [43]. ERp57/
PDIA3 and PDIA1 seem to possess a similar pro-apoptotic function by inducing Bak 
oligomerization [44]. Furthermore, in HeLa cells, ERp57/PDIA3 could be implicated in 
mitochondrial Ca2+ uptake due to an involvement in the expression of the mitochondrial 
Ca2+ uniporter (MCU) [45]. ERp57/PDIA3 could also be involved in the regulation of 
mitochondrial Ca2+ indirectly through its interaction with calnexin. In particular, palmi-
toylated calnexin interacts with sarcoendoplasmic reticulum (SR) Ca2+ transport ATPase 
(SERCA) 2b, and this complex acts on ER Ca2+ content and regulates ER–mitochondria 
Ca2+ crosstalk. In this respect, ERp57/PDIA3 interacts with nonpalmitoylated calnexin 
in the ER in the protein quality control system [46]. A more recent study revealed a novel 
role for ERp57/PDIA3 in suppressing mitochondrial bioenergetic function via the inhi-
bition of STAT3 Ser727 phosphorylation. In particular, the authors investigated the role 
of ERp57/PDIA3 in immortalized human cerebral microvascular cells (CMECs). They 
analyzed mitochondrial bioenergetic function in CMEC wild-type cells and ERp57/
PDIA3 silenced ones, where the gene was deleted using CRISPR–Cas9. The ERp57/
PDIA3 deletion suppressed mitochondrial bioenergetic function and caused an increase 
in the phosphorylation level of STAT3 S727 residue, which is known to promote this 
function. Moreover, in ERp57/PDIA3−/− CMECs, the mitochondrial membrane poten-
tial and reactive oxygen species production was increased, but not mitochondrial mass. 
Finally, ERp57/PDIA3−/− CMECs were more resistant to oxygen–glucose deprivation 
[47].

Cell surface

To date, several observations have indicated the cell surface location of ERp57/PDIA3 
through the interaction with cell membrane proteins, or even its extracellular localiza-
tion. Several years ago, the ERp57/PDIA3 was erroneously identified as phospholipase 
C alpha and as interacting with vasopressin [48] and angiotensin II [49] receptors. Sub-
sequently, ERp57/PDIA3 was detected on the cell surface in complex with calreticulin, 
and their localization was correlated to “immunogenic cell death” (ICD). This is a pecu-
liar type of apoptosis where apoptotic cells can be detected by the immune system and 
elicit an adaptive immune response specific to dead-cell-associated antigens [50, 51]. In 
particular, ERp57/PDIA3 has been shown to be necessary for the translocation of cal-
reticulin to the plasma membrane [52]. More recently, a study on Jurkat (acute T-cell 
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leukemia) cells showed a role of integrins and ERp57/PDIA3 in the regulation of cell sur-
face translocation of calreticulin; in particular, the authors hypothesized the involvement 
of plasma membrane integrins as inhibitors and ERp57/PDIA3 as promoter of calreticu-
lin translocation [53]. A study conducted on a xenograft model, where MDA-MB-468 
(breast adenocarcinoma) cells were injected into female Balb/c-nude mice, showed that 
EGFR phosphorylation in MDA-MB-468 cells is inhibited after treatment with silibinin, 
a PDIA2 ligand [54]; it is possible that this event is related to the role of ERp57/PDIA3 in 
EGFR signaling and internalization, as evidenced by silencing of ERp57/PDIA3 in MDA-
MB-468 cells [55]. Fujii et al. also found ERp57/PDIA3 abundantly expressed in the api-
cal canalicular membrane of gastric parietal cells, where it modulates the activity of H+ /
K+-ATPase, suggesting a novel function of ERp57/PDIA3 in addition to its chaperoning 
function [56].

ERp57/PDIA3 was also identified as a membrane-associated receptor 
(1,25D3-MARRS) for 1α,25(OH)2D3 (1α,25-dihydroxyvitamin D3), the biologically 
active form of vitamin D3. Its function is associated with the rapid and nongenomic 
response to the hormone [12, 57, 58]. ERp57/PDIA3 was identified as an alternative cell 
membrane receptor for active forms of vitamin D3 that regulates some phenotypic func-
tions [59, 60]. Boyan et al. studied the specific role of ERp57/PDIA3, vitamin D recep-
tor (VDR), and caveolin-1 in the multiple signaling pathway activated by 1α,25(OH)2D3 
as genomic and nongenomic response. ERp57/PDIA3 and VDR, separately, can form 
complexes with caveolin-1 and can activate their own downstream mediators such as 
phospholipase A2-activating protein (PLAA) and Rous sarcoma oncogene (c-Src), 
respectively. These complexes respond to 1α,25(OH)2D3 by translocation and changes 
in protein–protein interaction. The data demonstrate the importance of both receptors 
and their interactions in mediating both rapid and genomic responses to 1α,25(OH)2D3 
[61]. The rapid action of 1α,25(OH)2D3 involves the ERp57/PDIA3–PLAA complex 
and requires Ca2+/calmodulin-dependent protein kinase II (CaMKII) in order to act on 
PLA2. [62]. The arachidonic acid released by PLA2 acts directly and indirectly to stimu-
late protein kinase C (PKC) [63]. ERp57/PDIA3 plays an important role in mediating 
the effects of 1α,25(OH)2D3 and bone morphogenetic protein-2 (BMP2) on minerali-
zation, suggesting a possible fundamental role in mediating extracellular matrix miner-
alization [64]. Rapid activation of Wnt family member 5A (WNT5A) by 1α,25(OH)2D3 
was shown to be also dependent on the ERp57/PDIA3 membrane complex [65]. Boyan 
et  al. suggested a regulation of endochondral bone formation, via a rapid response to 
steroid hormones mediated by extracellular matrix vesicles. This mechanism involves 
the interaction of 1α,25(OH)2D3 with VDR and ERp57/PDIA3 via genomic and rapid 
membrane-associated signaling pathways [66]. In summary, the different functions of 
vitamin D3 involve, quite often, its interaction with ERp57/PDIA3. Vitamin D3’s effects 
on prostate cancer biology were highlighted in a review underlining that adequate levels 
of vitamin D3 and androgens slow or halt prostate cancer progression, particularly for 
patients with early-stage and locally confined disease [67]. It has been demonstrated that 
1α,25(OH)2D3 is able to mediate both genomic and nongenomic responses (through its 
interaction with ERp57/PDIA3) in prostate cancer (CaP) cells, and it has been suggested 
as an important therapeutic agent in inhibiting prostate cancer progression [68]. In this 
respect, Larsson et al. demonstrated that 1α,25(OH)2D3–PDIA3 interaction decreases 
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invasiveness of LNCaP (prostate cancer) cells with the involvement of the JNK/SAPK 
MAPK signaling pathway [69]. More recently, Diaz Cruz et al. evaluated the expression 
of VDR and ERp57/PDIA3 in different prostate cancer (PCa) cell lines (PNT2, P4E6, 
LNCaP, DU145, and PC3), representing different stages of tumor progression, and iden-
tified a novel transcript isoform of ERp57/PDIA3 (PDIA3N, an N-truncated isoform of 
ERp57/PDIA3; ENST00000538521.1, GRCh37.p13 Ensembl 2018). This study showed 
that the mRNA expression ratio PDIA3N:PDIA3 is higher in androgen-independent cell 
lines than in androgen-dependent cell lines [70]. The role of vitamin D3 in brain physiol-
ogy [71] and neurological disease [72, 73] has been studied. Landel et al. observed dif-
ferent expression levels of VDR and ERp57/PDIA3 in several tissues of Wistar rats. VDR 
appears less abundant in brain tissue, whereas ERp57/PDIA3 is highly expressed; more-
over, VDR is expressed mostly in astrocytes, while ERp57/PDIA3 is present in every 
brain cell type. The authors suggested that, in different brain cell types, ERp57/PDIA3 
is probably the only regulator of vitamin D3 actions [74]. Dursun et  al. observed that 
silenced neurons (both SiVDR and SiERp57/PDIA3/1,25MARRS or double silenced) 
showed intracellular Aβ1–42 production. However, treatment with 1α,25(OH)2D3 
attenuated Aβ1–42 intracellular production and secretion. The authors suggested a role 
of ERp57/PDIA3 in loss of control over APP processing in the ER or in the early secre-
tory pathway, but it is unclear whether this process involves vitamin D3 [75]. In a short 
review, Gezen-Ak and Dursun described 1α,25(OH)2D3 as a “neurosteroid” and not a 
simple vitamin; they underlined that its involvement in neurodegeneration mechanisms 
is complex and not yet elucidated, so a more in-depth study is needed [76]. Compel-
ling research has delved into the administration of vitamin D3 against Helicobacter pylori 
(H.  pylori) infection. The authors used C57BL/6 mice as a model and extended the 
research to a human normal gastric epithelial cell line (HFE145 cells). During infection, 
H. pylori was sequestered into the gastric epithelium and survived in autophagosomes 
with impaired lysosomal acidification. Vitamin D3 administration was able to restore the 
lysosomal degradation function by activating its rapid response receptor ERp57/PDIA3, 
which translocates into the nuclear compartment as a ERp57/PDIA3–STAT3 protein 
complex and then upregulates the mucolipin 3 (MCOLN3) channels. This results in the 
enhancement of Ca2+ release from lysosomes and normalization of lysosomal acidifica-
tion that leads to H. pylori elimination through the autolysosomal pathway [77]. More 
recently, Zmijewski and Carlberg argued, in an excellent review, over the rapid and non-
genomic pathways and the possible role of 1α,25(OH)2D3 in a meaningful addition to 
the genome-wide effects. The conclusions of the “dispute” indicated VDR as the receptor 
of choice in 1α,25(OH)2D3 signaling; nevertheless, the authors pointed out that ERp57/
PDIA3, involved in a spectrum of intracellular rapid and nongenomic responses, could 
be of help to explain the activity of low- or non-calcemic analogs of vitamin D3 [78].

ERp57/PDIA3, with a noncanonical ER localization, was also detected on the surface of 
the sperm head, and it was demonstrated to be required for sperm–egg fusion. A research 
study by Ellerman et  al. showed that antibodies against this protein blocked sperm–egg 
fusion, and it was hypothesized that ERp57/PDIA3 can remodel integrins of sperm surface 
[79]. Afterwards, ERp57/PDIA3 was found to be downregulated in males with low ferti-
lization rates [80, 81]. In particular, Zhang et al. found that ERp57/PDIA3 expression was 
downregulated in a cohort of male in vitro fertilization (IVF) patients with low fertilization 
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rates, and they proposed ERp57/PDIA3 as a novel phenotype marker for male infertility 
[80]. In mice, ERp57/PDIA3 was demonstrated to have a function in sperm capacitation. 
ERp57/PDIA3 was found upregulated in irradiated testis, suggesting that this chaperone 
has a protective effect on the testis, maintaining normal spermatogenesis when exposed 
to radiation [82]. Moreover, ERp57/PDIA3 is likely to be related to the thiol–disulfide 
exchange reactions for the gamete fusion process. ERp57/PDIA3 was identified as a com-
ponent of the human spermatozoa–ZP receptor complex in which ZP3 (a glycoprotein 
among the four that participate in the ZP receptor complex) is the primary binding site of 
acrosome reaction of human spermatozoa receptors [79]. The data suggested the transloca-
tion of ERp57/PDIA3 to the sperm surface in the acrosomal region during capacitation, and 
showed that capacitated spermatozoa treated with a PDI inhibitor had significantly lower 
ZP-binding capacity [80]. Considering that ERp57/PDIA3 is a thiol oxidoreductase, another 
study proposed that changes in the surface thiol status can alter the ZP-binding capacity of 
human spermatozoa [83].

Regarding ERp57/PDIA3 located on the cell surface, Wu et al. hypothesized that ERp57/
PDIA3 present on the platelet surface mediates platelet aggregation and is also required 
for hemostasis and thrombosis [79, 80, 84]. In this context, ERp57/PDIA3 appears to 
have a specific role in the activation of the αIIbβ3 integrin (platelet fibrinogen receptor) 
and is required for the incorporation of platelets into a growing thrombus [85]. The evi-
dence on the role of ERp57/PDIA3 in the modulation of αIIbβ3 integrin affinity suggests 
that the selective inhibition of extracellular thiol isomerases may enable the development 
of new antithrombotic drugs [86]. Different PDIs (e.g., PDIA1, ERp57/PDIA3, ERp5, and 
ERp72) were identified as positive regulators of platelet function and thrombosis [87], and 
thioredoxin-related transmembrane protein 1 (TMX1) was described as oxidizing the 
αIIbβ3 integrin thiols, acting as a negative regulator of platelet aggregation [88]. ERp57/
PDIA3 regulates the lectin pathway of complement activation by cleaving disulfide bonds 
in ficolin-3 (an abundant lectin initiator of the complement pathway in humans through its 
disulfide-linked multimers) and reducing its multimer size [89]. The thiol isomerase inhibi-
tors were suggested as a new class of antithrombotic agents; the development of inhibitors 
that are unable to gain access to intracellular thiol isomerases may be challenging, given 
their vital and ubiquitous roles in protein folding [90, 91]. A recent study found that ERp57/
PDIA3 colocalized with extracellular human transglutaminase 2 (TG2) in cultured human 
umbilical vein endothelial cells (HUVECs) [92]. TG2 protein is often dormant in the extra-
cellular matrix under normal physiological conditions and is activated under specific condi-
tions such as tissue injury or inflammation, with its activation being specifically operated by 
extracellular thioredoxin-1 (Trx) [93]. Yi et al. showed that ERp57/PDIA3 oxidatively inacti-
vates human transglutaminase 2, thus defining a reversible protein-controlled redox switch 
system [92]. Two recent reviews analyzed the role of the thiol isomerase “system” as posi-
tive and negative regulators that contribute to redox homeostasis, maintenance of normal 
hemostasis, vascular integrity [94], and regulation of thrombotic events [95].

ERp57/PDIA3 and diseases
Neurological disease

Various studies have identified ERp57/PDIA3 in the nervous system, and several 
research works have provided evidence for its involvement in neurodegeneration [96]. 



Page 8 of 18Chichiarelli et al. Cellular & Molecular Biology Letters           (2022) 27:12 

The role of ERp57/PDIA3 was linked to ER stress pathways [97], which characterize dis-
eases such as Alzheimer’s disease (AD) [98] and amyotrophic lateral sclerosis (ALS) [99] 
(in this case, ERp57/PDIA3 also plays a role because of its interaction with the MAM 
compartment [100]). At the same time, it was hypothesized that ERp57/PDIA3 involve-
ment in neurodegeneration diseases is related to its role as vitamin D3 receptor [76]. A 
protective function of ERp57/PDIA3 in nervous system diseases was suggested by using 
a Tat-ERp57/PDIA3 fusion protein (where the Tat domain was used to deliver the pro-
tein without any cellular toxicity). This study showed that Tat-ERp57/PDIA3 acts as a 
neuroprotective agent against ischemia by attenuating oxidative damage and blocking 
the apoptotic pathway related to the UPR [101]. Another study identified ERp57/PDIA3 
as protective against mutant SOD1-induced cellular pathology in amyotrophic lateral 
sclerosis. The authors analyzed the role of ERp57/PDIA3, first in a neuronal cell line 
(co-expressing superoxide dismutase 1 and ERp57/PDIA3) and then in primary corti-
cal neurons. The obtained results showed that overexpression of ERp57/PDIA3 inhibited 
mutant SOD1 inclusion formation, ER stress, and apoptosis, whereas silencing of ERp57/
PDIA3 expression enhanced mutant SOD1 inclusion formation, ER stress, and toxicity, 
indicating a protective role for ERp57 against SOD1 misfolding. Moreover, the authors 
partially colocalized ERp57/PDIA3 with TAR DNA-binding protein-43 (TDP-43)-posi-
tive inclusions in spinal cords from sporadic ALS patients, then linking ERp57/PDIA3 
to protein misfolding events in human sporadic disease [102]. A recent research, using 
mutant superoxide dismutase 1 (SOD1) mice as an experimental ALS model, provided 
evidence that ERp57/PDIA3 protects early muscle denervation. The study suggested that 
the protein acts at early stages by sustaining motoneuron connectivity through the inter-
ference of SOD1 aggregation probably via mixed disulfide crosslinks [103]. Neverthe-
less, a study by Wang et al. on traumatic brain injury (TBI) showed that ERp57/PDIA3 
deficiency reduces inflammation in brain samples of mice after TBI and ERp57/PDIA3 
knockout attenuates inflammation, oxidative stress, and apoptosis in oxygen–glucose 
deprivation and re-oxygenation (OGDR)-treated astrocytes [104]. ERp57/PDIA3’s role 
in prion infection as a cellular factor controlling prion protein biosynthesis also deserves 
mention [105]. In fact, Thapa et al. showed that ERp57/PDIA3-overexpressing cells sig-
nificantly reduced ER stress, accompanied by a decrease in prion protein (PrP) aggre-
gates, and lentiviral ERp57/PDIA3 expression prolonged the survival of prion-infected 
mice [106].

Cancer

The role of ERp57/PDIA3 in cancer was shown years ago, and its involvement in cancer 
progression suggests a potential use of ERp57/PDIA3 both as a marker and a therapeu-
tic target [2]. A recent review summarized the current knowledge on ERp57/PDIA3 in 
cancer and the mechanisms by which this protein is involved, starting from carcinogen-
esis and extending to its potentialities as a therapeutic target. The authors have provided 
an overview of the role of ERp57/PDIA3 in the regulation of T cell-mediated immune 
responses, immunogenic cell death, UPR, DNA repair signaling, and membrane-initi-
ated signaling pathways [107]. An interesting recent study analyzed the role of ERp57/
PDIA3 by the inhibition of its activity, with a small molecule known as 16F16. This treat-
ment destabilizes mechanistic target of rapamycin complex 1 (mTORC1) and enhances 
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the effect of the mTOR inhibitor everolimus (Ev), increasing cultured liver cancer cells’ 
susceptibility to Ev. The inhibition was related to the interaction of ERp57/PDIA3 with 
mTOR and the reduction in the phosphorylation level of eukaryotic translation initia-
tion factor 4E -binding protein 1 (4E‑BP1) [108]. Another study investigated the role of 
ERp57/PDIA3 in an aggressive cancer such as glioblastoma (GB) tumor and its crosstalk 
with microglia. The study was performed on GB cells and glioma-associated microglia/
macrophages (GAMs) collected from patients’ specimens after surgical tumor resec-
tion. After gene silencing or specific inhibition of ERp57/PDIA3 by punicalagin, the 
authors demonstrated that ERp57/PDIA3 is involved in the pro-tumor activity of GB 
cells and GAMs. The ERp57/PDIA3 silencing seems to activate GB cells to produce IL24 
(a tumor-suppressing protein) and leukemia inhibitory factor (LIF), inhibiting cell dif-
ferentiation. The reduced PDIA3 expression/activity in GB cells significantly limited the 
microglia pro-tumor polarization towards the M2 phenotype and the production of pro-
inflammatory factors, supporting a role of PDIA3 expression in GB-mediated pro-tumor 
activation of microglia. However, ERp57/PDIA3 activity in gliomas is still poorly char-
acterized and could be related to induction of autophagic cell death and apoptosis [109].

Another study identified ERp57/PDIA3 as being indirectly involved, with a mutant 
calreticulin gene (CALR), in altered Ca2+ mobilization in patients with myeloprolifera-
tive neoplasms. A somatic mutation of CALR results in the dissociation of the ERp57-
mediated complex between calreticulin and stromal interaction molecule 1 (STIM1, 
protein of the store-operated calcium entry machinery) leading to Ca2+ mobilization 
[110]. These results correlated with the findings that mutant CALR constitutively acti-
vates the thrombopoietin receptor (myeloproliferative leukemia protein, MPL), even in 
the absence of thrombopoietin, thus inducing cellular transformation [111]. Moreover, 
Pronier et al. analyzed the CALR interactome in myeloproliferative neoplasms and dem-
onstrated that the ERp57/PDIA3–CALR complex binds to the MPL promoter, regulating 
its expression, in CALR-mutant cells. They observed a lower expression of MPL mRNA 
in control cells (wild-type CARL) even if only ERp57/PDIA3 was silenced, suggesting 
that ERp57/PDIA3 itself has a regulatory function of the locus [112].

Infections disease

The pleiotropic functions of PDIs in general and of ERp57/PDIA3 in particular include 
their role in infections disease. ERp57/PDIA3 was shown to be directly involved in influ-
enza virus replication [113]; Kim and Chang conducted a knockdown study using small 
interfering RNAs (siRNAs) for ERp57/PDIA3 and other PDIs (PDI1 and PDIA4). The 
knockdown of ERp57/PDIA3 led to a reduction of influenza A and B virus replication 
in Madin–Darby canine kidney (MDCK) and A549 (human lung cell line) cells, indicat-
ing that this protein plays an important role in influenza virus replication and that it 
acts after virus entry [114]. A study on ERp57/PDIA3 expressed in mouse lung epithe-
lial cells suggested the importance of this protein in the formation of disulfide bonds 
of influenza A virus (IAV) hemagglutinin (HA) and the subsequent establishment of 
infection, inflammation, and airway hyperresponsiveness (AHR) [115]. A more recent 
study, conducted both in vitro and in vivo, further investigated the role of ERp57/PDIA3 
in H3N2 virus HA stabilization, and the results obtained suggest that ERp57/PDIA3 
could improve the stability and immunogenicity of hemagglutinin [116]. A study on 
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nitazoxanide and its circulating-metabolite tizoxanide, clinically used as an antiproto-
zoal/antimicrobial drug and more recently as an antiviral against hepatitis-C virus, rota-
virus, and influenza viruses, suggested that its broad-spectrum antiviral activity could 
depend on the inhibition of ERp57/PDIA3 activity, because of the role of this protein in 
the correct disulfide-bond architecture of viral glycoproteins [117]. Moreover, a recent 
review by Santoro et  al., regarding the severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) spike glycoprotein, suggested that ERp57/PDIA3 may be involved in 
the biogenesis, correct folding, and maturation of the SARS-CoV-2 spike protein [118]. 
The role of UPR and protein disulfide isomerases in pulmonary viral infection and dis-
ease was well summarized in a recent review of Chamberlain and Anathy [119]. More 
recently, a review was published on the role of ERp57/PDIA3 in viral infections, empha-
sizing that the presence of this protein on the cell surface assists different viruses to 
enter the cells and replicate [120].

High‑impact information on ERp57/PDIA3 (ligand)
ERp57/PDIA3 is an important research target considering it can be found in various 
subcellular locations. Examples are provided below such as its involvement in plate-
lets aggregation, sperm–egg fusion, and vitamin D3 signaling due to its membrane 
localization.

Evidence has been provided for the role of ERp57/PDIA3 in platelet aggregation, and 
the study of potential inhibitors of the redox activity of ERp57/PDIA3 could be inter-
esting to identify promising candidates for antithrombotic therapy targeting ERp57/
PDIA3 [90, 121, 122]. Years ago, a study on the antithrombotic activity of red wine and 
red grape juice showed that natural components of wine act as PDI inhibitors and, to a 
lesser extent, as ERp57/PDIA3 inhibitors [123]. More recently, Gaspar and Gibbins ana-
lyzed the function of thiol isomerases in thrombosis and hemostasis and summarized 
the known PDI inhibitors, showing that often these inhibitors are not so selective for a 
specific PDI family member [95].

The study of ERp57/PDIA3’s role in human fertility would allow this information to be 
used for two antithetic but equally interesting purposes. First, the mechanism of molec-
ular action of the protein expressed in spermatozoa could be discerned, using targeted 
inhibitors. Second, specific inhibitors could be considered for a possible contraceptive 
function. The function of ERp57/PDIA3 in sperm capacitation can be hypothesized to 
be related to its interaction with vitamin D3 [124, 125]. In fact, it should pointed out that 
several functions of spermatozoa, such as viability, integrity of DNA, motility, capacita-
tion, acrosome reaction, and fertilizing capability, are targets of the action of hormones, 
including estrogens and 1α,25(OH)2D3 [126].

Besides, cumulative evidence highlights the impact of vitamin D3 deficiency as a favor-
ing factor in various neurological diseases, and different studies focused on determin-
ing the beneficial effect resulting from its supplementation (see review [73]). Potential 
inhibitors of the interaction between vitamin D3 and ERp57/PDIA3 could be used to dis-
criminate their role in neurological disease. Moreover, it was shown that 1α,25(OH)2D3 
can induce autocrine or paracrine rapid nongenomic actions via ERp57/PDIA3, whose 
transcript is abundantly expressed in all cerebral cell types [74].
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Deciphering the actions of ERp57/PDIA3 as an extracellular disulfide isomerase or as 
a receptor of vitamin D3 will help us obtain knowledge on its role in promoting health.

Recent reviews have summarized the different PDIs inhibitors currently known [2, 95, 
127]. However, to date, not many specific ERp57/PDIA3 inhibitors have been identified 
(Table 1), and in fact some of them are pan-style inhibitors for the PDI family members.

The antibiotics vancomycin and neomycin were found to inhibit the reductase activity 
of ERp57/PDIA3 [17], and inhibitory activity of the antibiotic vancomycin on the ERp57/
PDIA3–calreticulin interaction has been observed [128]. Cui et al. showed that ADTM, 
a molecule synthesized by conjugating two well-known compounds, danshensu (DSS, 
from danshen, Salvia miltiorrhizae) and tetramethylpyrazine (TMP), displayed potent 
inhibitory effects on the redox activity of ERp57/PDIA3. In particular, ADTM, which has 
a strong cardioprotective effects in  vitro and in  vivo, shows additionally an inhibitory 
effect on platelet aggregation in vitro and in vivo [121]. A structure-based virtual screen-
ing identified rosmarinic acid from Salvia miltiorrhizae as a major active compound 
against ERp57/PDIA3 [129]. A neuroprotective lead optimized compound (LOC)14 
[130] inhibits specifically the ERp57/PDIA3 activity in lung epithelial cells, decreasing 
the intramolecular disulfide bonds and the oligomerization of HA in influenza A virus 
infected lung epithelial cells [115].

Table 1  ERp57/PDIA3 inhibitors

ND not detected; Kdox Kd ERp57/PDIA3 oxidized; Kdred Kd ERp57/PDIA3 reduced

Inhibitor Effect IC50
(Kd)

Binding site References

Vancomycin Inhibition reductase 
activity

 > 100 μM
(Kd 6.7 μM)

ND [17, 128]

Neomycin Inhibition reductase 
activity

 > 100 μM
(Kd 20 μM)

ND [17]

ADTM (derivative from 
Danshen, Salvia miltior-
rhiza)

Inhibition redox activity 
(antiplatelet aggregation)

100–300 μM Hydrogen bonds with 
Arg47, Ile453, and 
Phe450
a′ domain

[121, 122]

Rosmarinic acid (from 
Danshen, Salvia miltior-
rhiza)

Inhibition redox activity 
(antiplatelet aggregation)

176.82 μM Hydrogen
bonds with Ser312, 
Lys366, Asp440, and 
Val441
a′ domain

[129]

Epigallocatechin gallate 
(EGCG)

Inhibition redox activity 
DNA-binding activity

≫ 20 μM
20 μM

Bind to the oxidized 
enzyme close to the
active site

[131]

Silibinin ERp57/PDIA3/REF-1 
complex activator

(Kdox 0.3 μM)
(Kdred 0.3 μM)

Bind to the enzyme
a domain or
a′ domain

[37, 54, 139]

Eupatorin-5-methyl ether Inhibition of redox 
activity

 > 20 μM
(Kd 11.1 μM)

ND [132]

Eupatorin Inhibition of redox 
activity

 > 20 μM
(Kd 10.3 μM)

ND [132]

Punicalagin Inhibition of redox 
activity

1.5 μM Bind to the hydrophobic
pocket on
a′ domain

[109, 133–135]

LOC14 Inhibition of redox 
activity

4.97 μM Reacts and oxidizes 
catalytic domains

[2, 115]

Dihydrotanshinone I 
DHT (from Danshen, 
Salvia miltiorrhiza)

Inhibition of redox activ-
ity and ERp57/PDIA3 
expression

5.51 μM Hydrogen bond between 
the carbonyl group and 
amino acid Lys433

[138]
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It was also observed the ERp57/PDIA3 has a high affinity to galloylated catechins 
(polyphenol of green tea), which bind closely to the thioredoxin-like redox-sensitive 
active sites, and a moderate inhibition of the reductase activity of ERp57/PDIA3 was 
observed [131]. Moreover, several other flavonoid compounds were studied, and even if 
the enzymatic reductase activity was almost unaffected by silibinin [37], both eupatorin-
5-methyl ether and eupatorin (secondary metabolites present in fruits and vegetables) 
were able to inhibit reductase activity of ERp57/PDIA3 [132]. Recently, the bioactivity 
of extracts from whole fruit, peels, and juices of pomegranate were tested for the effect 
on the redox activity of ERp57/PDIA3. The obtained results demonstrate that different 
ratios between punicalagin [133] and ellagic acid (compounds present in fruit extracts) 
modulate the enzyme activity, and other ellagitannins could interfere with this inhibitory 
activity [134]. More recently, the specific interaction between punicalagin and ERp57/
PDIA3 was analyzed by biochemical and computational approaches to identify putative 
binding sites and provide insights to develop useful punicalagin-based ligands [135]. In 
this regard, as previously reported, a study conducted on glioblastoma (GB) cells and 
glioma-associated microglia/macrophages (GAMs), where ERp57/PDIA3 levels are 
higher than in the microglia of in the surrounding parenchyma, showed that the ERp57/
PDIA3 knockdown in GB cells induces different responses in GAMs and the inhibition 
of ERp57/PDIA3 could exert beneficial therapeutic effects. In particular, the treatment 
of microglial cells with the ERp57/PDIA3 inhibitor punicalagin increases apoptosis and 
reduces pro-inflammatory activity [109].

A clinical trial with the oral PDI inhibitor isoquercetin (also known as isoquercitrin) 
significantly decreased markers of coagulation in patients at risk for thrombosis [94, 
136]. Moreover, different PDI inhibitors such as 16F16, PACMA31, isoquercetin, epigal-
locatechin-3-gallate, and nitazoxanide significantly reduced the replication of influenza 
A and B viruses in MDCK and A549 cells. These results suggest that PDIs are potential 
targets for the development of new anti-influenza drugs [114]. Recently, a cyclic peptide 
was identified (CSSTRESAC) that specifically acts on ERp57/PDIA3, as 1α,25(OH)2D3 
receptor, through vitamin D3 binding protein (DBP), present on the cell surface of 
tumor-associated macrophages (TAM). In this study, the administration of CSSTRE-
SAC to triple-negative breast cancer (TNBC)-bearing mice changed the cytokine pro-
file in the direction of an antitumor immune response and delayed tumor growth [137]. 
The dihydrotanshinone I (from Danshen, Salvia miltiorrhiza) was recently identified as 
a potential ERp57/PDIA3 inhibitor with an anti-breast cancer effect through the UPR 
pathway [138].

Conclusions
In light of the above provided information about the involvement of ERp57/PDIA3 in a 
broad spectrum of physiological events (Fig. 1) and related diseases, the identification 
of inhibitors or activators specific for this protein is very important. Specific inhibitors 
of ERp57/PDIA3 could be used to better identify its mechanism of action and its role in 
physiological or pathological conditions. At the same time, where ERp57/PDIA3 is iden-
tified as a therapeutic target, the use of specific ERp57/PDIA3 inhibitors or activators 
could represent a possible tool for future therapeutic strategies.
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Abbreviations
1α,25(OH)2D3: 1α,25-Dihydroxyvitamin D3, biologically active form of vitamin D3; 1,25D3-MARRS: 1α,25(OH)2D3 
membrane-associated, rapid-response steroid-binding; 4E‑BP1: Eukaryotic translation initiation factor 4E-binding protein 
1; A549: Human lung cell line; AD: Alzheimer’s disease; AHR: Airway hyperresponsiveness; ALS: Amyotrophic lateral 
sclerosis; Bak: BCL2 antagonist/killer; BMP2: Bone morphogenetic protein-2; CALR: Calreticulin; CaMKII: Ca2+/calmodulin-
dependent protein kinase II; ccRCC​: Clear cell renal cell carcinoma; CMECs: Immortalized human cerebral microvascular 
cells; c-Src: Rous sarcoma oncogene; DBP: Vitamin D3 binding protein; DKC1: Dyskerin pseudouridine synthase 1; ER: 
Endoplasmic reticulum; Ev: Everolimus; GAMs: Glioma-associated microglia/macrophages; GB: Glioblastoma; HA: Hemag-
glutinin; HCC: Hepatocellular carcinoma; HeLa: Cervix adenocarcinoma cells; HepG2: Hepatocellular carcinoma cells; 
HUVECs: Human umbilical vein endothelial cells; IAV: Influenza A virus; ICD: Immunogenic cell death; IL-24: Interleukin-24; 
ILF3: Interleukin enhancer-binding factor 3; JNK: Jun amino-terminal kinases; Jurkat: Acute T-cell leukemia; KDELR1: KDEL 
endoplasmic reticulum protein retention receptor 1; LIF: Leukemia inhibitory factor; MAM: Mitochondria-associated 
ER membrane; MAPK: Mitogen-activated protein kinase; MCOLN3: Mucolipin 3; MDA-MB-468: Breast adenocarcinoma 
cells; MDCK: Madin–Darby canine kidney; MHC-I: Major histocompatibility complex I; MPL: Myeloproliferative leukemia 
protein; mTORC1: Mechanistic target of rapamycin complex 1; OGDR: Oxygen glucose deprivation and re-oxygenation; 
P4HB: Prolyl 4-hydroxylase subunit beta gene; PCa: Prostate cancer; PDIs: Protein disulfide isomerases; PERK: Protein 
kinase RNA-like ER kinase; PKC: Protein kinase C; PLAA: Phospholipase A2-activating protein; PLA2: Phospholipase A2; PrP: 
Prion protein; Ref-1/APE: Redox-factor 1/apurinic (apyrimidinic) endonuclease; SERCA​: Sarcoendoplasmic reticulum (SR) 
Ca2+ transport ATPase; SAPK: Stress-activated protein kinases; STAT3: Signaling and transcription factors 3; TAM: Tumor-
associated macrophages; TBI: Traumatic brain injury; TDP-43: TAR DNA-binding protein-43; TG2: Human transglutaminase 
2; TMP: Tetramethylpyrazine; TNBC: Triple-negative breast cancer; TR: Thioredoxin; UPR: Unfolded protein response; VDR: 
Vitamin D receptor; WNT5A: Wnt family member 5A; ZP3: Glycoprotein that participates in ZP receptor complex.

Fig. 1  Schematic representation of the different roles of ERp57 / PDIA3 in cellular processes in different cell 
compartments. Cell membrane: ERp57/PDIA3 participates in assembling of MHC I, interacts with different 
receptors (e.g., angiotensin II, vasopressin, and EGF receptors), acts as receptor of vitamin D3, participates in 
ICD in complex with calreticulin, and interacts with αIIbβ3 integrin in platelet cells. ERp57/PDIA3 participates 
in different cellular processes, including signal transduction, recycling, degradation, and internalization. 
Cytosol: ERp57/PDIA3 interacts with STAT3 and contributes to redox balance acting on thioredoxin (TR) 
and other targets. Nucleus: ERp57/PDIA3 interacts with different proteins (e.g., STAT3; Ape/Ref1, Ku80, and 
maybe TDP-43) and different DNA sequences (AT-rich regions) or structures (G-quadruplex). ERp57/PDIA3 
participates in gene expression (e.g., DKC1; MCOLN3), DNA repair, and transcriptional factor reduction. 
Endoplasmic reticulum: ERp57/PDIA3 promotes oxidative folding of glycoproteins in concert with lectin 
chaperones calnexin and calreticulin and is involved in retrotranslocation to cytosol of toxin, virus, and 
receptor. ER–mitochondrion: ERp57/PDIA3 is present in mitochondria-associated membranes (MAM), the 
regions of ER that are closely associated with mitochondria; ERp57/PDIA3 complexed with μ-calpain is able 
to cleave apoptosis-inducing factor (AIF) and interferes with the mitochondrial bioenergetic function via the 
inhibition of STAT3 Ser727 phosphorylation
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