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Background
MicroRNAs (miRNAs) are small (about 22 nucleotides) RNA molecules that have 
been shown to regulate gene expression in eukaryotic cells through various mech-
anisms [1–3]. First described in Caenorhabditis  elegans, miRNAs have now been 
found to be widespread in nature. miRNAs have a central role in regulating a number 
of genes, particularly those genes involved in signaling pathways, and several physio-
logical processes in human cells, including (but not limited to) cellular proliferation, 
lifespan, metabolism, and cell cycle control [4–6]. It is now believed that viruses, 
which exploit many elements of the host gene expression machinery, are able to 
encode miRNAs within their genome. Studies over the past decade have elucidated 
several important roles for viral miRNAs. Furthermore, several host-encoded miR-
NAs can potentially control viral replication by interacting with target sequences in 
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and mechanistic involvement in viral pathogenesis and host defense. This may provide 
insight into the development of new therapeutic strategies to manage viral infections.
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viral RNAs [6, 7]. miRNAs could have a role as biomarkers of virus-related tumors, 
and also have some therapeutical potential in cancer treatment. Now, several 
miRNA-based treatments are being examined in preclinical and clinical trials, for 
instance, miR-122 in hepatitis C virus (HCV) infection [8]. Besides, virus-mediated 
changes in miRNA expression can provide an environment that facilitates tumor 
development [9]. Although some success has been achieved, further studies are still 
required to fully understand miRNA-based pathways, and virus-related miRNAs.

Extracellular vesicles (EVs) are a family of membrane structures that can be clas-
sified based on the vesicle size, function, RNA contents, or biogenesis. According to 
a classification by the International Society of Extracellular Vesicles, EVs are divided 
into subclasses including exosomes, microvesicles, and apoptotic bodies [10]. Due to 
the role of EVs as extracellular transporters of macromolecules, such as proteins and 
RNA transcripts, they have gained attention for a broad spectrum of applications 
[10]. EVs can package, release, and transfer miRNAs between cells in a somewhat 
selective manner. After uptake of the EVs by target cells, the miRNAs are actively 
released from the EVs. This process protects them against degradation by cell-free 
RNase enzymes. Viruses employ several mechanisms to evade and suppress the host 
immune responses, to ensure the establishment and maintenance of viral infections. 
Nevertheless, the host immune system uses opposing tactics to counteract the viral 
invasion [11]. Through evolution, viruses have developed the ability to incorporate 
their nucleic acid components into exosomes, which can exert downstream effects 
via various mechanisms [12]. Numerous experimental studies have reported the 
functional transfer of exosomal miRNAs between cells. This transfer facilitates virus 
replication through suppression of immune responses [6].

The lethal-7 (let-7) gene was first discovered in C.  elegans as a key developmen-
tal regulator and was one of the first two known microRNAs. In mammals, let-7 is 
among the miRNAs with the highest expression level in numerous cell types in dif-
ferent species. Increasing evidence has shown the involvement of let-7 family mem-
bers in critical physiological processes, such as organ development, growth, tissue 
regeneration, metabolism, and various types of cancer [13]. A vast number of miR-
NAs have been identified either as tumor inhibitors or as oncogenes (oncomiRs) 
according to the function of their target genes [4, 13]. Additionally, one individual 
miRNA can carry out paradoxical dual functions, by acting as a tumor inhibitor in 
one cancer type while acting as an oncomiR in another cancer type. Let-7 has been 
reported to possess broad tumor-suppressor effects in a range of cancer types [4]. 
Besides, many studies have reported the downregulation of let-7 in many viral dis-
eases compared with healthy controls, and thus this miRNA may function as a puta-
tive factor encouraging the development of viral infections. Because of the many 
roles of let-7, modifications of its pathways could play a role in controlling viral 
infections [e.g., coronavirus disease 2019 (COVID-19), influenza, human immu-
nodeficiency virus (HIV), etc.], as well as cancer-associated viruses. In the present 
review, we summarize the available knowledge about the expression of the let-7 fam-
ily, its function, target genes, and mechanisms involved in viral infections, aiming 
to provide insight into its possible use in the control and therapy of viral infections.
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MicroRNA biogenesis and computational resources
Similar to other RNA transcripts, the biogenesis of miRNAs begins within the cell 
nucleus. The majority of miRNAs are initially generated as primary transcripts (pri-
miRNAs) by RNA polymerase II, and then undergo further processing in the nucleus 
by RNase III Drosha, which forms long hairpin precursors about 70–100 nucleotides 
long (termed pre-miRNAs). Thereafter, the pre-miRNAs are exported to the cytoplasm 
to undergo further maturation. This involves the formation of a complex containing 
GTP-bound nuclear protein RAN GTPase, the pre-miRNA, and exportin 5 to allow 
the export of immature miRNAs [14]. After the pre-miRNAs are transported through 
the nuclear pore complex (NPC), the GTP is hydrolyzed, the NPC is disassembled, and 
the pre-miRNA is released into the cytosol [15, 16]. In the cytoplasm, the pre-miRNAs 
are cleaved by RNase III Dicer to form the mature miRNAs. This cleavage eventually 
leads to a double-stranded 22-nt product, composed of a mature miRNA guide strand 
and a passenger strand. The miRNA duplex is composed of two complementary strands 
called 5p and 3p. The passenger strand (annotated *) is typically degraded, whereas 
the opposite strand (guide strand) binds to the target mRNA sequence. The thermo-
dynamic properties of the duplex seem to determine which strand is selected, because 
the strand with the weaker binding at the 5′ end of the duplex usually acts as the guide 
strand. Other essential properties of miRNA guide strands are a U bias at the 5′ end and 
a high percentage of purines (A/G rich), while the passenger strands possess a C bias at 
the 5′ end with a pyrimidine-rich (U/C) sequence. Nevertheless, the guide strand could 
tolerate a single point mutation within the duplex sequence, but this may affect post-
transcriptional modification, and the type of proteins associated with Ago2 in the RNA-
induced silencing complex (RISC) (e.g., trans-activation response RNA-binding protein 
versus protein activator of dsRNA-dependent protein kinase) [17–20]. Thus, both arms 
of the pre-miRNA hairpin can give rise to biologically functional guide miRNAs [21]. 
The miRNA guide strand then enters the RISC. Depending on the thermodynamic con-
ditions, occasionally the passenger strand is also loaded into the RISC [22, 23]. The RISC 
binds to the target mRNA, due to the miRNA interacting with mRNA complementary 
sequences, resulting in target cleavage and/or translational inhibition (Fig. 1).

miRNAs are generally expressed at low levels, and this expression is different in 
various tissues and in certain environmental conditions. Considering their relatively 
small size, identifying miRNAs by their properties remains difficult, and experi-
ments can be expensive, time consuming, and difficult. As a result, computational 
techniques have been proposed to effectively identify miRNA by their characteris-
tics [24, 25]. Computational techniques take advantage of some features of miRNAs, 
including their conserved state among different species, the synthesis of stable stem-
loop constructions from pre-miRNAs, and the minimum free energy of folding [26, 
27]. Different computational approaches have been published in the previous decade. 
Computational resources containing expression profiles of miRNAs include human 
miRNA expression database (HMED) and mirEX 2.0 ([28, 29]. HMED and mirEX 
are considered to be comprehensive analysis programs for identifying datasets of 
miRNA expression. Moreover, some databases contain differentially expressed (DE) 
miRs obtained from many tissues; for instance, blood miRs are cell-specific miR-
NAs obtained from peripheral blood [30]. Likewise, ExCell miRDB is a specialized 
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database containing curated information related to DEmiRs in biofluids [31]. Simi-
larly, miRandola gives detailed information regarding several circulating extracel-
lular miRNAs [32, 33]. In addition, many miRNAs have been identified as critical 
regulators of gene expression. Moreover, miRNA genes obtained from different spe-
cies have been reported during the past decade, leading to the extensive expansion of 
miRBase, which is a core repository of miRNA sequences [34]. The current miRBase 
release version 21 contains a total of 2588 mature miRNAs and 1881 pre-miRNAs 
identified in the human genome (GRCh38). Moreover, miRNAs have also been iden-
tified in viruses. In a study by Tushcl et  al., the miRNAs encoded by Epstein–Barr 
virus (EBV) were identified. Following this discovery, different viral miRNAs have 
been reported in other viruses [35, 36]. Currently, VIRmiRNA is a comprehensive 
database for experimentally verified viral miRNAs, containing 1308 different viral 
miRNA sequences [37]. A number of computational resources are focused on spe-
cific types of diseases; such as OncomiRDB, miRCancer, and dbDEMC, which are 
catalogs of deregulated miRNAs in different types of cancer [38, 39]. PhenomiR is 
an online database listing dysregulated miRNAs in different diseases and biological 
pathways [40]. Moreover, AVIRmiR is a subdatabase of VIRmiRNA [37], containing 
antiviral miRNAs that have been found to be involved in viral infections.

Fig. 1  MicroRNA biogenesis. miRNAs are produced from miRNA genes, which are transcribed via RNA 
polymerase II/III to form primary miRNA termed pri-miRNA. Thereafter, pri-miRNA is cleaved by Drosha and 
DGCR8, and forms precursor microRNA (pre-miRNA), which is exported to the cytoplasm via Ran-GTP and 
exportin-5 to undergo maturation. miRNA duplex composed of mature miRNA is generated from cleaving 
the pre-miRNA, which is processed by Dicer and transactivation response element RNA-binding protein 
(TRBP). The single strand of mature miRNA, containing Ago-2 and GW182 proteins, binds to the complex, 
namely RISC. This complex modulates miRNA target gene expression by target miRNA cleavage and 
translation inhibition
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MicroRNAs as biomarkers
The diagnostic potential of miRNAs has become the most important application in medi-
cine. The term biomarker can involve different types of tests, which can provide informa-
tion on normal or pathological processes [41]. Biomarkers are becoming more accurate 
and reliable as tremendous technological progress has recently been achieved. Histori-
cally, the first biomarkers were employed by early civilized humans, as simple signs such 
as pulse rate or urine appearance and odor. Currently, biomarkers often involve specific 
molecules, mainly proteins or small molecules, that can be found in different types of 
body fluids using analytical tools [42]. Nevertheless, developing novel protein biomarkers 
is a costly and time-consuming process that is limited by the lack of clinically significant 
proteins, structural complexity, and challenges in developing precise analytical methods. 
To achieve the goals of personalized medicine, novel biomarkers with higher accuracy are 
required. There are several requirements for developing a good biomarker. First and fore-
most, it should be readily accessible. In other words, a good biomarker should be detected 
and measured via minimally invasive procedures. Secondly, it should have the appropri-
ate specificity and sensitivity to be utilized in clinical practice, meaning that the biomarker 
could be detected prior to the appearance of clinical symptoms, and also its levels would 
vary according to the clinical stage. Finally, an ideal biomarker should be translatable from 
the research to the clinical setting [43]. It has been found that free nucleic acids are present 
in human blood samples [44, 45], and DNA and RNA originating from tumor tissues are 
constantly released into the plasma of patients who are suffering from cancer [46, 47]. Pre-
viously, investigators believed that RNA molecules could not be employed as biomarkers by 
measurement in blood samples, due to the relatively high levels of nucleases in plasma that 
potentially degrade nucleic acids [48]. However, with the discovery of miRNAs that were 
stable in samples of fixed tissue, the idea was revisited [49]. For the first time, in 2008, Law-
rie et al. reported that miRNAs could be used as cancer biomarkers. They demonstrated the 
diagnostic application of miRNAs in patients with diffuse large B-cell lymphoma [50, 51]. 
Ever since, many studies have been designed to assess the diagnostic ability of miRNAs in 
a wide variety of human disorders. miRNAs could be superior to conventional biomarkers 
in many human diseases. Moreover, miRNAs can be easily extracted from human bodily 
fluids, making them readily accessible. They also have shown satisfactory specificity for spe-
cific tissues or cell types and good sensitivity for disease progression state, and many studies 
have used miRNAs to differentiate different stages of cancer [52] and also for monitoring 
therapeutic responses [53]. Furthermore, there are already well-established techniques for 
the detection of DNA and RNA sequences, and the cost and time may be more economical, 
compared with developing new antibodies for detecting protein biomarkers. Additionally, 
miRNAs have shown potential for guiding the choice of different possible therapies, more 
precise diagnosis, and monitoring of the response to treatment. Multimarker panels that 
can measure several miRNAs at the same time could improve both the diagnosis and prog-
nosis of cancers, as well as many other diseases [54, 55].

Let‑7
The lethal-7 (let-7) gene was initially described in C. elegans as a critical gene involved in 
embryonic development. Let-7 is a highly conserved miRNA across animal species, with 
22 nucleotides in length. In C. elegans, the let-7 miRNA family includes nine members: 
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let-7, mir48, mir-84, mir-241, mir-265, mir-793, mir-794, mir-795, and mir-1821, which 
serve to regulate developmental timing in a sequential order during the larval transi-
tion process [13, 56]. The main target genes of let-7 in C. elegans are hbl-1, lin-41, and 
lin-42 [13]. Worms with mutations in let-7 show developmental timing abnormalities 
during the larval to adult transition [57, 58]. In Drosophila melanogaster, three miRNAs 
have been shown to be encoded by the let-7 complex (let-7C): let-7, fly lin-4 (miR-125), 
and miR100, which show the highest expression in the pupal and adult neuromuscu-
lar region. The function of let-7 in Drosophila is primarily to regulate the development 
transition from the third instar to the pupal stage. Flies with mutations in let-7C showed 
abnormalities in adult behavior (flight, motility, and fertility), and in juvenile neuromus-
culature features; however, they appeared normal on external examination. Let-7C has 
been shown to cause programmed remodeling of the abdominal neuromusculature dur-
ing larval to adult transition [59]. In mice and humans, the let-7 family has 14 and 13 
members, respectively. In humans, these members are let-7a-1, let-7a-2, let-7a3, let-7b, 
let-7c, let-7d, let-7e, let-7f-1, let-7f-2, let-7g, let-7i, mir-98, and 202. Among these, let-7a 
has the most conserved sequence across different animal species from nematode C. ele-
gans to Homo  sapiens. In mammals, the expression levels of let-7 are highest during 
embryogenesis and central nervous system (CNS) development. Nevertheless the let-7 
family is not seen in human or mouse embryonic stem cells [13, 60].

Let‑7 functions
In most organisms, let-7 expression is increased in the late stages of development, and 
any alteration in the expression of let-7 can lead to pathological conditions, such as neu-
rodegenerative diseases, cancer, and diabetes [60]. Let-7 is also involved in the regulation 
of cell signaling pathways. Overexpression of miR-98 inhibited the phosphorylation and 
repressed the Akt and ERK signaling pathways, which are well known to be implicated in 
carcinogenesis [61–63]. In Ewing’s sarcoma, it was found that let-7 directly downregu-
lated signal transducer and activator of transcription 3 (STAT3), consequently reducing 
the aggressive phenotype [64]. The STAT3 pathway controls cell cycle and cell survival 
via regulation of a specific gene set, and so any overactivation can drive cancer progres-
sion. Poor outcomes and enhanced resistance to chemotherapy and radiotherapy have 
been observed following activation of the STAT3 signaling pathway [65, 66]. Let-7 has 
been reported to activate the WNT signaling pathway via targeting estrogen receptors in 
breast cancer, and transcription factor 4 (TCF-4; a downstream target of WNT) in hepa-
tocellular carcinoma (HCC), resulting in increased cancer stemness and aggressiveness 
[67]. The WNT pathway plays a central role in several cellular process, including dif-
ferentiation, proliferation, and migration, and has been shown to enhance tumor growth 
and the cancer stem cell phenotype [68, 69]. The data suggests that let-7 prevents the 
aggressive phenotype via negative regulation of carcinogenic signaling pathways [65].

An anti-let-7 2′-O-Me oligonucleotide increased cancer cell proliferation, highlight-
ing the fact that, in human cells, let-7 exerts its tumor suppressor effects via inhibition 
of pathways involved in cell proliferation [70]. In another experiment, Johnson et  al. 
demonstrated that let-7 plays a fundamental role in malignancy. The authors reported 
that let-7 family members acted as tumor suppressors via negative regulation of the let-
60/RAS axis [71]. Let-7 inhibited the expression of a set of oncogenes and other genes 
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involved in tumor development and progression. These included RAS, LIN28, PBX3, 
E2F5, E2F1, Myc, ARID3B, long noncoding RNA (lncRNA) H19, and HMGA2 [61, 63, 
72, 73]. Silencing experiments using specific antisense oligonucleotides (ASOs) showed 
that downregulation of these genes led to tumor suppression, which would normally 
depend on let-7 [65]. Lan et  al. suggested that let-7 acted as a tumor suppressor [74]. 
They found inhibition of proliferation in HepG2 HCC cells overexpressing let-7g, by 
repression of the oncogene c-Myc. Gene expression analysis showed a decrease in the 
corresponding mRNAs and protein levels. Transfection of the cancer cells with a let-7g 
inhibitor reversed the effects of miRNA overexpression [74]. Let-7g upregulation also 
enhanced expression of the p16INK4A tumor suppressor protein, indicating that the let-
7g tumor suppressor effect is probably due to miRNA direct control of c-Myc in the reg-
ulatory axis (c-Myc-Bmi-1-p16) [75, 76]. These data suggest that let-7g may play its role 
as a tumor inhibitor in HCC through directly repressing the c-Myc oncogene, leading to 
increased expression of p16INK4A with tumor suppressor effects [74]. Therefore, let-7 is 
able to suppress the function of several factors involved in oncogenesis.

Paradoxically, let-7 also has shown some pro-oncogenic properties. Although most 
of the evidence supports the fact that let-7 is a tumor inhibitor in several cancer types, 
some new studies have suggested let-7 can function as an oncogene. Several studies 
have shown that the let-7a3 locus is highly methylated in healthy tissue compared with 
its hypomethylation status in cancer tissues such as lung and ovarian cancer. Moreo-
ver, increased expression of mature let-7a has been observed in these cancers [65, 77, 
78]. Brueckner et  al. showed that let-7a3 overexpression in lung cancer cells caused 
more aggressive behavior in an anchorage-independent culture experiment. They found 
alteration in the expression of several factors controlling cell proliferation, and also a 
number of genes associated with cell adhesion, encouraging tumor progression and 
metastasis [77]. Also, higher values of several let-7 family members, such as let-7a3, let-
7c, and let-7b, were found to be significantly associated with poor prognosis and short 
overall survival in patients with ovarian and liver cancer [65]. Ma et  al. reported that 
the increased expression of let-7e in esophageal squamous cell carcinoma (ESCC) cells, 
increased migration and invasion probably through downregulation of the downstream 
transcription factor ARID3a. ARID3a acts as a negative regulator of pluripotency, so 
its downregulation may lead to cancer stemness [79, 80]. The let-7 family member mir-
98 has been shown to increase chemoresistance in cancer cells via negative regulation 
of mir-152 mediated by repression of Dicer1. mir-152 and high expression of miR-98 
can regulate RAD51 recombinase levels, which were correlated with poor prognosis in 
patients with epithelial ovarian cancer (EOC) [65, 81]. Overall, these findings highlight 
the complex relationship between let-7 and cancer cell aggressiveness, underlining the 
context-dependent role of many miRNAs. It is possible that let-7 in each specific cancer 
cell targets a set of genes that are particularly expressed in that cell type. Therefore, using 
an individual miRNA expression profile to develop a “personalized medicine” approach 
to target let-7 expression in each patient could be necessary.

When any type of infectious agent enters the body, the innate immune system is the 
first to be activated, which is able to differentiate microbial cells from the host cells [82]. 
Toll-like receptors (TLRs) play substantial roles in the recognition of invading pathogens 
and trigger inflammatory responses designed to prime specific adaptive responses to 
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each type of infection. Dysregulation of TLR signaling pathways can promote excessive 
inflammation, and contribute to the development of diseases, including various types 
of cancer [83]. Many miRNAs have been identified as key regulators of TLR signaling 
[84, 85]. Let-7 seems to play a substantial role in the regulation of TLR4 signaling. For 
instance, after Cryptosporidium  parvum infection, let-7i expression was lower, while 
TLR4 signaling was upregulated [86]. This finding indicates that let-7i may contribute to 
host immune responses by modulating the C. parvum-induced upregulation of TLR4. In 
another study, the induction of TLR4 signaling in response to Helicobacter pylori infec-
tion was linked with let-7b. TLR4 controls the activation of nuclear factor κB (NF-κB) 
and the expression of a set of downstream genes involved in inflammation. Let-7 directly 
targets the TLR4 mRNA to repress translation, and reduces the innate immune response 
and inflammation after infection [87].

Let-7 also contributes to the function of adaptive immune cells. Let-7 expression 
affects the differentiation of effector CD8 T cells, which can release effector cytokines 
and eliminate the infected target cells. Moreover, let-7 affects the differentiation of single 
positive thymocytes into naive or memory-like CD8+ cytotoxic T lymphocytes (CTLs). 
In activated CTLs, lowered let-7 levels enhance the clonal expansion and the acquisi-
tion of effector functions via negative regulation of its target genes, Myc and eomesoder-
min (Eomes) [88]. Let-7 can also regulate the promyelocytic leukemia zinc finger (PLZF) 
transcription factor, which affects the differentiation and effector functions in natural 
killer T (NKT) cells [89, 90]. Hence, let-7, by repressing PLZF, can control the cellular 
development of the thymus, activation of B cells, and antibody production [89].

Let‑7 and human oncoviruses
Among the approximately 1400 known human pathogens, viruses make up the larg-
est group. Several viruses are carcinogenic, and can induce various cancers in infected 
patients [91]. Viruses have been implicated in the causation of approximately 14% of 
cancers, including human papillomavirus (HPV), hepatitis C virus (HCV), hepatitis B 
virus (HBV), and human herpes virus 8 (HHV8). HBV or HCV are responsible for 80% 
of HCC cases, the most frequent primary liver malignancy. Some types of HPV, known 
as high-risk types, are the underlying cause of cervical cancer, as well as several types of 
head and neck carcinoma. HHV8 and Kaposi’s sarcoma-associated herpesvirus (KSHV) 
have been identified as causative agents for Kaposi’s sarcoma, which is typically found in 
HIV-infected patients. HHV8 is also implicated in the pathogenesis of two uncommon 
B-cell cancers. It has been estimated that HPV is the leading cause of virus-associated 
cancer worldwide, accounting for about 600,000 new cases every year. On the other 
hand, HTLV is the least common cause of virus-associated cancer, with 2100 new cases 
every year. The majority of virus-associated cancers are seen in developing countries, 
which highlights the crucial need for public health intervention in those regions [92].

Hepatitis B and C viruses

Hepatocellular carcinoma (HCC) is the most common (85%) among primary liver can-
cers. Globally, HCC is the sixth most common malignancy and the second highest cause 
of cancer-related death [93]. Chronic HBV infection is the main underlying cause of 
HCC in Asian countries, while other causes including chronic HCV infection, alcoholic 
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cirrhosis, and non-alcoholic steatohepatitis (NASH) are the major risk factors in West-
ern countries. Other risk factors are excess alcohol consumption and nonalcoholic fatty 
liver disease [93, 94]. HBV causes cancer by several mechanisms, including virus DNA 
integration into chromosomes, epigenetic alterations like methylation, oxidative stress, 
and HBV transcriptional activator HBx protein [95].

HBV DNA and hepatitis B e antigen (HBeAg) can be measured in the blood circu-
lation of HBV-infected patients, and are currently employed in laboratory analysis of 
affected patients. However, neither can be used as a surrogate marker of viral infection 
progression and carcinogenesis in clinical settings, because of the heterogeneous nature 
of HCC. Unfortunately, measurement of the viral load and clinical manifestations are 
not able to predict the clearance rate and the prognosis in patients with persistent infec-
tion. Hence, to optimize the management of HVB-associated diseases, it is important 
to identify biomarkers and host genetic risk factors, as well as viral and environmental 
factors. Besides, the occurrence of HCC in patients with cirrhosis is difficult to diagnose, 
due to the lack of early symptoms [96, 97].

The importance of miRNAs in HCC has been shown by the measurement of miRNA 
profiles with differential expression in HCC cell lines and tissues compared with nor-
mal counterparts [98–101]. These pioneering studies provided a rationale for examin-
ing molecular mechanisms, developing improved diagnostic procedures, and exploring 
novel therapeutic targets in HCC. High quantities of stable miRNAs have been detected 
in the circulation in a number of studies, suggesting that differentially expressed miR-
NAs may serve as reliable fingerprints for many human diseases [4, 5, 102, 103]. For 
instance, Li et al. [104] examined the hypothesis that the expression profiles of miRNAs 
could serve as a surrogate marker for the diagnosis of HBV infection, and HBV-posi-
tive HCC cases. In this study, 513 patients with HBV (n = 135), HCV (n = 48), and HCC 
(n = 120) underwent primary screening by the Solexa sequencing procedure, validated 
by TaqMan probe-based quantitative reverse-transcription PCR (qRT-PCR). The results 
showed upregulation of both miR-25 and let-7f in plasma samples from patients with 
HCC; however, no changes were seen in HBV-infected serum samples, and occasion-
ally decreased expression was seen. The authors suggested that some upregulated miR-
NAs may be involved in HCC development, independent of chronic HBV infection, and 
could be valuable biomarkers for both HBV infection and HBV-positive HCC patients. 
Additionally, they reported that miR-375, miR-25, and let-7f showed acceptable receiver 
operating characteristic (ROC) curves [area under the curve (AUC) of 99.67, sensitiv-
ity of 97.9%, and specificity of 99.1%] to distinguish HBV-positive HCC patients from 
healthy individuals [104].

It was initially believed that HBV could only be transmitted in blood that was positive 
for the hepatitis B surface antigen (HBsAg); however, it was later shown that the virus 
could be transmitted by HBsAg-negative blood samples during the seronegative window 
of the acute infection phase, or in the chronic phase, in the case of occult hepatitis virus 
B infection (OBI) [105]. HBV DNA can remain in the blood or liver tissue of patients 
with OBI who were diagnosed as negative for HBsAg. Some patients with OBI may test 
positive for anti-HBV core antigen- (anti-HBc); therefore, anti-HBc has been employed 
in screening tests for OBI in blood donors. Nevertheless, it has been shown that > 20% 
of those who are negative for all virus markers still carry occult HBV infection [106]. 
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Since the main strategy for detection of HBV uses HBsAg, the occult carriers might 
escape routine screening tests and go on to transmit the virus. Accurate detection of 
OBI cases is crucial for the elimination of potential viral transmission via blood transfu-
sions [107, 108]. Because there is a possibility that OBI patients are negative for HBsAg 
and other biomarkers, there is a need for an accurate test for detection of the virus that 
is equivalent to the HBV DNA PCR assay [109]. Chen et al. [110] used qRT-PCR assays 
to compare the expression of 13 different HBV-associated miRNAs in serum samples 
obtained from 11 patients with OBI and 29 healthy subjects. The authors showed that 
patients with OBI had significantly higher values of miR-23b, miR-150, let-7c, and miR-
122 relative to normal subjects. On ROC curve analysis, a signature profile of these four 
miRNAs could discriminate healthy individuals from OBI patients with an AUC value of 
99.9, sensitivity 99.9%, and specificity 99.8% [110] (Table 1).

It has been repeatedly shown that let-7 miRNAs are associated with viral infection, 
dysfunction of liver cells, and immune response. For example, Shimizu et  al. [111] 
observed that overexpression of let-7 miRNA family members (let-7c or let-7g) led to 
a significant decrease in anti-apoptotic protein Bcl-xL in two HCC cell lines. This find-
ing suggested that let-7 induced apoptosis via repression of Bcl-xL expression in human 
HCC. Additionally, OBI can lead to the development of HCC by three possible mecha-
nisms, including production of pro-oncogenic proteins, chronic inflammation leading to 
hepatic necrosis, and the integration of virus DNA into human liver DNA [112]. Thus, 
overexpression of let-7 could play a role in the pathogenesis of OBI-related HCC via 
increasing liver cell damage.

Furthermore, some studies have reported lower values of let-7a in tissues of patients 
with HCC who are positive for HVB infection compared with healthy controls (Table 1). 
It has been proposed that let-7a can suppress hepatocyte proliferation by affecting the 
USP35-ABIN-2 signaling pathway [113], thereby acting as a tumor suppressor in HCC. 
Recently, Qiu et  al. [114] showed that HCC tissue samples expressed let-7a in signifi-
cantly lower values compared with adjacent normal liver tissue. Moreover, they found 
higher tissue values of let-7a in patients with highly active HBV replication (HBV 
DNA > 106 copies/mL) relative to those with less active HBV replication (HBV DNA < 103 
copies/mL). In addition, knockdown of let-7a in HepG2.2.15 cells (HepG2 cells engi-
neered to overexpress let-7) using an antisense oligonucleotide resulted in a significant 
decrease in HBV DNA copy numbers, demonstrating a positive correlation between let-
7a and HVB replication. The authors suggested that high levels of let-7a could suppress 
HCC invasion and proliferation, while it was paradoxically able to enhance HBV replica-
tion in hepatocytes [114]. On the other hand, Takata and colleagues [115] reported that 
mRNA coding for the HBsAg preS2 region in HBV was targeted by the host miRNA let-
7g. The expression of HBV mRNAs, such as the preS2 region, could lead to de-repression 
of the let-7g targets, which could result in long-term oncogenesis. Conversely, let-7g was 
shown to inhibit the expression of the HBV preS2 protein and other viral proteins. These 
findings suggested that interactions between the HBV transcripts and the host miRNAs 
may play a role in the pathogenesis of chronic viral hepatitis [115]. Further studies have 
reported a negative correlation between the intrahepatic pre-S2 mRNA expression levels 
and let-7a values [116]. Deng et al. observed that HBV mRNAs repressed let-7a via the 
miRNA response element, which could lead to universal de-repression of the let-7a host 
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Table 1  Role of let-7 family members as biomarkers in viral infections

Virus Let-7 member Expression Method Sample ROC 
(sensitivity/
specificity %)

Refs.

HBV Let-7c Up qRT-PCR Human (serum 
samples of 
chronic hepati‑
tis, n = 29)

99.1/98.8 [110]

HBV Let-7c Up qRT-PCR Human (serum 
samples of OBI, 
n = 11)

99.9/99.8 [110]

HBV Let-7f Up Solexa
Sequencing
qRT-PCR

Human (serum 
samples of HCC, 
n = 55)

97.9/99.1 [104]

HBV Let-7b Up qRT-PCR Human (serum 
samples of early 
HCC, n = 120)

84.8/50 [273]

HBV Let-7d-5p Up qRT-PCR Human (serum 
samples of fibro‑
sis, n = 14)

AUC = 0.82 [274]

HBV Let-7c Up Solexa
Sequencing
qRT-PCR

Human (serum 
samples of 
chronic HBV, 
n = 30)

– [104]

HBV Let-7c Up qRT-PCR Human (serum 
samples of 
chronic HBV, 
n = 30)

– [104]

HBV Let-7b-3p Up Microarray Human (PBMC 
samples of 
chronic HBV, 
n = 16)

– [275]

HBV Let-7a Up qRT-PCR Human (tissue 
samples of 
hepatocellular 
carcinoma
with active virus 
replication, 
n = 13)
/in vitro 
(HepG2.2.15)

– [114]

HBV Let-7a, b, c Up qRT-PCR Human (tissue 
samples of 
chronic HBV)

– [276]

HBV Let-7g Up qRT-PCR Human (tis‑
sue samples 
post-treatment 
with nucleos(t)
ide analog in 
chronic HBV)

– [277]

HBV Let-7g Up qRT-PCR Human (n = 14 
tissue samples 
of hepatocellular 
carcinoma with 
post-treatment 
nucleos(t)ide 
analog)

– [277]

HBV Let-7a, b, d, g, i Up Microarray In vitro (chronic 
hepatitis 
HepG2.2.15)

– [278]
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Table 1  (continued)

Virus Let-7 member Expression Method Sample ROC 
(sensitivity/
specificity %)

Refs.

HBV Let-7b Down qRT-PCR Human (serum 
samples of 
chronic HBV 
with dysplastic 
nodule, n = 30)

84.8/50 [273]

HBV Let-7f Down qRT-PCR Human (serum 
samples of HCC, 
n = 373)

– [279]

HBV Let-7c
Let-7a

Down qRT-PCR Human (tissue 
samples of HCC, 
n = 23)

– [280]

HBV Let-7a Down qRT-PCR Human (tissue 
samples of HCC, 
n = 20)

– [124]

HBV Let-7c Down qRT-PCR Human (tissue 
samples of HCC, 
n = 25)

– [281]

HBV Let-7a Down qRT-PCR Human (tissue 
samples of HCC, 
n = 20)

– [282]

HBV Let-7a, b, c, d Down Sequencing
qRT-PCR

Human (tissue 
samples of HCC)

– [283]

HBV Let-7a Down qRT-PCR Human (tissue 
samples of HCC 
with less active 
virus replication, 
n = 10)
/in vitro (HepG2)

– [114]

HBV Let-7g Down qRT-PCR Human (tissue 
samples of HCC 
with pretreat‑
ment nucleos(t)
ide analog, 
n = 15)

– [277]

HBV Let-7g Down qRT-PCR Human (tissue 
samples of 
pretreatment 
with nucleos(t)
ide analog in 
chronic HBV,  
n = 27)

– [277]

HBV Let-7 Down qRT-PCR Human (tissue 
samples of HCC,  
n = 19)
/in vitro (HBx-
HepG2)

- [284]

HBV Let-7a, c, d, e, 
f, g, i

Down Microarray
qRT-PCR

In vitro (HBx-
HepG2)

– [124]

HBV Let-7a, b, c, e, i Down Microarray
qRT-PCR

In vitro (HBx-
SNU-182)

– [124]

HBV Let-7a, g Down Microarray In vitro (acute 
hepatitis HepG2)

– [278]

HBV Let-7a Down qRT-PCR In vitro (HepG2) – [120]

HBV Let-7f - Microarray
qRT-PCR

Human (plasma 
samples of 
chronic HBV 
treated with 
PEG-IFN, n = 94)

– [285]
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Table 1  (continued)

Virus Let-7 member Expression Method Sample ROC 
(sensitivity/
specificity %)

Refs.

HCV Let-7a-1 Up qRT-PCR Human (serum 
samples of 
chronic HBV 
with liver cir‑
rhosis, n = 20)

75/70 [134]

HCV Let-7c, g, i Up qRT-PCR Human (serum 
samples of HCV, 
n = 33)

– [286]

HCV
(genotype 1)

Let-7g Up qRT-PCR Human (tissue, 
serum samples 
of chronic HCV 
treated with 
PEG-IFN/RBV, 
n = 18)

– [287]

HCV Let-7a-5p Down qRT-PCR Human (serum 
samples of 
chronic HCV 
with liver cir‑
rhosis, n = 25)

92/80 [133]

HCV Let-7a-1 Down qRT-PCR Human (serum 
samples of HCC, 
n = 40)

70/82.5 [134]

HCV Let-7d-5p Down qRT-PCR Human (plasma 
samples of 
chronic HCV 
with liver fibro‑
sis, n = 24)

AUC = 0.79 [262]

HCV Let-7a-5p Down qRT-PCR Human (plasma 
samples of 
chronic HCV 
with liver fibro‑
sis, n = 24)

AUC = 0.77 [262]

HCV Let-7c-5p Down qRT-PCR Human (plasma 
samples of 
chronic HCV 
with liver fibro‑
sis, n = 24)

AUC = 0.73 [262]

HCV Let-7a-5p
Let-7c-5p
Let-7d-5p

Down Microarray
qRT-PCR

Human (plasma 
samples of 
chronic HCV, 
n = 32)

– [262]

HCV Let-7a, b, c, d, 
e, g

Down qRT-PCR Human (plasma 
samples of 
chronic hepati‑
tis, n = 236)

– [288]

HCV Let-7a Down qRT-PCR Human (serum 
samples of HCV, 
n = 97)

– [289]

HCV Let-7a-1 Down qRT-PCR Human (serum 
samples of 
chronic HCV, 
n = 20)

- [134]

HCV
(genotype 1)

Let-7g Down qRT-PCR Human [tissue 
(n = 6), serum 
(n = 19) samples 
of chronic HCV 
untreated with 
PEG-IFN/RBV]

– [287]
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Table 1  (continued)

Virus Let-7 member Expression Method Sample ROC 
(sensitivity/
specificity %)

Refs.

HCV
(genotype 1)

Let-7g Down qRT-PCR Human (tissue 
samples of 
chronic HCV, 
n = 18)

– [287]

HCV (genotype 
4)

Let-7a, g Down qRT-PCR Human (tissue 
samples of 
chronic HCV, 
n = 50)

– [290]

HCV Let-7i Down qRT-PCR Human (tissue 
samples of HCC, 
n = 22)

– [291]

HCV Let-7a, b, c, d, e, 
f, g, i

Down qRT-PCR Human (tissue 
samples of trans‑
planted liver 
with HCV-related 
end-stage liver 
disease, n = 61)

– [140]

HCV Let-7a, b, c, d Down Sequencing
qRT-PCR

Human (tissue 
samples of HCC)

– [283]

HCV
(genotypes
1b and 2a)

Let-7g Down qRT-PCR In vitro
(Ava.5-Huh7, 
JFH1-Huh7.5.1)

– [287]

HTLV-I Let-7a Up qRT-PCR In vitro (Tax-
Hut102)

– [292]

HTLV-I Let-7a Down qRT-PCR Human (blood 
samples of adult 
T-cell leukemia)
/in vitro (HBZ-
C81-66, ATL-2)

– [292]

HHV-8 Let-7a, b, c, d, e, 
f, g, i

Down Microarray Human (tissue 
samples of 
Kaposi’s sar‑
coma, n = 14)

– [293]

HHV-8 Let-7a, b, e, f Down qRT-PCR Human (tissue 
samples of 
Kaposi’s sar‑
coma, n = 4)

– [294]

HHV-8 Let-7a, b, e, f Down qRT-PCR Human (tissue 
samples of 
primary effusion 
lymphoma, 
n = 12)

– [294]

HHV-8 Let-7a Down qRT-PCR In vitro (TIVE 
cell)

– [295]

HPV-16 Let-7a Up qRT-PCR Human (tissue 
samples of 
precervical 
cancer (LSIL), 
n = 4)

– [192]

HPV-16 and -18 Let-7a Up qRT-PCR Human (tissue 
samples of 
precervical 
cancer (HSIL), 
n = 9)

– [192]
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Table 1  (continued)

Virus Let-7 member Expression Method Sample ROC 
(sensitivity/
specificity %)

Refs.

HPV-16 Let-7d Down Microarray
qRT-PCR

Human (tissue 
samples of 
head and neck 
squamous cell 
carcinoma, 
n = 37)

– [296]

HPV Let-7b Down qRT-PCR Human (serum, 
brush pap 
samples of squa‑
mous cervical 
cell carcinoma, 
n = 7)

– [297]

HPV Let-7g Down qRT-PCR Human (tissue 
samples of 
cervical cancer, 
n = 20)

– [298]

HPV Let-7 Down qRT-PCR Human (tissue 
samples of lung 
cancer, n = 56)

– [103]

EBV Let-7d-5p
Let-7f-5p

Up Illumina deep 
sequence

In vitro (SNK6 
cell)

– [299]

EBV/HSV-2 Let-7b Up qRT-PCR Human (serum 
samples of sex 
workers, n = 46)

– [300]

EBV/ HPV Let-7b Up qRT-PCR Human (serum 
samples of sex 
workers, n = 5)

– [300]

EBV Let-7a-5p
Let-7c-5p
Let-7d-5p
Let-7e-5p
Let-7g-5p

Down qRT-PCR Human (plasma 
samples of 
mononucleosis, 
n = 15)

– [301]

EBV Let-7c
Let-7e

Down qRT-PCR Human (tissue 
samples of 
post-transplant 
smooth muscle 
tumor, n = 5)

– [302]

EBV Let-7a-5p
Let-7g-5p

Down Illumina deep 
sequence

In vitro (SNK6 
cell)

– [299]

EBV Let-7a-5p
Let-7g-5p
Let-7i-5p

Down Illumina deep 
sequence

In vitro (SNT16 
cell)

– [299]

EBV Let-7a-5p
:et-7b-5p
Let-7f-5p

Down Sequencing
qRT-PCR

In vitro (AGS) – [303]

EBV Let-7b Down qRT-PCR Human (serum 
samples of sex 
workers, n = 15)

– [300]

HHV-6A Let-7c Down Microarray In vitro (NK-92 
cell)

– [304]

HHV-6B let-7c Down Microarray In vitro (NK-92 
cell)

– [304]

HSV-2 Let-7b Up qRT-PCR Human (serum 
samples of sex 
workers, n = 67)

– [300]

SARS-CoV-2 Let-7b Up qRT-PCR Human (PBMC
samples of 
COVID-19, 
n = 18)

83.3/93.3 [305]
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Table 1  (continued)

Virus Let-7 member Expression Method Sample ROC 
(sensitivity/
specificity %)

Refs.

RSV Let-7d Up Microarray
qRT-PCR

Human (nasal 
mucosa samples, 
n = 42)

– [306]

RSV Let-7b Up qRT-PCR In vitro (MDDC 
cell)

– [307]

RSV Let-7c, i Up qRT-PCR In vitro (NHBE 
cell)

– [307]

H1N1 Let-7e
Let-7f

Up Microarray In vivo (mice) – [207]

H1N1 Let-7a, e, f, g, i Up NGS In vitro (A549 
cell)

– [308]

H7N9 Avian Let-7b, g Up qRT-PCR Human (serum 
sample, n = 21)

– [309]

H5N1 Let-7a, b, e, f Up NGS In vitro (A549 
cell)

– [308]

H3N2 Let-7b, g, f Up NGS In vitro (A549 
cell)

- [308]

H1N1 Let-7g Down Microarray
qRT-PCR

Human (PBMC 
samples, 
n = 299)

– [208]

H1N1 Let-7g Down qRT-PCR In vitro (A549) – [310]

H7N9 Let-7e Down qRT-PCR Human (serum 
samples, n = 21)

– [309]

H7N7 Let-7g Down qRT-PCR In vitro (A549 
cell)

– [310]

H5N1 Let-7g Down NGS In vitro (A549 
cell)

– [308]

H5N1 Avian Let-7f Down Microarray In vivo 
(macaque)

– [311]

H3N2 Let-7a, i Down NGS In vitro (A549 
cell)

– [308]

HIV-1 Let-7g-3p Up qRT-PCR Human (plasma 
samples of acute 
HIV-1, n = 60)

100/100 [240]

HIV-1 Let-7g-3p Up qRT-PCR Human (plasma 
samples of 
eclipse HIV-1, 
n = 20)

100/95.8 [240]

HIV-1 Let-7b, I, f Down Microarray
qRT-PCR

Human (PBMC 
samples of 
chronic HIV, 
n = 7)

– [123]

HIV-1 Let-7c Down qRT-PCR Human (plasma 
samples of naive 
HIV-1, n = 25)

– [312]

HIV-1 Let-7c Down qRT-PCR Human (plasma 
samples of 
HIV with ART 
therapy, n = 25)

– [312]

HIV-1 Let-7c Down qRT-PCR Human (plasma 
samples of 
elite controller, 
n = 19)

– [312]
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mRNA targets. These changes may contribute to transformation of HCC cells and tumor 
growth [116]. It is expected that the identification of reciprocal relationships between 
the viral and host mRNAs may provide insight into HCC pathogenesis, and could inform 
new therapies against this malignancy.

To date, several studies have shown that the HBV HBx protein can modulate miRNA 
expression via three main pathways. Firstly, HBx can interact with a transcription fac-
tor that regulates miRNA expression [117–119]. Secondly, the HBx mRNA can act as 
a sponge for host miRNAs [120, 121]. Lastly, HBx has been suggested to modulate the 
biogenesis of pri-miRNA by decreasing the protein levels of Drosha RNase. However, 
other studies have shown upregulation of several regulators of miRNA biogenesis, 
such as Drosha, DGCR8, Ago1, and Ago2 [122, 123]. Wang et al. evaluated the expres-
sion levels of miRNAs in HBx-expressing cells relative to HepG2 cells (control), using 
miRNA microarrays. They observed that HBx led to overexpression of 7 miRNAs, while 
it downregulated 11 other miRNAs, including the let-7 family [124]. HBx-mediated 
let-7a repression was shown to enhance tumor cell proliferation and promote hepato-
carcinogenesis by increasing the expression of transcription factor STAT3. Moreover, 
it was demonstrated that HBx also downregulated let-7i, which in turn controlled the 
expression of complement system regulator CD59. Through this mechanism, HBx could 
protect the HCC cells against complement-dependent cytotoxicity [125]. Overall, HBV 
proteins have been suggested to contribute to HCC pathogenesis via negative regulation 
of the let-7 miRNA family members.

HCV accounts for 140,000 new cases of HCC annually [126]. Due to delayed diagnosis, 
most patients have a poor prognosis; thus, an early diagnosis could improve the survival 
of many HCC patients [127–130]. Current HCC guidelines recommend imaging-based 

Table 1  (continued)

Virus Let-7 member Expression Method Sample ROC 
(sensitivity/
specificity %)

Refs.

HIV-1 Let-7g Down Nanostring
TLDA

Human (PBMC 
samples of 
untreated-
viremic control‑
ler, n = 6)

– [313]

Human Metap‑
neo

Let-7f Up qRT-PCR In vitro (A549 
cell)

– [314]

West Nile Let-7a, e, g, i Up qRT-PCR In vivo (mice) – [315]

West Nile Let-7c Down qRT-PCR In vivo (mice) – [315]

Japanese 
encephalitis

Let-7a, b Up qRT-PCR Human [n = 3 
tissue samples 
of encephalitis/
in vitro (N9)/
in vivo (mice)]

– [270]

DENV-2 Let-7e Down qRT-PCR In vitro (PBMC) – [316]

Zika Let-7a Down NGS In vitro (neural 
stem cell)

– [317]

Hendra Let-7 Up NGS Horse (n = 6 
blood samples)

– [318]

Persistent Cox‑
sackie B4

Let-7b-3p
Let-7d-3p
Let-7f-1-3p

Down Sequencing In vitro (PANC-1) – [319]
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diagnosis as the only standard procedure [131, 132]. In this context, much effort has 
been devoted to find predictive noninvasive biomarkers for the early diagnosis of HCC, 
and miRNAs are good candidates for this role. Thus, the discovery of predictive bio-
markers for the diagnosis and monitoring of HCC is regarded as an urgent issue. Matsu-
ura et al. [133] assessed whether there was any correlation between values of circulating 
let-7a-5p and the severity of hepatic fibrosis in chronic hepatitis C (CHC) patients. 
They measured circulating let-7a-5p in serum samples, and in serum-derived extracel-
lular vesicles (EVs) retrieved by a liver biopsy in 84 Japanese patients diagnosed with 
CHC by qRT-PCR. They investigated the possible correlation between let-7a-5p values 
and clinicopathological features (histological fibrosis grade, markers of hepatic fibro-
sis, liver stiffness) in the recruited patients. They found that the circulating levels of let-
7a-5p were remarkably lower in patients who were diagnosed with liver cirrhosis. More 
importantly, transient elastography showed that let-7a-5p serum levels were significantly 
associated with liver stiffness and hepatic fibrosis markers, including platelet ratio index 
(APRI), Mac-2 binding protein glycan isomer (M2BPGi), and fibrosis 4 (FIB-4). The 
ROC curve analysis demonstrated that serum let-7a-5p levels were better for diagno-
sis of cirrhosis compared with any of the other markers (AUC values of 0.892, 0.800, 
0.788, and 0.783 for let-7a-5p, M2BPGi, APRI, and FIB-4, respectively) and were similar 
to measurement of liver stiffness (AUC 0.909). However, let-7a-5p levels in EVs (AUC 
0.681) were lower compared with those in serum. As a result, the authors suggested that 
circulating let-7a-5p could be a biomarker for predicting the severity of hepatic fibro-
sis in patients suffering from CHC [133]. Aly et al. measured the expression pattern of 
the let-7 cluster, including let-7d-1, let7-a-1, and let-7f-1, in serum samples of patients 
with HCC or chronic HCV infection [134]. The authors found that the serum let-7a-1 
levels were remarkably lower in the patients with HCV–HCC compared with the HCV 
cirrhotic group without HCC. It was also significantly increased in patients with liver 
cirrhosis compared with the HCV non-cirrhotic group. Additionally, ROC analysis 
showed that serum let-7a-1 could be a superior biomarker for liver cirrhosis develop-
ment compared with HCV detection (let-7a-1 AUC 0.768; p = 0.004). They hypothesized 
that the lower expression of let-7-a1 in serum could promote the development of HCC 
in chronic HCV patients [134]. However, more studies are needed to assess the clinical 
application of let-7 detection to diagnose hepatic fibrosis in clinical settings.

miRNA let-7b has been shown to markedly suppress HCV viral replication, and has 
demonstrated a synergistic effect in combination with the antiviral cytokine interferon-
α-2a (IFN-α-2a) in inhibition of HCV infection [135]. Bioinformatics analysis has 
revealed binding sites for let-7b on the coding region of NS5B and the 5′-untranslated 
region (UTR) of the HCV genome, which were conserved among different genotypes. 
Several studies have shown that let-7b is negatively correlated with viral replication and 
accumulation of HCV RNA, which was not dependent on inhibition of HCV translation. 
As far as we know, let-7b is the first known miRNA to contain a target site within the 
coding sequence of the HCV genome.

It was found that let-7b could modulate the expression of IFN-α and IL-28B, and also 
exert an antiviral effect through repression of HCV protein translation and replication. 
This was dependent on the host factor, insulin-like growth factor 2 mRNA-binding pro-
tein 1 (IGF2BP1). They also showed that there was a correlation between repression of 
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let-7b and abrogation of the anti-viral effects of IL-28B and IFN-α. Moreover, IL-28B 
and IFN-α were shown to downregulate IGF2BP1 expression (a target of let-7b), leading 
to increased antiviral activity of let-7b [136, 137]. Recently, Chen et al. [138] reported 
that miR-let-7c overexpression significantly repressed the replication of HCV by stimu-
lation of heme oxygenase-1 (HO-1) expression because it inhibited the transcriptional 
repressor Bach1, eventually resulting in an increased interferon response and suppres-
sion of viral protease activity. Accordingly, treatment with a specific inhibitor, exog-
enous expression of Bach1, and suppression of HO-1 activity and expression all reduced 
the antiviral activity of miR-let-7c. Taken together, these results highlight the key role 
of let-7c against HCV infection via targeting Bach1 and consequent transactivation of 
HO-1-mediated antiviral activity, suggesting a possible role of of let-7c as an antiviral 
treatment [138].

It has been proposed that let-7a and let-7b can inhibit HCV infection by modulating 
several cofactors necessary for HCV cell entry, protein production, and RNA replica-
tion [139]. There was a negative correlation between the let-7/miR-98 expression levels 
and the HCV viral load in liver transplantation patients [140]. Upon infection with HCV, 
some host immune response factors could be modulated by let-7. As previously stated, 
the let-7b increase following IFN treatment in human hepatocyte HuH7 cells inhibited 
HCV translation and replication by targeting IGF2BP1 [89, 137]. This implies that let-7b 
could exert anti-HCV activity via targeting host immune factors and could be used as 
an anti-HCV therapy and diagnostic test [141]. Recently, Yeh et al. [142] reported that 
alterations in the expression of let-7b are involved in the progression of HCV infection. 
Firstly, let-7b can repress the replication of the HCV genome by direct targeting of inhib-
itors of type 1 IFN signaling. Secondly, let-7b can inhibit the expression of SOCS1 (sup-
pressor of cytokine signaling 1) protein, which acts as a inhibitor of JAK/STAT signaling, 
leading to increased phosphorylation of STAT1-Y701, thereby increasing the expres-
sion of downstream interferon-stimulated genes (ISGs). Let-7 was shown to promote 
the expression of IFN-β by activation of retinoic acid-inducible gene I (RIG-I) signaling, 
in addition to direct targeting of the autophagy protein ATG12, and the NF-κB signal-
ing regulator IκB kinase alpha (IKKα) transcripts. This reduced the interaction between 
RIG-I and the ATG5-ATG12 complex, resulting in increased IFN levels, which in turn 
activated JAK/STAT signaling. Therefore, the authors concluded that let-7b affected 
IFN expression by two different signaling pathways [142, 143]. Exploring the regulation 
of IFN signaling by cellular miRNAs at early stages of HCV infection could clarify the 
mechanisms underlying primary immune defenses against several types of RNA viruses.

Herpesviruses (EBV and KSHV)

Herpesviruses are a large family of DNA viruses. These viruses can establish lifelong 
steady-state infections because of their ability to switch between latent (nonproductive) 
and lytic stages of infection. To date, eight human herpesviruses have been identified, 
which are classified into three subfamilies: (i) Alphaherpesvirinae including varicella-
zoster virus (VZV), human herpes simplex virus type-1 (HSV-1) and type 2 (HSV-2); (ii) 
Betaherpesvirinae comprising human herpesvirus type 6 (HHV-6) and type 7 (HHV-7), 
and cytomegalovirus (CMV); (iii) Gammaherpesvirinae including KSHV and EBV [144, 
145]. A variety of diseases ranging from cutaneous lesions to several types of cancer can 
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arise following infection with human herpesviruses. The biological life cycle of herpes-
viruses comprises two major types of replication: latent and lytic replication. The genes 
that are expressed during the latency period are required for maintenance of the virus 
genome in an episomal state, while avoiding damage to the host cells. Therefore, this 
phase allows the viruses to escape the immune responses of infected hosts and establish 
a persistent infection [146]. Moreover, some coexisting conditions such as immunosup-
pression allow herpesviruses to switch the life cycle from latent state to lytic infection, 
leading to viral gene expression and generation of multiple virions [144, 146].

Epstein–Barr virus (EBV) infects the majority of individuals across the world, and 
has been linked with a number of cancer types, such as gastric carcinoma (GC), B-cell 
lymphomas (Burkitt and classical Hodgkin), and nasopharyngeal carcinoma (NPC) 
[147]. The EBV life cycle comprises both latent and lytic infection states in B lympho-
cytes and epithelial cells. Although EBV remains mostly in the latent phase within B 
cells, it sometimes switches to the lytic phase to increase cell-to-cell spread. Further-
more, EBV lytic reactivation in the oropharyngeal epithelial cells is required for the gen-
eration of infectious viral particles that can be transmitted from host to host. The EBV 
lytic cycle starts with the expression of the BZLF1 (or Zta) gene, followed by BRLF1 (or 
Rta) expression. Together these encoded proteins initiate a cascade of subsequent lytic 
gene expression enabling the biogenesis of linear EBV genomes to be packaged within 
virions [148]. During the latent phase of infection, a small subset of EBV proteins are 
expressed and the infected cells become immortalized. The immortalized cells are able 
to express Epstein–Barr nuclear antigen 1 (EBNA1) during the latent infection [149]. 
EBNA1 is also the only EBV protein that is crucial for viral replication, and segregation 
of the viral episomal genomes to maintain a stable copy number of the viral genomes 
[150, 151]. EBNA1 silencing in GC cell lines was shown to promote EBV reactivation 
[152]. In 2014, Mansouri et al. [153] observed that several members of let-7 miRNA fam-
ily (e.g., let-7a) could function as repressors of EBV reactivation in EBV-positive GC and 
NPC cells. They showed that seven of the let-7 family members were upregulated by 
EBNA1. EBNA1 overexpression was demonstrated to increase let-7a expression levels 
in several cell lines, and silencing of EBNA1 reduced let-7a levels. This was proposed to 
be the mechanism through which EBNA1 could upregulate let-7a expression and inhibit 
EBV reactivation. Treatment of EBV-expressing cancer cells with a let-7a mimic reduced 
the percentage of reactivated cells (either via spontaneous reactivation or after chemi-
cal treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate), 
and the use of a let-7 sponge reversed these effects. This finding showed that EBNA1 
may enhance latent infection probably via induction of let-7 miRNA. Furthermore, it 
was found out that Dicer was a downstream target for let-7a and EBNA1, suggesting 
that high Dicer levels may promote EBV reactivation [153]. The results suggested that 
host let-7 induced the EBV latent state via negative regulation of Dicer (Fig. 2). The pre-
cise mechanism by which increased Dicer levels promote EBV reactivation remains to 
be explored.

KSHV is a gammaherpesvirus that causes Kaposi’s sarcoma (KS), a malignancy derived 
from virus-infected endothelial cells in the lining of blood and lymph vessels. KSHV 
also has been associated with primary effusion lymphoma (PEL) and multicentric Cas-
tleman’s disease (MCD). Similar to other herpesviruses, KSHV can enter a latent stage 
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in the viral life cycle limiting the expression of viral proteins and immunosurveillance 
responses, thus allowing persistent infection. The virus infects endothelial cells and B 
lymphocytes in blood and lymph vessels, and shows dual latent and lytic phases [154]. 
KSHV maintains the latent phase in most infected host cells, and then undergoes reac-
tivation to facilitate cell-to-cell transmission [155]. This dual-phase viral replication is 
critical for persistent KSHV infection and for the emergence of KS lesions [156]. Among 
the genes expressed during the latent phase, the latency-associated nuclear antigen 
(LANA) protein, encoded by the ORF73 (open reading frame 73) is the most character-
istic [157]. LANA has been shown to have an important function as a regulator of gene 
expression and cell proliferation [158]. The switch from latent to lytic phase in KSHV is 
regulated by the ORF50-encoded replication and transcription activator (RTA) protein 
[159]. RTA is required to trigger the expression of the cascade of lytic genes in a sequen-
tial order for viral reactivation [160]. RTA binds directly to the corresponding response 
elements located on gene promoters or indirectly by the DNA-binding adaptors (AP-1, 
C/EBP-a, OCT-1, or RBPJ) [161]. RBPJ (recombination signal binding protein for the 
immunoglobulin kappa J region) is a well-conserved protein sequence with widespread 
cellular expression that functions as the main effector in the Notch pathway [162]. RBPJ 
plays a role in gene silencing via acting as an adaptor of transactivators, and also recruits 
corepressor complexes [163]. When RTA binds to RBPJ, it causes further self-activation 
triggering a positive feedback loop that consequently leads to lytic reactivation [164, 
165]. The RTA–RBPJ binding can also promote the expression of a number of lytic genes 
(e.g., ORF50) in addition to the latent phase transcript cluster including LANA [161, 
164, 166]. Furthermore, the RTA-induced LANA also binds to RBPJ to form a negative 
feedback loop repressing RTA expression, resulting in maintenance of the latent virus 
[166]. Therefore, RBPJ acts as an intermediate in both the positive and negative feedback 
loops leading to a balanced regulation of viral replication, in two distinct phases of the 
KSHV life cycle. Although RBPJ–LANA binding leads to downregulation of RTA, RBPJ 
is required for the lytic phase but not for the latency phase [167]. In the latent phase of 
infection, RBPJ does not bind to the promoters, but during viral reactivation the same 
promoters show a high degree of binding of RBPJ after RTA induction [168]. Moreover, 
latent virus-infected cells show relatively lower expression of RBPJ, suggesting that RBPJ 
may be regulated by KSHV replication.

In one of the studies on the association between KSHV and Kaposi’s sarcoma, 
Tan et  al. [169] observed in 2015 that the let-7a values in the tumor tissue were 

Fig. 2  Hsa-let-7b promotes the latency phase of EBV infection by downregulating Dicer
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significantly lower than in healthy controls. They also found that KSHV reactivation 
was inhibited by let-7a, by repression of the miRNA target gene, mitogen-activated 
protein 4 kinase 4 (MAP4K4). The 3′-UTR of RBPJ was also shown to possess a con-
served let-7a-binding site, suggesting that let-7a directly targets RBPJ. Recently, Qi 
et  al. [170] demonstrated the role of LANA in repression of KSHV lytic replication 
through the let-7a/RBPJ axis. LANA was shown to induce let-7a expression along with 
repression of RBPJ. LANA upregulates the let-7a expression at the transcriptional 
level by enhancing the cellular notch intracellular domain (NICD) and inducting let-
7a maturation via repressing both Lin28B and NF-κB. Let-7a is able to downregulate 
RBPJ expression via direct interaction with the 3′-UTR of the target mRNA. In this 
study, silencing of RBPJ resulted in a time- and concentration-dependent repression 
of KSHV lytic reactivation. Overall, the results suggested that let-7a miRNA overex-
pression and subsequent repression of RBPJ mediated by LANA, leads to the mainte-
nance of latent viral infection within the host cells [170]. Additionally, the lytic phase 
of KSHV is characterized by the expression of the ORF50 gene, which serves as an 
activator of the lytic phase enabling virus replication, virion assembly, and release 
of the viral progeny. Another KSHV gene, ORF72 encodes a viral homolog of cyclin 
D, which is not required for transformation of human T lymphocytes [171]. Zhang 
et al. [172] assessed the effect of let-7 silencing on KSHV lytic replication. The results 
showed an increase in gene copy number and mRNA transcripts of both ORF50 and 
ORF72 genes in response to let-7 silencing. Besides, let-7 silencing was shown to 
increase the protein levels of MAP4K4, COX-2, and phospho-ERK1/2, while the lev-
els of phospho-JNK and phospho-p38 were unchanged. These results demonstrated 
that silencing of let-7 miRNA could activate KSHV replication, probably through 
overexpression of MAP4K4 and its downstream mediators, including MMP-13, COX-
2, and ERK1/2 phosphorylation, eventually leading to KS development [172].

HPV

Human papillomavirus (HPV) is a member of the family of Papillomaviridae with a 
broad range of hosts including humans and other animals [173, 174]. Over 200 types of 
HPV have been identified to cause papillomatosis infections, grouped into high-risk or 
low-risk strains. To date, 20 high-risk types, including HPV-16, 18, and 45, have been 
identified as causative agents of several human malignancies, including cervical intraepi-
thelial neoplasia and oropharyngeal and anogenital cancers. It has been proven that 
HPV-16 and 18 are the major cause of cervical cancer worldwide, accounting for 62.6% 
and 15.7% of total cases, respectively [175, 176]. The circular genome of HPV encodes 
six early (E1, E2, E4, E5, E6, E7) and two late (L1, L2) proteins. It has been shown that 
two oncoproteins, namely, E6 and E7, are directly involved in HPV-induced carcinogen-
esis [173, 175, 177, 178]. Although high-risk HPV strains are the main cause of cervical 
cancer, most HPV infections are cleared spontaneously in immunocompetent individu-
als, and only a minority of HPV-infected women will develop cervical cancer [179]. 
Therefore, additional factors must contribute to cervical malignant progression.

Recent evidence has implicated STAT3 in cervical carcinogenesis, which shows ele-
vated expression correlated with the disease stage in HPV-16-positive lesions of the cer-
vix [180–182]. Increased STAT3 activity has been reported in epithelial transformation, 
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and plays a role in HPV-16-associated cervical carcinogenesis [183]. Thus, the increased 
activation of the STAT3 pathway is a crucial cellular process linking chronic inflamma-
tion to cervical cancer development [184]. However, the cellular mechanisms leading to 
constitutive activation of the STAT3 pathway and alterations in downstream cellular tar-
gets remain largely unclear, and need further study for potential therapeutic targeting. 
Although several molecules have been identified that can positively or negatively modu-
late the activity and expression of STAT3, recent studies have highlighted the involve-
ment of miRNAs in governing STAT3 expression and its downstream targets [185]. It 
has been reported that several miRNAs are aberrantly expressed in HPV-infected cervi-
cal cancer cells [186–188]. Among the potentially oncogenic miRNAs that could affect 
the STAT3 pathway, Shishodia and his colleagues investigated the role of two miRNAs, 
miR-21 and let-7a [189]. The investigation of the miRNA targets showed that let-7a 
could act as a key regulator of STAT3 expression [124]. Let-7a was found to be often 
downregulated in cancer cells as a result of chromosomal deletion [190, 191]. Aberrant 
expression of Let-7a negatively regulates STAT3 transcription via indirect inhibition of 
IL-6, which is a key cytokine associated with several malignancies, and is also a posi-
tive regulator of STAT3 expression [184]. Furthermore, let-7a was observed to directly 
target STAT3 [124]. Later, Shishodia et  al. reported a functional association between 
the expression levels of miR-21, let-7a, and STAT3 in cervical cancer cells, forming a 
feedback loop regulated by the oncoprotein E6 [189]. Later, the same researchers [192] 
measured the levels of miR-21 and let-7a, and investigated their possible correlation 
with STAT3 in cervical cancer tissues with various grades retrieved from premalignant 
and malignant lesions in HPV-infected cervical cancer patients. Their results showed 
that miR-21 was significantly overexpressed. while let-7a was downregulated in cervical 
cancer tissues. Additionally, miR-21 was directly correlated with the STAT3/ pSTAT3 
expression levels, while let-7a demonstrated a reverse correlation in HPV-infected cervi-
cal cancer lesions. This reciprocal relationship was not evident for let-7a, especially in 
precancerous lesions. In HPV-infected lesions, expression levels of miR-21 were corre-
lated with the oncoprotein E6 levels. Contrarily, the let-7a levels were lower in E6-over-
expressing lesions, which was consistent with the upregulation of STAT3 mRNA. Unlike 
miR-21, let-7a showed increased expression in tissue samples from premalignant lesions, 
compared with higher-grade lesions where let-F7a was downregulated or absent. High 
expression of let-7a in high-grade squamous intraepithelial lesions (HSIL) but absence 
in malignant lesions suggests that a major genetic or epigenetic change is involved in 
malignant switching, which is also required to maintain high levels of STAT3 in malig-
nant cells. More investigations are required to understand the role of let-7a in malig-
nant switching [192]. However, oncoprotein E6 could directly or indirectly via mediators 
affect the let-7a levels. A negative correlation between let-7a and E6 levels has been 
found in various clinical samples, while let-7a was also found to inhibit E6 expression in 
cervical cancer cell lines [189, 192]. Additionally, several studies have shown that silenc-
ing of E6 leads to lower STAT3 expression at both transcriptional and translational levels 
[182, 183, 189]. Moreover, temporary transfection with let-7a mimics (or its precur-
sors with biological function) has been shown to directly and effectively repress STAT3 
[189]. Overall, Shishodia et al. hypothesized that in cervical cancer cells there is a strong 
correlation between lower let-7a expression and increased expression and activation 
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of STAT3, in high-risk HPV-16 infection with higher levels of E6 oncoprotein (Fig. 3). 
Therefore, miR-21, let-7a, and STAT3 could be used as a potential biomarker signature 
to discriminate dangerous pre-invasive and malignant cervical lesions, suggesting that 
STAT3 inhibitors could be tested as a therapy.

Viral respiratory diseases
Respiratory viruses are the most prevalent cause of human infections, with considerable 
global morbidity and mortality. Respiratory viral infections account for a high economic 
burden, leading to a large number of people being absent from school and work and 
many referrals for medical care, and can also exacerbate underlying chronic respiratory 
diseases, such as chronic obstructive pulmonary disease (COPD) and asthma [193, 194]. 
The most common viruses causing respiratory infections include orthomyxoviruses, 
coronaviruses, adenoviruses, paramyxoviruses, picornaviruses, human bocavirus, and 
human herpesviruses [195]. Although there are some effective vaccines for respiratory 
viral infections, they may be difficult to access, and there are only a limited number of 
antiviral medicines for influenza (oseltamivir and zanamivir); however, there are no 
clinically effective drugs for the most prevalent viral respiratory diseases [196]. Novel 
antiviral treatments for prophylaxis and therapy of respiratory viral diseases are required 
according to the World Health Organization (WHO) Battle against Respiratory Viruses 
(BRaVe) guideline plan [197].

Influenza

Influenza virus (IV) is a member of the Orthomyxoviridae family, which are enveloped 
viruses with single-stranded, negative-sense, segmented RNA genomes [198]. IVs are 
divided into three genera, A, B, and C. IV genus A is a common cause of respiratory viral 

Fig. 3  Interaction of HPVE6–miRNA–STAT3 during cervical carcinogenesis. URR, upstream regulatory region; 
↑, upregulation; ↓, downregulation; S3BS, STAT3 binding site
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disease in humans and can lead to worldwide pandemics, while IV genus B can causing 
epidemics (but not pandemics), and IV genus C only causes mild respiratory diseases 
[199, 200].

A number of cellular miRNAs have been reported to show altered expression during 
IV infections. miRNAs can control translation of viral mRNAs and also their replication 
either directly or via mediators, thus affecting viral pathogenesis. From the viewpoint of 
evolution, it is reasonable to hypothesize that IV employs cellular miRNAs to promote 
its life cycle because it is an obligate intracellular virus [201]. Let-7 is an important regu-
lator of gene expression in epithelial cells [202], and like the miR-200 family, repression 
of let-7 causes epithelial features to disappear and fibrotic gene expression is increased 
[203, 204]. Transient miRNA expression has been shown to be altered after IV infec-
tion, as revealed by high-throughput microarray assays and deep sequencing techniques. 
Studies have reported that the expression levels of let-7 family members, miR-29, and 
miR-30 are all significantly downregulated post-IV infection [205–207]. In another study 
by Song et  al., microarray analysis showed that hsa-let-7g expression was significantly 
lower in peripheral blood mononuclear cells (PBMCs) obtained from profoundly ill 
patients diagnosed with H1N1 respiratory infection compared with healthy individuals 
[208] (Table 1).

Normally, a target mRNA is destroyed when it has a fully matched complementary 
sequence to the miRNA, while translational repression occurs when the sequences of 
both RNAs are imperfectly complementary. For instance, Ma et al. [209] reported that 
several miRNAs showed aberrant expression in IV-positive A549 human lung epithelial 
cells using high-throughput miRNA microarrays. Among these miRNAs, miR-let-7c in 
particular showed the highest expression in the lung epithelial cells. Also, they showed 
that miR-let-7c possessed a fully matching complementary sequence to the 3′-UTR of 
the H1N1 M1 gene, and could downregulate M1 expression at both the (+) cRNA and 
protein levels. These results suggested that the let-7c binding to the 3′-UTR of M1 could 
be used for protection and therapy of IV infections [209].

In a pioneering work, Landgraf et  al. produced a comprehensive atlas containing 
data on the expression of known miRNAs in a large variety of cells and tissues in both 
mice and humans. They showed that, although most cellular miRNAs are extensively 
expressed, a number are exclusively expressed in a specific cell type, lineage, or tissue 
[210]. However, various miRNAs with specific tissue or host expression could affect viral 
gene expression to different extents. The level of reduction in gene expression is particu-
larly important when aiming to develop a miRNA-attenuated vaccine. IVs used in the 
production of vaccines provide high titers of virus when grown in chicken egg embryos. 
To produce IV vaccines in chicken eggs that were attenuated in mammalian cells, Perez 
et al. [211] evaluated the miRNAs in avian and mammalian cells, and discovered several 
that were found in mammalian cells but not in eggs. They chose miR-93 to develop an IV 
vaccine that could replicate in eggs while remaining attenuated in mice [211]. This vac-
cine demonstrated strong immunity against lethal IV strains in mice. Another potential 
application of these miRNAs with species-specific attenuation is to increase safety when 
handling potentially dangerous viruses during molecular research interventions. How-
ever, the Perez et al. study had several drawbacks, including that the miR-93 level in lung 
tissue is rather low, and also the targeted protein in IV is a structural protein and is not 
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involved in viral replication [212]. For this reason, Shen et al. [212] inserted a miRNA 
recognition element (MRE) for let-7b into the polymerase gene PB1 of IV to develop a 
modified H1N1 virus with specific replication in the lungs. This was because let-7b is 
highly expressed in bronchial epithelial cells, and PB1 is an RNA-dependent RNA poly-
merase that plays a crucial role in viral replication. Insertion of the let-7b-MRE caused 
the engineered H1N1 to become susceptible to miR-let-7b targeting, showing that viral 
pathogenicity could be attenuated through incorporation of a replication-restrictive ele-
ment. Recently, let-7b target sequences were incorporated by Feng et al. into the PB1 of 
pandemic H1N1 virus identified in 2009 (A/Nanjing/NJU-108/2009) to develop an engi-
neered virus (miRT-H1N1) [213], and the antiviral protection was evaluated after immu-
nization in BALB/c mice. The results showed that the miRT-H1N1 virus was attenuated 
in infected mice, whereas it maintained wild-type virulence in chicken embryos. Also, 
the vaccinated mice exhibited strong immunity against lethal A/Nanjing/NJU-108/2009 
infection. They suggested that an IV containing an MRE is weakened in vivo and could 
be used to design a live attenuated vaccine. Overall, miRNAs with specific expression 
in a certain type of cell or species (e.g., let-7b) could be used to modify pathogenic viral 
replication to develop live attenuated vaccines. These findings suggest that let-7 miRNA 
could provide a novel potential biomarker for influenza infection.

SARS CoV‑2

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the fam-
ily Coronaviridae, subfamily Coronavirinae, genus Betacoronavirus, and was identified 
as the causative agent of the novel coronavirus disease in 2019 (COVID-19) [214]. This 
virus was initially identified in a number of pneumonia cases in Wuhan, China in late 
2019 [215–217]. Now, the pandemic of SARS-CoV-2 has spread around the globe, and 
has led to the death of a constantly increasing number of people, now over 4.7 million. 
Over 231 million coronavirus cases have been diagnosed since composing this article 
[218]. Novel approaches and comprehensively available vaccines are required to control 
this lethal disease and similar pandemic outbreaks.

Xie et al. [219] hypothesized that let-7 could inhibit COVID-19 by targeting the causa-
tive virus. They conducted a series of computational assays to detect putative let-7 target 
sites located on the SARS-CoV-2 genome, and discovered two sites with complementary 
sequences matching the seed region of let-7-3p, located in the coding regions of viral 
S and M proteins. Functional assessment showed that a number of let-7 family mem-
bers (let-7d, e, f, g, i) and miR-98 could inhibit expression of the S protein, whereas oth-
ers (let-7b, c, g, i) and miR-98 could inhibit M protein expression. Additionally, some 
reports showed that let-7a and let-7c were able to inhibit IL-6 expression, which is an 
inflammatory cytokine highly expressed in COVID-19 patients [184]. They speculated 
that higher let-7 expression could lower some inflammatory cytokines and chemokines, 
but not IL-6. This effect could potentially benefit patients by controlling the virus-
induced cytokine storm. Xie et al. [219] reported that ectopic expression of let-7a or let-
7c decreased IL-6 mRNA, in addition to other SARS-CoV-2-associated inflammatory 
mediators, such as CCL2, TNF-α, IL-1β, IL-8, VEGFα, and GM-CSF. They also showed 
that let-7-5p could upregulate IL-6, IL-1β, IL-8, TNF-α, and GM-CSF, while sponging of 
let-7-3p enhanced GM-CSF, IL-8, TNF-α, and CCL2 expression in THP1 leukemic cell 
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cells that had been treated with lipopolysaccharide (LPS). These findings indicated the 
potential of let-7 miRNA to suppress damaging inflammatory responses [219].

Approaches to control SARS-CoV-2 infection include targeting the replication 
machinery of the virus, inhibiting virus binding to host receptors, and blocking the func-
tion of viral proteins [220]. It has been reported that cellular miRNAs can inhibit SARS-
CoV-2 gene expression at the translational level via binding to 3′-UTR of the targeted 
viral genes. This can block the host cell receptors and alter viral structural and functional 
proteins, but does not affect gene expression in the host cells. Demirci et al. identified 
some potential viral targets that could be affected by human miRNAs. They discovered 
that several SARS-CoV-2 genes, including ORF6, were affected by multiple host miR-
NAs. For instance, let-7c-5p was found to target the viral ORF1ab, and inhibit its rep-
lication [221]. Sardar et al. identified six human miRNAs that recognized SARS-CoV-2 
proteins: let-7a and miR-101 (targeting nonstructural proteins), miR-126 and miR-378 
(targeting the N region), and miR-23b (targeting the S region) [222]. Moreover, let-7 
could improve immunity against SARS-CoV-2, because the virus suppresses immune 
responses partly by suppressing host miRNAs.

Respiratory syncytial virus

Respiratory syncytial virus (RSV) is a common pathogenic virus causing pediatric 
and geriatric infections, with a considerable number of hospitalizations, clinic visits, 
and > 14, 000 deaths globally each year. RSV belongs to the genus Paramyxovirus with a 
negative-sense single-stranded RNA (ssRNA) genome, 15 kb in length encoding 11 pro-
teins, that is, NS1, NS2, M, N, P, L, F, G, SH, M2-1, and M2-2. Although, over the past 
60 years, scientists have attempted to design an RSV vaccine, these efforts have not yet 
provided effective agents for prophylaxis and treatment of RSV. These failures are largely 
due to our lack of knowledge about the host–virus interactions [223]. Some studies have 
tried to explore the host-to-virus interface to develop a vaccine against RSV. miRNAs 
have been found to play a role in virus–host interactions, and could be useful in thera-
peutic and prophylactic strategies. For instance, Bakre et  al. [223] reported that RSV-
infected-A549 human alveolar epithelial cells showed overexpression of five miRNAs, 
that is, miR-24, miR-26b, miR-337-3p, let-7f, and miR-520a-5p. They also showed down-
regulation of two others, miR-595 and miR-198. The virus G protein can modify the 
expression of some inflammatory factors, whereas it suppressed type I IFN via induc-
tion of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 [224, 225]. They infected 
A549 human alveolar epithelial cells with recombinant RSV (6340WT) or a recombi-
nant virus with mutated G gene (RSVΔG) to investigate the effects of viral G protein 
on miRNA expression, particularly let-7, and found that RSV G protein increased let-7 
expression [223]. They also demonstrated that let-7f controlled the expression of SOCS3 
and CCL7/MCP3, which are known to play a role in the host inflammatory response. 
Previous studies have reported that the G protein inhibited the release of chemokines 
by bronchoalveolar leukocytes in response to RSV infection [224], but increased the 
expression of IL-8 [224]. Let-7f was shown to control the expression of early flowering 4 
(ELF4), which in turn increases IL-8 expression [226]. The expression of RSV G protein 
was correlated with let-7f repression, and subsequently reduced the expression of IL-8. 
It has been reported that some amino acid residues located on the cysteine loop region 
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of RSV G protein contribute to its modulatory effect on IFN-λ expression, and can sup-
press several miRNAs, including let-7f [227]. Taken together, RSV represses the expres-
sion of let-7 miRNA family members to escape from the the host antiviral defense, partly 
via the crucial RSV G protein.

Let‑7 and HIV
The human immunodeficiency virus 1 (HIV-1) is an enveloped RNA virus with a 
genome composed of two identical single-stranded sequences. HIV-1 is a member of 
the Lentivirus genus, Retroviridae family, and Orthoretrovirinae subfamily, and is the 
causative agent of acquired immunodeficiency syndrome (AIDS). HIV-1 initially binds 
to and replicates inside CD4+ T lymphocytes, as well as monocytes and macrophages. 
The three stages of HIV-1 infection are the acute phase, chronic phase, and appearance 
of AIDS. HIV-1 infection may take an average time of 10 years before the development 
of AIDS [228].

Only low levels of HIV markers (e.g., HIV-1 RNA and p24) can be identified imme-
diately after HIV-1 infection, and during the early viral infection stage these markers 
may not be detected at all. Therefore, the early stage has been called the “window 
period” or “eclipse stage” [229]. Typically, HIV-1 markers could be detected 10 days 
after viral infection, when the viral RNA can be identified using nucleic acid test 
(NAT) assays [230–232]. After that, 15–22 days following infection, HIV-1 p24 anti-
gen becomes detectable. Acute HIV infection is defined as the interval between virus 
acquisition and development of seroconversion. The acute phase is highly infectious 
with peak levels of viral load in the circulation, occasionally reaching > 1 × 107copies/
mL [233]. Additionally, the viral load accompanied with the absence of neutralizing 
antibodies produces a high HIV transmission rate [234, 235]. Subsequently, immu-
noglobulins (IgM and IgG) against HIV-1 appear, which are easily detected using 
immunoassays [236, 237]. High rates of false-negative results have been reported in 
the window period of HIV-1 infection [238]. Precise diagnostic approaches for detec-
tion of HIV are needed to minimize the risk of HIV transmission from infected indi-
viduals. Individuals in the acute phase of HIV infection mostly do not know they 
have been infected, and may continue to carry out high-risk behavior, thus increas-
ing transmission rates. Accordingly, early screening of HIV-1-infected individuals 
could help to prevent viral transmission [239]. Therefore, host-associated prognostic 
and predictive biomarkers are needed in addition to the currently available diagnos-
tic strategies. Identification and validation of cellular miRNAs as potential biomark-
ers may help us achieve this goal. Recently Biswas et  al. [240] assessed the miRNA 
expression profiles in early-stage HIV-1-infected subjects, in an attempt to create a 
miRNA-based approach for prediction. They found that four miRNAs showed differ-
ential expression in HIV-1-infected individuals (miR-20b-5p, miR-16-5p, miR-223-3p, 
and miR-195-5p) and could be used to distinguish early infected subjects from non-
infected subjects, with high diagnostic power [AUC 1.000 (95% CI 1.00–1.00), sen-
sitivity 100%, and specificity 100%]. In addition, to diagnose the HIV-1-infected 
individuals within the window period, they created a different four-miRNA-based 
panel (let-7g-3p, miR-206, miR-16-5p, and miR-181c-3p) also with high diagnostic 
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power [AUC 0.999 (95% CI 0.995–1.000), sensitivity 100%, and specificity 95·8%]. 
Furthermore, the use of let-7g-3p alone could distinguish early HIV-1-infected sub-
jects from healthy subjects [AUC 0.91 (95% CI 0.81–1.0)] [240] (Table 2).

Interleukin 10 (IL-10) is a multifunctional cytokine that is expressed in a most 
immune cells [241]. Plasma IL-10 levels have been found to be higher in subjects 
with HIV-1 infection, and this is thought to contribute to the poor antiviral immune 
response by CTLs. The levels of IL-10 expression can be controlled at several lev-
els, including the epigenetic level via different signaling pathways, at the transcrip-
tional level via transcription factors, and the post-transcriptional level mediated by 
miRNAs [242, 243]. Swaminathan et  al. [123] showed that let-7 could repress IL-10 
expression at the post-transcriptional level. They found that IL-10 was highly upreg-
ulated in HUT78 T cells, and proposed that let-7 overexpression decreased IL-10, 
because silencing of let-7 miRNA led to a significant increase in IL-10 levels. HIV-1 
infected HUT78 cells showed lower let-7 levels accompanied by increased IL-10 lev-
els, suggesting that the decreased let-7 level may be involved in the increased IL-10 
expression that was seen in HIV-1 infection. Also, they found reduced let-7 levels in 
primary CD4+ T cells retrieved from blood samples of subjects with HIV-1 infection, 
compared with non-infected controls, suggesting that the altered miRNA levels could 
be linked to the increased IL-10 expression in HIV patients. They proposed that dys-
regulation of the let-7/IL-10 axis could result in the abnormal CTL function seen in 
HIV-1-infected individuals [123].

Interleukin-2 (IL-2) is an essential cytokine that regulates the cell number, differen-
tiation state, and death of most T cells. IL-2 is mainly released from activated Th cells, 
and is controlled by several transcription factors, chromatin remodeling agents, and 
the CD28 co-stimulation pathway [244, 245]. In a number of studies, HIV-1 infection 
has been shown to suppress IL-2 expression in Th cells in vitro [246–249]. Recently, 
Zhang et al. [250] reported that let-7i induced gene expression in Th cells by binding 
to the TATA-box of the IL-2 promoter, and promoting the assembly of pre-initiation 
complexes, which are required for mRNA transcription. They observed that HIV-1 
infection results in lower levels of mature let-7i, as well as its precursor and primary 
forms. Additionally, studies have shown that the function of the let-7i promoter is 
reduced in Th cells following HIV-1 infection. As a result, they suggested that viral 
infection results in suppression of the let-7i/IL-2 axis contributing to Th cell death. 
This was a newly described mechanism for HIV-1-induced Th cell death, because IL-2 
cytokine can enhance the survival of activated T cells [250]. Furthermore, because 
IL-2 is known to regulate the balance of the immune system, the let-7i/IL-2 pathway 
could be responsible for other immune deficiencies seen after HIV-1 infection (e.g., 
T-cell functional unresponsiveness) [251–253].

A number of miRNAs have been proposed to facilitate HIV-1 infection by suppress-
ing proteins involved in the host antiviral response. For instance, p21 protein inhib-
its HIV-1 gene expression by blockading the CDK9 transcriptional elongation factor, 
while the TASK1 K+-channel protein inhibits the Vpu-mediated increase in HIV-1 
release [254, 255]. Farberov et al. [256] showed that targeted reduction of TASK1 and 
p21 expression by miR-124a or miR-34a-5p and Let-7c, respectively, could increase 
HIV-1 replication in HeLa-CCR5 and JLTRG-R5 cells [256].
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Table 2  The role of let-7 family members in viral infections

Virus Let-7 member Expression Target Model Note Refs.

HBV Let-7g Up preS2 In vitro
(Hep38.7)

Anti-HBV activity
Decreased level 
of HBV cccDNA 
and HBV replica‑
tion

[115]

HBV Let-7a Down c-myc
CCR7
K-RAS

Human (tissue 
samples of HCC, 
n = 20)
/in vitro
(Huh-7)

HBV mRNAs 
(pre-C/C, pre-S, 
and S) promoted 
the progres‑
sion of HCC by 
decreasing the 
expression level 
of let-7a. mRNAs 
de-repressed 
let-7a targets, 
including c-myc, 
K-RAS, and CCR7

[116]

HBV Let-7a Down STAT3 In vitro
(HBx-HepG2)

HBX protein 
enhanced cell 
proliferation by 
decreasing the 
expression level 
of let-7a

[124]

HBV Let-7i Down CD59 Human (HCC tis‑
sues samples)/
in vitro
(HBx-HepG2,
HBx-L-O2)

HBx increased 
CD59 expression 
through (prob‑
able) downregu‑
lation of let-7i 
levels

[125]

HCV Let-7c Up Bach1 In vitro
(Ava.5/
JFH1-Huh7)

Anti-HCV activity
let‐7c sup‑
pressed HCV 
replication by 
targeting Bach1

[138]

HCV Let-7b Up SOCS1
IKKα
ATG12

In vitro
(Huh7)

Anti-HCV activity
let-7b inhibited 
HCV by enhanc‑
ing JAK/STAT 
and RIG-I signal‑
ing pathways 
during the early 
stage of HCV 
infection

[142]

HCV Let-7b Up IGF2BP1 In vitro
(IFN-α
and IL-28B
treated Huh7, 
Huh7.5.1)

Anti-HCV activity 
by targeting 
IGF2BP1
Let-7 s reduced 
HCV replication 
and translation

[137]

HCV
(genotype
1b, 2a)

Let-7g Up 5′-UTR of HCV 
genome

In vitro
(PEG-IFN/RBV-
treated Ava.5-
Huh7, JFH1-
Huh7.5.1)

Anti-HCV activity
Let-7g cooper‑
ated with 
interferon/riba‑
virin to repress 
hepatitis C virus 
replication 
through p38/
AP-1 signaling

[287]
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Table 2  (continued)

Virus Let-7 member Expression Target Model Note Refs.

HCV
(genotype 1b)

Let-7b Up NS5B
5′UTR​

In vitro (Huh-7) Anti HCV activity
Let-7b sup‑
pressed 
replication and 
translation of 
HCV by targeting 
NS5B and the 
5′-UTR region of 
HCV genome

[135]

HCV
(genotype 1b)

Let-7a Down CLDN1
CDH1

Human (tissue 
samples of 
chronic HCV)/
in vitro
(Huh7.5.1, PHH)

Let-7a was 
significantly 
downregulated 
by HCV
Let-7a and 7b 
restricted multi‑
ple steps of the 
HCV life cycle, 
including entry, 
translation, and 
RNA replication

[139]

HIV-1 Let-7c Up CDKN1A, at the 
RNA and protein 
(p21) levels

In vitro
(T lymphocytes,
HeLa-CCR5)

Let-7c was 
upregulated on 
the first day after 
HIV infection 
and down‑
regulated at 
later timepoints. 
Upregulation 
of has-let-7c 
levels resulted 
in enhanced HIV 
replication

[256]

HIV-1 Let-7i Down IL-2 promoter 
TATA-box region

In vitro
(CD4+ T cell)

HIV-1 infection 
attenuated the 
expression of let-
7i and promoted 
the activity of 
IL-2

[250]

HIV-1 Let-7b
Let-7c
Let-7f

Down IL-10 In vitro (HUT78) Let-7 decreased 
IL-10 levels
Downregulation 
of let-7 miRNAs 
by HIV infection 
may result in an 
increase in IL-10 
secretion from 
CD4+ T cells, 
providing the 
virus with a sur‑
vival advantage

[123]

HHV-8 Let-7a Up RBPJ In vitro (293 T) LANA protein 
repressed lytic 
replication 
of HHV-8 by 
upregulating 
let-7a expression 
and promot‑
ing notch 
intracellular 
domain (NICD) 
and decreas‑
ing LIN28B and 
NF-κB

[170]
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Table 2  (continued)

Virus Let-7 member Expression Target Model Note Refs.

HHV-8 Let-7a
Let-7d
Let-7e
Let-7i

Down MAP4K4 Human (tissue 
samples, n = 4) /
in vitro (293 T)

Anti-KSHV 
activity
Let-7a inhibited 
replication of 
KSHV by target‑
ing MAP4K4 
signaling 
pathways

[169]

HPV-16 and 
HPV-18

Let-7a Down STAT3 Human (tissue 
samples of 
cervical cancer, 
n = 53)/in vitro 
(CaSki, SiHa, 
HeLa)

E6 increased 
expression level 
of STAT3 by 
downregulation 
of let-7a

[192]

EBV Let-7a-5p
Let-7b-5p
Let-7d
Let-7e-5p
Let-7f-5p
Let-7g-5p

Up BZLF1
Dicer

In vitro (HONE1, 
CNE2Z)

EBV EBNA1 
promoted EBV 
latency by 
inducing the 
expression of 
let-7

[153]

SARS-CoV-2 Let7-d-3p
Let7-e-3p
Let7-f-3p
Let7g-3p
Let7-i-3p

Up S In vitro Has-let-7 
repressed SARS-
CoV-2 replication 
by targeting S 
gene of virus

[219]

SARS-CoV-2 Let7-b-3p
Let7-c-3p
let7g-3p
Let7-i-3p

Up M In vitro let-7c-5p can tar‑
get the ORF1ab 
SARS-CoV-2 to 
inhibit its replica‑
tion

[219]

H1N1 Let-7c Up M1 In vitro (A549) Inhibited virus 
replication

[209]

H7N9
Avian

Let-7e Down IL-6 In vitro (THP‑1) The expression 
of pro-inflamma‑
tory factors IL‑6, 
IL‑1α, and IL‑1β 
was promoted 
through the 
effect of HA 
protein on let-7e 
expression

[320]

RSV Let-7f Up SOCS3
CCND1
ELF4
DYRK2
CCL7

In vitro (A549) G protein stimu‑
lated expression 
of let-7f, to 
promote virus 
replication

[223]

RSV Let-7f Down IFN λ In vitro
(Calu-3)

G protein led 
to escape from 
interferon 
response by 
altering expres‑
sion of let-7f

[227]

DENV-2 Let-7e Up SOCS3 In vitro (PBMC) Enhanced the 
level of pro-
inflammatory 
cytokines during 
infection

[321]
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Extracellular vesicles loaded with let‑7 in viral infections
Extracellular vesicles (EV) are membranous structures that have been classified on the 
basis of vesicle size, function, or biogenesis process. According to the International Soci-
ety of EVs, they can be divided into microvesicles (MVs), exosomes, and apoptotic bod-
ies (ABs) [10]. Due to the potential capacity of EVs to transport macromolecules, such as 
proteins and RNA transcripts, from source cells to recipient cells, they have gained con-
siderable attention. Exosome-mediated transfer of mRNAs and miRNAs has been shown 
to alter processes within the recipient cells, such as regulate protein expression, indicat-
ing that exosome-derived RNAs can play functional roles. Moreover the RNA profile of 
EVs from a daughter cell can vary significantly from the parental cell, which means that 
cells can change the composition and concentration of RNAs in EVs [11]. Some popula-
tions of EVs have been discovered with high amounts of miRNAs amounting to 39% of 
the entire RNA content of EVs, but only 6% of the total cellular vesicles [257]. This sug-
gested that miRNAs can be selectively and purposefully sorted and packaged into EVs.

The EVs that originate from virus-infected cells have been found to be able to trans-
fer proteins, viral genomes, and host factors from donor to adjacent recipient cells, or 
from infected tissue to other tissues. This may lead to modulation of the host immune 
response to encourage the establishment of a productive viral infection [258, 259]. 
Additionally, the transfer of miRNAs through EVs could facilitate virus spread through 
modulating immune responses [260, 261]. These finding suggested that exosomes are 
involved in viral replication; however, the precise mechanisms for this, and the effects on 
immune system defense, are not yet clarified.

Table 2  (continued)

Virus Let-7 member Expression Target Model Note Refs.

DENV-2 Let-7a Up NS1 In vitro (Huh-7) Decreased NS1 
RNA and protein 
expression, 
repressed DENV 
virus replication 
and pathogen‑
esis

[322]

Enterovirus 71 let‑7c‑
5p

Up MAP4K4 In vitro
(rhabdomyosar‑
coma)

Hsa-let-7c-5p 
promoted 
enterovirus 71 
replication by 
activating the 
JNK signaling 
pathway

[323]

Enterovirus 71 Let-7b Up CCND1 In vitro (SH-
SY5Y)

Increased cell 
apoptosis

[324]

Enterovirus 71 Let-7a Up VP2
5′UTR​

In vitro
(SK-N-SH, RD)

Suppressed virus 
replication and 
decreased viral 
load

[325]

Pestivirus Let-7a
Let-7b

Up 3′-UTR​ In vitro
(MDBK)

Promoted virus 
replication, 
translation, and 
RNA stability

[326]

Porcine 
reproductive 
and respiratory 
syndrome virus

Let-7f-5p Down MYH9 In vitro
(HEK293FT)

Repressed virus 
replication

[327]
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Many studies have evaluated the biological function of different miRNAs in HCV 
infection. miRNAs within the EVs may enable communication between neighboring 
cells and affect gene expression in the recipient cells [5]. Matsuura et al. [262] designed 
a study to assess whether circulating miRNAs contained within EVs could predict dis-
ease progression in CHC patients compared with the hepatic expression levels, and 
investigated the mechanism of the association. They performed a large miRNA profiling 
study in plasma samples from CHC patients using a microarray technique. The authors 
found that 323 miRNAs were differentially expressed in CHC patients compared with 
healthy controls; however, only six of these could distinguish mild hepatitis subjects 
from patients with severe chronic hepatitis. Let-7d-5p, let-7a, let-7c, and miR-122-5p 
were promising in terms of predicting disease progression in CHC patients. There was 
an inverse association between plasma let-7 miRNA and histological fibrosis stage and 
fibrosis-related markers. Let-7 values in EVs performed similarly compared with plasma 
values to discriminate hepatic fibrosis. Longitudinal evaluation in a total of CHC 60 
patients showed that plasma expression of let-7 significantly decreased over time, in 
agreement with the progression of liver fibrosis determined by sequential biopsies. They 
concluded that the let-7 miRNA family showed the best association with the progression 
of liver fibrosis in CHC patients. Later, the same researchers [133] evaluated the corre-
lation between the serum circulating let-7a-5p values and EVs isolated from the serum 
of 84 Japanese patients diagnosed with CHC and the correlation with hepatic fibrosis 
severity in paired liver biopsies. They found that serum let-7a-5p values and let-7a-5p in 
EVs were significantly reduced in liver cirrhosis patients. Additionally, let-7a-5p values 
significantly correlated with hepatic fibrosis markers and could predict hepatic cirrho-
sis more accurately than other markers of hepatic fibrosis [133]. They proposed that the 
lower levels of let-7 could affect liver fibrogenesis after viral infection by triggering the 
TGF-β signaling pathway [262].

More than 36 million people around the world are living with HIV infection. Among 
them, about 2.3 million people are also estimated to be coinfected with HCV [263]. Due 
to the similar routes of viral transmission and similar high-risk behaviors, HIV-infected 
patients are at higher risk of HCV infection. Hepatic disorders are now the leading cause 
of morbidity and death in individuals who are infected with both HIV and HCV. These 
patients are likely to develop advanced hepatic disease with a more rapid progression 
rate compared with those who only have HCV mono-infection [264]. Moreover, HCV 
and HIV exploit the same host exosomal machinery to promote infection and evade the 
immune response, leading to alterations of the small RNA cargos after viral infection. 
Martínez-González et al. [263] investigated the small RNA cargo profile of EVs extracted 
from plasma samples of HIV/HCV-coinfected individuals. They reported that three 
miRNAs had specific expression in the liver, and miR-21-5p, hsa-miR-let-7a-5p, and hsa-
miR-122-5p were upregulated in patients who were coinfected with HIV and HCV, sug-
gesting that EV miRNA cargos could provide information on liver disease progression 
[263].

Microglia are specific types of macrophages with a mesodermal/mesenchymal ori-
gin generally located in the CNS, and are critical mediators of inflammation within the 
CNS (neuroinflammation) [265]. Neuroinflammation is a characteristic sign of Japa-
nese encephalitis virus (JEV) infection. This virus is neurotropic in nature and typically 
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affects young children (1–5 years old), sometimes resulting in lifelong consequences, like 
neuronal damage, motor disability, and amnesia [266]. During the past years, it has been 
found that JEV infection can cause dysregulations in the miRNA profile within the brain, 
and some miRNAs are involved in the regulation of JEV replication and neuroinflamma-
tory responses [267–269]. Nevertheless, the possible role of neurologic cell–cell com-
munication via microglial-derived miRNAs in viral infections has not been explored. 
Recently, Mukherjee et  al. reported that let-7b and let-7a (let-7a/b) miRNAs were 

Table 3  Exosomes containing let-7 family members in viral infections

Virus Let-7 family Expression Exosome source Detection 
technique of miR

Sample (n) Refs.

HCV Let-7a-5p
Let-7d-5p

Up Plasma of chronic 
hepatitis

qRT-PCR 32 [262]

HCV Let-7c-5p Down Plasma of chronic 
hepatitis

qRT-PCR 32 [262]

HCV Let-7a-5p Down Serum of chronic 
hepatitis with liver 
cirrhosis

qRT-PCR 25 [133]

HCV/HEV Let-7i Down Serum of blood 
donors

qRT-PCR 4 [328]

HIV Let-7a
Let-7d
Let-7e
Let-7f
Let-7g
Let-7i

Up Plasma of heroin 
abuse

Microarray
qRT-PCR

19 [329]

HIV/HCV Let-7a-5p
Let-7b-5p
Let-7f-5p

Up Blood Sequencing
qRT-PCR

4 [263]

Japanese encepha‑
litis virus
(JEV)

Let-7a
Let-7b

Up N9 cells qRT-PCR – [270]

Japanese encepha‑
litis virus
(JEV)

Let-7g-5p Up CSF of acute 
encephalitis

qRT-PCR 16 [267]

HPV 18 Let-7d-5p Down HeLa cells qRT-PCR – [330]

H1N1 Let-7b-5p Down BALF of influ‑
enza with acute 
respiratory distress 
syndrome (ARDS)

NGS 6 [331]

H7N7
Avian

Let-7a – A549 cells Microfluidic micro‑
array platform

– [310]

H7N7
Avian

Let-7b – A549 cells Microfluidic micro‑
array platform

– [310]

H7N7
Avian

Let-7c – A549 cells Microfluidic micro‑
array platform

– [310]

H7N7
Avian

Let-7d – A549 cells Microfluidic micro‑
array platform

– [310]

H7N7
Avian

Let-7e – A549 cells Microfluidic micro‑
array platform

– [310]

H7N7
Avian

Let-7f – A549 cells Microfluidic micro‑
array platform

– [310]

H7N7
Avian

Let-7i – A549 cells Microfluidic micro‑
array platform

– [310]

H1N1
Swine/H7N7
Avian

Let-7g – A549 cells Microfluidic micro‑
array platform

– [310]
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upregulated in, and released from, JEV-infected microglial cells incorporated inside EVs 
[270]. Reportedly, the let -7a/b miRNA could modulate the inflammatory response in 
microglial cells via activation of the Toll-like receptor 7 (TLR7) signaling pathway [271]; 
however, the precise role in promoting JEV pathogenesis is unclear. To explore this fur-
ther, Mukherjee et al. [272] designed a study to clarify the role of let-7a/b in the patho-
genesis of JEV. They first evaluated the effect of miRNA-loaded exosomes on primary 
neurons. They reported that inhibition of TLR7, or addition of let-7a/b, inhibited the 
JEV-induced activation of the NOTCH pathway, possibly via the NF-κB pathway, and 
eventually reduced the JEV-induced generation of TNF-α in microglial cells. Addition-
ally, delivery of isolated exosomes released from let-7a/b-overexpressing microglial cells 
to the brains of healthy mice caused activation of caspases. When neuro2a neuronal cells 
or primary cortical neurons were incubated with exosomes derived from JEV-infected 
cells, or with miRNA-overexpressing microglial cells, both induced caspase activation 
resulting in cell death. Therefore, these findings underline the complex role of let-7a/b 
involved in JEV pathogenesis. Because let-7a/b can interact with the TLR7 and NOTCH 
pathways, it can increase TNF-α secretion from microglial cells. Contrarily, exosomes 
from virus-infected microglia may activate caspases in healthy adjacent neuronal cells, 
contributing to their death [272] (Table 3).

Conclusion
We have shown that the let-7 family of miRNAs functions as a regulator of a number 
of crucial cellular processes. We summarized how let-7 miRNAs can affect viral patho-
genesis. Investigators are currently attempting to identify new therapeutic drugs for the 
treatment of viral diseases and cancer-associated viruses. Recently miRNA-based ther-
apeutic approaches have emerged as promising candidates to meet this goal. The role 
of let-7 role in some viral infections is well understood, whereas its role in other viral 
diseases (in particular oncovirus infections) is more complicated and still a matter of 
debate. It has been shown that let-7 miRNAs are able to reduce the expression levels 
of several target genes, including MAP4K4, STAT3, IL-10, ORF1ab, SARS-CoV-2, and 
H1N1 M1 genes. These changes in gene expression may affect the antiviral response of 
the human immune system. There is evidence that let-7 can be extracted from differ-
ent human bodily fluids, and the expression values of let-7 are different in virus-infected 
patients relative to healthy individuals, suggesting its potential to be used as a diagnostic 
biomarker in clinical settings. Moreover, because let-7 plays such a crucial role in the 
development of virus and cancer-associated virus infections, it could serve as a valuable 
target for novel treatments of viral infections.
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