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Introduction
Osteosarcoma (OS) is known as the most aggressive cancerous bone disease and 
occurs mostly in children and adolescents [1]. Osteosarcoma or osteogenic sarcoma, 
Ewing tumors, and chondrosarcoma are the most common types of preliminary bone 
tumors [2]. The worldwide incidence of OS, known as the most prevalent principal 
malignant tumor of bone, has been reported to be about one to three cases per million 
per year [3, 4]. Based on age, the diagram of OS occurrence is presented as a bimodal 
distribution curve in which two distinct peaks are recognizable; the first peak can be 
seen in children and adolescents, while the second peak emerges in people over the 
age of 50  years [5]. OS accounts for approximately 60% of the widespread histolog-
ical subclasses of pediatric bone sarcoma [6]. OS is categorized as a mesenchymal 

Abstract 

Despite great advances, therapeutic approaches of osteosarcoma, the most prevalent 
class of preliminary pediatric bone tumors, as well as bone-related malignancies, con-
tinue to demonstrate insufficient adequacy. In recent years, a growing trend toward 
applying natural bioactive compounds, particularly phytochemicals, as novel agents 
for cancer treatment has been observed. Bioactive phytochemicals exert their antican-
cer features through two main ways: they induce cytotoxic effects against cancerous 
cells without having any detrimental impact on normal cell macromolecules such as 
DNA and enzymes, while at the same time combating the oncogenic signaling axis 
activated in tumor cells. Thymoquinone (TQ), the most abundant bioactive compound 
of Nigella sativa, has received considerable attention in cancer treatment owing to its 
distinctive properties, including apoptosis induction, cell cycle arrest, angiogenesis and 
metastasis inhibition, and reactive oxygen species (ROS) generation, along with induc-
ing immune system responses and reducing side effects of traditional chemothera-
peutic drugs. The present review is focused on the characteristics and mechanisms by 
which TQ exerts its cytotoxic effects on bone malignancies.

Keywords:  Osteosarcoma, Bone metastasis, Thymoquinone, Signaling pathway, 
Apoptosis, Angiogenesis, Chemotherapy resistance

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

REVIEW

Homayoonfal et al. 
Cellular & Molecular Biology Letters           (2022) 27:21  
https://doi.org/10.1186/s11658-022-00320-0

Cellular & Molecular
Biology Letters

*Correspondence:   
Asemi_r@yahoo.com; 
bahmanusefi@gmail.com 
1 Research Center 
for Biochemistry 
and Nutrition in Metabolic 
Diseases, Institute for Basic 
Sciences, Kashan University 
of Medical Sciences, Kashan, 
Islamic Republic of Iran
2 Molecular Medicine 
Research Center, Tabriz 
University of Medical 
Sciences, Tabriz, Iran
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s11658-022-00320-0&domain=pdf


Page 2 of 28Homayoonfal et al. Cellular & Molecular Biology Letters           (2022) 27:21 

neoplasm of malignancy in which the cancer cells directly generate imperfect oste-
oid tissue such as chondroblastic, conventional, high-grade surface, low-grade cen-
tral, secondary, periosteal, parosteal, or small-cell varieties. It should be noted that 
producing these tumours most often arise in the long bones from osteoid-producing 
neoplastic cells adjacent to the growth plates, occurring less commonly in other non-
long bones and the axial skeleton [7, 8]. OS shows a strong tendency to emerge in 
bone cells with an explosive growth rate [9].

Environmental and epidemiological parameters as well as genetic disruption play a 
role in the etiology of OS. Age, alkylating agents, bone turnover, chromosomal abnor-
malities such as hereditary retinoblastoma, sex, height, ionizing radiation, and Paget’s 
disease are important risk factors associated with OS progression [10]. OS can occur 
in all bones, although it primarily affects the long bone metaphysis. The detection of 
malignant osteoblasts and their outcomes, such as osteoid osteoma, leads to the clini-
cal diagnosis of OS [11]. The typical treatment for patients suffering from OS is the 
combination of neoadjuvant multiagent chemotherapy and surgical resection, which 
may increase the survival rate of patients; however, OS recurrence and metastasis 
increase the mortality rate [12], with the survival rate decreasing to less than 30% 
for patients with tumor metastasis to the lung [13]. Furthermore, application of typi-
cal chemotherapeutic agents such as high dosage of 5-fluorouracil, adriamycin, cis-
platin, methotrexate, doxorubicin, and/or etoposide as well as ifosfamide may result 
in both acute and long-term toxicity [14]. Moreover, patients with metastatic osteo-
sarcoma show inadequate response to currently used chemotherapeutic agents [15]. 
Hence, there is a pressing need to discover more efficient chemotherapeutic agents 
with fewer side effects to eradicate primary OS and suppress metastasis to enhance 
long-term survival rates.

Recently, convincing evidence has demonstrated that components isolated from natu-
ral plant products have a wide range of biological effects, including antioxidant, anti-
inflammatory, and anticancer properties [16–18]. Thymoquinone (C10H12O2; TQ) is 
a volatile oil ingredient derived from Nigella  sativa Linn. seeds. Nigella  sativa is gen-
erally identified as black cumin seeds of the Ranunculaceae botanical family. Black 
cumin seeds have been applied as a natural product for the treatment of atopic derma-
titis (eczema) and bronchial asthma in the traditional medicine of Middle Eastern for 
more than 2000 years [19]. Furthermore, several in vivo and in vitro observations have 
revealed the antineoplastic activities of TQ against a broad variety of liquid and solid 
tumors, with few side effects [20]. TQ has anticancer effects against various types of 
cancer cells, including colon, lung, myeloblastic leukemia, ovarian, pancreas, and osteo-
sarcoma [21]. TQ exerts its antitumor features by affecting different cellular processes, 
including angiogenesis, apoptosis, cell cycle, and proliferation, along with tumorigenic 
functions, including cell migration, invasion, and metastasis [22].

Despite inhibiting the growth and viability of different cancer types, TQ has no 
adverse effects on healthy cells [23]. Health-promoting effects and distinct advantages 
of TQ are primarily associated with the presence of lipophilic quinine components in its 
structure. The lipophilic nature of TQ enhances its accessibility to cellular and subcellu-
lar structures by targeting intracellular transcription factors and kinases and interfering 
with oncogenesis [24]. The purpose of this review is to provide a comprehensive report 
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of the in vitro and in vivo investigations of the anticancer characteristics of TQ against 
osteosarcoma in the literature.

Osteosarcoma pathogenesis
The development of OS is attributed to various complicated phenomena, including 
genome instability, chromosomal abnormality, and some specific syndromes. OS origi-
nating from cortical surfaces of bones is split into three distinct types: parosteal, peri-
osteal, and high-grade OS [25]. Parosteal osteosarcoma, a subclass of low-grade OS, has 
a fibroblastic-like appearance and is limited to the surface of bone structures; however, 
it may gradually spread to interior bone tissues. The only treatment for parosteal osteo-
sarcoma that has been shown to lead to a favorable prognosis is surgery. Periosteal oste-
osarcoma, as the single intermediate-grade subclass, presents chondroblast histology, 
and it is generally treated with systematic chemotherapy [10]. High-grade OS, known 
as the classic osteoblastic subclass, is the most progressive and devastating type. This 
subclass is regarded as a micrometastatic carcinoma at diagnosis stages and, as men-
tioned previously, is treated with a combination of chemotherapy and surgery [26]. One 
of the factors allowing OS cells to proliferate is their resistance to apoptosis. Anoikis is a 
type of apoptosis that causes cells to detach from their component matrix. OS cells are 
extremely resilient to anoikis, and they may proliferate despite the attachment of cell–
cell and cell–matrix being disrupted [27].

Various syndromes such as Bloom’s syndrome, Li–Fraumeni syndrome, retinoblas-
toma, Rothmund–Thomson syndrome, and Warner’s syndrome predispose to osteo-
sarcoma. Li–Fraumeni syndrome is the syndrome that shows the highest susceptibility 
to pediatric sarcoma [28]. TP53 gene, which encodes p53, undergoes a germline muta-
tion in Li–Fraumeni syndrome. p53 is a transcription factor modulating gene-associ-
ated DNA repair and triggering post-damage apoptosis [29, 30]. Evidence shows that 
approximately 30% of individuals with Li–Fraumeni syndrome develop OS. Moreover, 
18–26.5% of sporadic osteosarcoma cases lack somatic p53 [31, 32]. Retinoblastoma 
is another syndrome that may lead to OS. The RB1 gene binds to the E2F transcrip-
tion factor family and encodes the pRb retinoblastoma protein. Generally, lack of pRb 
arises in OS sporadic cases and results in unfavorable outcomes [33]. The incidence of 
OS is higher in patients suffering from various infrequent autosomal recessive diseases, 
including Bloom’s syndrome, Rothmund–Thomson syndrome, and Warner’s syndrome. 
Such syndromes are consequences of RecQ helicase genes [34].

One of the indicators of OS is high expression of midkine suppressing apoptosis pro-
cesses and enhancing OS cell proliferation [35]. The extent of OS, including its persis-
tent growth as well as its metastasis to other tissues such as bone and lung, is highly 
dependent on tumor angiogenesis [36]. In OS, the levels of antiangiogenic proteins such 
as troponin I and pigment epithelial-derived factor (PEDF) reduced, while those of sev-
eral growth and angiogenic factors, including interleukin 8 (IL-8), vascular endothelial 
growth factor (VEGF), epithelial growth factor receptor (EGFR), and platelet-derived 
growth factor receptors (PDGF-R), are increased. Furthermore, in metastatic OS, par-
ticular genetic alterations occur, including upregulation of Notch1 and Notch2 recep-
tors along with proto-oncogene tyrosine-protein kinase Src (Src) and wingless-type 
MMTV integration site family (Wnt)/β-catenin pathways and downregulation of the Fas 
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and Fas ligand (FASL) pathway [37]. Insulin-like growth factor type 1 receptor (IGF-R1) 
pathway causes expression of mitogen-activated protein kinase (MAPK)/extracellular 
signal-regulated kinase (ERK) and phosphoinositide 3-kinases (PI3K)/protein kinase B 
(Akt)/mammalian target of rapamycin (mTOR) to decline, which may eventually lead to 
enhanced survival, proliferation, and migration of OS cells [38]. Bone and bone mar-
row tissues have abundant mesenchymal stem cells (MSCs) that are situated close to OA 
cells. Various in  vitro and in  vivo observations have revealed that MSCs promote OS 
cell proliferation [39]. As a type of cysteine protease, cathepsin K (Cat K) is produced by 
osteoclasts and is capable of degrading osteonectin, osteopontin, and collagen, facilitat-
ing the invasion process [40].

Among the environmental parameters that may function as OS carcinogens, ionizing 
and ultraviolet radiation are acknowledged [41], with radiation exposure accounting for 
about 2% of OS occurrences. As an interval of 10–20 years is reported between radia-
tion exposure and OS onset, this parameter is not considered in pediatric OS [42]. Addi-
tionally, it has been reported that numerous chemical compounds such as aniline dyes, 
asbestos, beryllium oxide, chromium salts, methylcholanthrene, and zinc beryllium sili-
cate may be related to OS formation [43].

Anticancer effects of thymoquinone
As mentioned previously, TQ has demonstrated profound antineoplastic impact on sev-
eral types of cancer, including bladder, bone, breast, colon, gastric, lung, prostate, and 
ovarian, by affecting signaling pathways and/or different cell processes (Fig. 1, Table 1). 
Based on the report published by Sung et  al. (2021), female breast cancer surpassed 
lung cancer in 2020 and ranks as the most commonly diagnosed cancer, with 2.3 mil-
lion new cases in 2020 [44]. As the cancer with the fifth-highest mortality rate, it led to 
685,000 deaths. Hence, desperate attempts have been made to control breast cancer. In 

Fig. 1  Anticancer properties of thymoquinone
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an investigation conducted by Dastjerdi et al. (2016) on the treatment of MCF-7 breast 
cancer cell lines, p53 was revealed to be one of the targets of TQ [45]. After subjecting 
MCF-7 cells to a range of TQ concentrations and treatment durations , they indicated 
that TQ upregulated the expression of p53 in a time-dependent manner, promot-
ing apoptosis in MCF-7 and, consequently, reducing the proliferation of cancer cells. 
In another study, Khan et al. (2015) found that application of TQ to BT 549 cell lines 
(breast cancer cells) in a dose-dependent fashion reduced the transcription activity of 
TWIST1, one of the promotors of endothelial-to-mesenchymal transition (EMT) [46]. 
Moreover, TQ engagement increased the expression of E-cadherin and decreased the 
expression of N-cadherin genes associated with TWIST1. As a result, TQ could inhibit 
cancer cell migration and invasion. Zhou et al. [47] studied the antitumor effect of TQ 
treatment on p. H1047R and p. H1047L, two hotspot mutations of PIK3CA in metastatic 
breast cancer (BMC). p. H1047R and p. H1047L mutations reduce the inhibitory effect 
of ΔNp63a, the main isotype protein of the p53-associated p63 expressed in epithelial 
cells, on the kinase regions of PIK3CA, which may result in augmented activity of PI3K 
downstream signals.

According to global cancer statistics 2020, lung cancer is the second most commonly 
diagnosed cancer and leading cause of cancer-related death in 2020, with around 2.2 
million new cases and 1.8 million deaths. It is the most common cancer-associated mor-
bidity and mortality in men, while in women it is ranked third after breast and colorectal 
cancer in terms of incidence and has the second-highest mortality rate after breast can-
cer [44]. Recently, various investigations have been conducted on lung cancer treatment 
by natural compounds. In a study on the underlying molecular mechanism of TQ on 
A549 lung cancer cell line, it was revealed that incubation of A549 cells with TQ reduced 
the expression of proliferating cell nuclear antigen (PCNA) as a proliferation marker, as 
well as cyclin D1. Additionally, Yang and coworkers found that application of TQ at a 
dose of 40 μM and at timepoints of 24, 48, and 72 h downregulated cyclin D1, MMP2, 
MMP9, and PCNA in A549 cell lines. Moreover, TQ, through blocking phosphorylation 
of ERK1/2, caused proliferation, migration, and invasion of A549 cancer cells [48].

Colorectal cancer has been classified as the second most common cause of cancer 
mortality and is ranked third in terms of cancer incidence in 2020. Various studies have 
been carried out on the association of TQ with colorectal cancer. Kundu et  al. (2014) 
examined the effect of TQ on human colon cancer cells (HCT116). They reported that 
TQ treatment stimulated apoptosis and reduced cancer cell viability in a dose- and time-
dependent manner. Investigation of the molecular mechanism underlying TQ antipro-
liferative effects revealed that TQ upregulated the pro-apoptotic Bax (BCL-2 associated 
X) protein and downregulated the anti-apoptotic Bcl-2 (B-cell lymphoma-2) and Bcl-xL 
proteins [49].

Signal transducer and activator of transcription (STAT) signaling pathway consists of 
a group of proteins that control several signal transducers, including cytokines, growth 
factors, and hormones, and play a fundamental role in the proliferation and growth of 
various tumors. TQ treatment has been shown to prevent phosphorylation and nuclear 
localization in STAT signaling and, consequently, through downregulating the products 
of its target genes, including c-Myc, cyclin D1, cyclin D2, and survivin, inhibit cell pro-
liferation in colon cancer. Another study, which applied different doses and treatment 
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durations of TQ to human gastric cancer cells, found that TQ reduced phosphorylation 
of STAT3 and its upstream kinases, including c-Src and Janus kinase-2 (JAK2). Numer-
ous investigations have shown that the MAPK signaling pathway has a substantial effect 
on the appearance of TQ antineoplastic characteristics. MAPK families perform a cru-
cial function in various complicated cellular processes, including apoptosis, develop-
ment, differentiation, proliferation, and transformation.

These variations, along with the reduced activity of cyclin D and Bcl-2 and increased 
expression of caspase-3, caspase-7, and caspase-9, led to cancer cell growth and 
increased viability [50]. El-Najjar and colleagues (2016) in their experimental work 
showed that administration of TQ in human colon cancer cells led to the generation of 
reactive oxygen species (ROS) and reduced the proliferation of cancer cells. Additionally, 
TQ through phosphorylation of JNK and ERK, caused MAPK to induce apoptosis [51]. 
Numerous investigations have found the MAPK signaling pathway to have a substantial 
effect on the appearance of TQ antineoplastic characteristics. Three members of MAPK 
families have been recognized: classical MAPK or extracellular signal-regulated kinase 
(ERK), C-Jun N-terminal kinas/stress-activated protein kinase (JNK/SAPK), and p38 
kinase [52, 53]. Incubation of pancreatic cancer cells with TQ resulted in reduced mucin 
4 (MUC4) expression via the proteasomal pathway and stimulated apoptosis through 
JNK and p38 kinases. MUC4 is a high-molecular-weight glycoprotein that is irregu-
larly overexpressed in pancreatic cancer cells, and its downregulation is associated with 
reduced motility and migration of tumor cells [54].

Overexpression of chemokine interleukin-8 (IL-8) is one of the main indicators of 
hepatocellular carcinoma (HCC), while administration of TQ led to the downregula-
tion of NF-κB signaling in a dose-dependent fashion. TQ treatment also activated cas-
pase-3 and caspase-9, triggering apoptosis, decomposing poly (ADP-ribose) polymerase, 
and suppressing G2/M cell cycle. Moreover, TQ could stunt the growth of HCC cell 
lines through the generation of ROS, heme oxygenase-1 (HO-1), and aNAD(P)H qui-
none dehydrogenase-1 (NQO1) as well as inactivation of Bcl-2, IL-8, and their receptors 
[55]. Another study investigated the effect of TQ treatment on human pancreatic ductal 
adenocarcinoma (PDAC) through in vitro and in vivo investigations. The results illus-
trated that TQ could dose-dependently arrest the G2 cell cycle and reduce cell growth 
and viability related to increased expression of p53 and p21 and decreased expression 
of Bcl-2 and tumor size [56]. Other investigations found TQ to impede the growth of 
C4-2B and PC-3 prostate cancer cell lines owing to ROS generation. As a consequence, 
JNK is activated, leading to increased modulation of GADD45α (DNA damage-inducible 
gene) and AIF (apoptosis-inducing factor-1) and reduced regulation of Bcl-2 associated 
proteins and, finally, prostate cancer cell death [57]. Additionally, it has been shown that 
TQ administration resulted in the downregulation of proteins modulated by E2F-1 that 
are critical for cell cycle progression.

In LNCaP prostate cancerous cells, TQ therapy substantially increased the level of 
p21Cip1 (cyclin-dependent kinase inhibitor 1), p27Kip1 (cyclin-dependent kinase inhibi-
tor 1B), and Bax and arrested the G1 to S phase transition of cancer cell cycles, along 
with a dramatic reduction of androgen receptor (AR) and E2F-1-associated proteins, 
which are required for progression of the cancer cell cycle [58]. Salkar and coworkers 
(2013) in their investigation on cervical cancer demonstrated that incubation of HeLa 
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cervical cancer cells with TQ (100 μM) induced apoptosis through extending the regula-
tion of pro-apoptotic gens such as BCL2L10, BIK (BCL-2 interacting killer), caspase 1, 
and FASL while downregulating genes involved in anti-apoptotic roles of NF-κB activ-
ity, namely BH3 interacting-domain death agonist (BID), BCL-2 interacting killer (BIK), 
v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), v-rel avian reticu-
loendotheliosis viral oncogene homolog B (RELB), tumor necrosis factor (TNF), TNF 
receptor superfamily member 10A (TNFRSF 10A), TNF receptor superfamily member 
10B (TNFRSF 10B), and TNF receptor-associated factor 3 (TRAF) [59].

However, poor bioavailability, high hydrophobicity (logP = 2.41), low water solubility 
(0.5 mg/ml in ethanol), high plasma binding, slow absorption, and short half-life, along 
with the rapid elimination in physiological conditions, are biological barriers of the ther-
apeutic application of TQ. Accordingly, different nano-drug delivery systems have been 
developed to overcome these barriers [60]. Soni et  al. (2015) loaded paclitaxel (PTX) 
and TQ into poly(d,l-lactide-coglycolide) (PLGA) nanoparticles. The formulated nano-
particles exhibited enhanced anticancer effects on breast cancer MCF-7 cell lines with 
decreased PTX toxic effect compared with free drugs [61]. El-Ashmawy et  al. (2017) 
encapsulated doxorubicin (DOX) and TQ into F2 gel (fully acetylated poly-N-acetyl glu-
cosamine nanofiber). In vitro investigation demonstrated that treatment of mice bearing 
solid Ehrlich carcinoma with DOX-TQ led to a significant decrease in tumor volume 
because of Bcl2 downregulation and p53 upregulation compared with free DOX thera-
pies, implying an improvement in the drug delivery and anticancer effects of DOX with 
reduced cardiotoxicity [62]. Kommineni et  al. (2018) reported co-loading of TQ and 
cabazitaxel (CBZ) in lipospheres allowed the design of efficient delivery systems demon-
strating a synergistic effect on breast cancer cell lines. Analysis of the cell cycle and the 
apoptosis process indicated that TQ–CBZ delivery systems augmented sub-G1 phase 
arrest, and also cell death due to apoptosis [63]. In another study, Ramzy et al. (2020) uti-
lized TQ-loaded polymeric nanocapsules with 90.5% encapsulation efficiency to target 
anis amide (AA) in order to target sigma receptors generally overexpressed in colon can-
cer. The results showed that AA-functionalized TQ nanocapsules had higher cytotoxic 
effects than nonfunctionalized ones as well as free TQ against colon cancer HT-29 cell 
lines [64]. Zafar and coworkers (2020) examined low-molecular-weight chitosan (CS)-
grafted lipid nanocapsules (LNP) for co-delivery of docetaxel (DTX) and TQ against two 
drug-resistance breast cancer cell lines, MCF-7 and MDA-MB-231. The results revealed 
that functionalization of TQ-loaded LNCs with CS enhanced the uptake and endoso-
mal release of TQ and also increased cytotoxicity against MCF-7 and MDA-MB-231 cell 
lines [65]. Another study showed that co-encapsulation of TQ and DTX in solid lipid 
nanoparticles fabricated with 1,2-disteraryol-sn-glycerol-3-phosphoethanolamine-
N-methoxy-poly(ethylene glycol 2000) (DSPE-mPEG) as a shell and D-α-tochopheryl 
polyethylene glycol 1000 succinate (TPGS) as surfactant remarkably increased the sensi-
tivity of both MCF-7 and MDA-MB-231 cell lines to DTX and intensified antimetastatic 
effects, preventing cancer cells from migrating. Moreover, in vivo studies in mice bearing 
Ehrlich ascites carcinoma (EAC) showed that administration of TQ-DTX-DSPE-mPEG-
TPGS lipid nanoparticles significantly reduced the oxidative stress and the DTX-related 
toxicities in liver and kidney tissues [66]. Alaaeldin et al. (2021) encapsulated TQ into 
spanlastics fabricated from Span 60 and different edge activators. In  vitro studies of 
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breast cancer cell lines illustrated that TQ-loaded spanlastics had 11.5-fold more cyto-
toxic efficiency against MCF-7 compared with free TQ [67]. Therefore, the incorpora-
tion of TQ in nano delivery systems can enhance the efficiency of traditional anticancer 
drugs and alleviate their side effects.

Despite a the small number of in vitro and in vivo studies on the impact of TQ on OS 
cell lines, therapeutic effects of TQ in this type of cancer are considerable (Fig. 2), and 
we present a brief review of such observations in the following sections.

Thymoquinone and osteosarcoma
Thymoquinone targets signaling pathways

Chronic inflammation and its related disorders are responsible for about 20% of cancer-
related deaths. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 
is considered as a class of inducible transcription factors modulating a wide range of 
genes implicated in various procedures of immune and inflammatory reactions [68]. 
Under normal physiological conditions, NF-κB is isolated in the cytoplasm; however, it 
is translocated to the nucleus as a consequence of activating specific signals and then 
is involved in the transcription of genes managing different cell functions such as cell 
survival cascades, pro- and anti-inflammatory responses [69], and different types of 
immune response, such as against bacterial or viral infections [70].

Multiple examinations have shown the swift-active NF-κB to be constitutively 
involved in osteosarcoma. Conclusive evidence has revealed that the potential of NF-κB 
signaling to bind to DNA leads to the expression of survivin and X-linked inhibitor of 
apoptosis (XIAP) and, eventually, induction of apoptosis in different cancer cell types, 
indicating the role of activated NF-κB in moderating chemoresistant compounds [71, 
72]. Conventional chemotherapeutic drugs stimulate NF-κB, resulting in adverse clini-
cal results. Moreover, various NF-κB-associated genes generate products such as VEGF 
and TNF modulating tumor angiogenesis [73]. Thus, the role of NF-κB is of paramount 
importance in cancer development, and impeding its function may reduce the rate of 
angiogenesis and chemoresistant processes; as such, it can be considered as a therapeu-
tic agent against OS. Accordingly, Peng et al. (2013) [74] showed that TQ could abolish 
the expression of NF-κB in OS cell lines, i.e., SaOS-2. SaOS-2 cells were incubated with 

Fig. 2  The role of thymoquinone in inhibition of osteosarcoma development



Page 13 of 28Homayoonfal et al. Cellular & Molecular Biology Letters           (2022) 27:21 	

different doses of TQ (20, 40, and 80 µM) for 24 h [74]. The outcomes demonstrated that 
TQ in a dose-dependent manner reduced the rate of DNA-binding activity of NF-κB in 
SaOS-2 cell lines. Additionally, immunohistochemistry revealed that the expression of 
the NF-κB protein was considerably attenuated in OS tumors derived from xenograft 
mouse incubated with TQ (6  mg/kg/day) compared with untreated mouse, indicating 
the efficiency of TQ administration both in vivo and in vitro [74].

P53 is a signaling pathway well recognized as a “genome guardian” owing to its pre-
dominant roles in managing cell processes such as apoptosis, cell proliferation, cell sur-
vival, and cell death [75]. The tumor suppressor function of p53 is associated with its 
capability to induce cell death or reduce cell proliferation. p53 is categorized as a class of 
transcription factors that either activate or suppress the expression of several genes and 
miRNAs [76]. Furthermore, p53 has the ability to directly bind to cytoplasmic proteins 
such as metabolic enzymes as well as apoptotic factors [77]. Additionally, p53 is involved 
in the response of cells to different types of stress, including DNA damage, hypoxia, 
oncogenic activation, nutrient variations, etc., through reinforcing cell survival or induc-
ing cell death processes [78]. Reportedly, the p53 mutation has been observed in around 
50% of human cancer cases, and discovering a way to preserve it may aid in the preven-
tion of cancer development.

Roepke et al. (2007) investigated the effect of TQ on two human OS cell lines with dif-
ferent mutations of p53, namely MG63 and MNNG/HOS [79]. MG63 cell lines suffered 
from lack of p53 gene (−/−) as a consequence of a deficiency mutation due to the vari-
ation between the first and second exon, while MNNG/HOS cell lines had undergone 
a point mutation in the codon 156 (CGC to CCC, Arg to Pro) of the p53 gene (±) [80]. 
TQ promoted p53-independent apoptosis in MG63 cells provided that MNNG/HOS cell 
lines resisted TQ-associated apoptosis, which might be connected with the capability of 
these cells to repair DNA damage. This study indicated that TQ administration led to 
the accumulation of endogenous ROS and DNA damage, including DNA double-strand 
break (DSB) or base alteration. After DSB damage, phosphorylation of histone H2AX 
(H2A histone family member X) at the C-terminal residue of serine occurred and pro-
duced γ-H2AX, which in turn participates in employing other elements of DNA repair, 
such as BRCA1, NBS1/Rad50, and p53BP1, to the damaged points. NBS1, which is the 
outcome of mutated genes in Nijmegen breakage syndrome (NBS), acts as an effector of 
H2AX in response-related DNA damage. The dramatic increase in γ-H2AX in MNNG/
HOS cells undergoing p53 mutation without any specific alterations in the expressed 
levels of H2AX suggests that a novel synthesized species of H2AX is formed following 
DNA damage. Additionally, the production of γ-H2AX indicates that the DNA damage 
sensor sensitized to the activity of p53 was functionally intact. The increase in H2AX 
occurred with anticipated time retardation, and its concentration was reduced at higher 
TQ dosages. Roepke and coworkers showed that exposure of the p53 null MG63 cells 
to TQ caused an unchanged and time-dependent reduction in the levels of NBS1 and 
γ-H2AX, respectively, indicating inadequate DNA repair. Meanwhile, the continuously 
increased expression of both NBS1 and H2AX in MNNG/HOS cells is compatible with 
DNA repair being initiated. It is conceivable that mutant p53 is able to repair DNA dam-
age in MNNG/HOS cells, rather than MG63 cells, indicating its role in apoptosis in 
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damaged states. In other respects, H2AX and NBS1 are not particularly crucial for p53 
interactions with DSB-related DNA damage and may act in another pathway of p53 [79].

The effects of thymoquinone on cell proliferation/cycle

Cell proliferation refers to the increase in cell number due to cell division, known to 
be an extremely intricate, strictly managed, and thoroughly regulated process [81]. In 
normal conditions, the establishment of a proper balance between cell growth and 
death is mandatory for the normal function of cells, and dysregulation of cell divi-
sions and shifting of the balance to the cell production and increased cell proliferation 
may lead to cancer [82]. In the highly elaborate process of the cell cycle, a mother cell 
produces two daughter cells. Thus, controlling the cell cycle and proliferation is one 
of the suggested ways of inhibiting cancer development [83]. Different phases of the 
cell cycle are presented in Fig. 3. Briefly, most cells in the mature animals are found 
in the stable state and at the G0 (gap) phase of the cell cycle. When dividing, cells can 
launch the G1 phase. In the majority of cells, DNA replication occurs within a narrow 
part of the cell cycle known as the S (synthesis) phase. Following the S phase, the cell 
initiates the second gape phase known as G2. In the next steps, or at the M (mitosis) 
phase, the contents of the nucleus are condensed to organize visible chromosomes 
and split into two identical collections via a complex regulated stream of movement. 
Eventually, the mother cell divides into two daughter cells [84]. Cells display an inhib-
itory effect on the growth of other cells, defined as social control of cell division and 
regulated through a series of genes known as social control genes.

DNA mutations in a cell cause disruption of the social restraint, and as a result, 
cells divide without considering the requirements of the organism, which may lead 
to the development of tumor cells [81]. Mutant genes, if not repaired by DNA repair 
systems, interfere with the modulation of cell division. Accordingly, the mutant cells 

Fig. 3  Different phases of the cell cycle and corresponding checkpoints
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that are deprived of a decelerator for cell growth constantly divide, progress, and ulti-
mately transform into malignant cells [85]. Therefore, targeting the cell cycle regula-
tion is one of the therapeutic approaches to cancer treatment. Several studies have 
revealed that TQ, through suppressing cancer cell proliferation, inhibits cancer devel-
opment [86].

Roepke et al. (2007) observed the effect of TQ on OS cell line to be highly dependent 
on the state of p53. Reportedly, after treatment of OS cells with TQ (40 μM for 48 h), 
the cell viability was about 40% and 80% for MG63 cells (null p53) and MNNG/HOS 
(mutant p53) respectively. Furthermore, they illustrated that incubation of OS cell lines 
with 40 μM increased the population of cells in the pre-G1 phase in a time-dependent 
fashion in such a way that, after 48 h, the cell number of MG63 and MNNG/HOS cell 
lines grew by about 63% and 31%, respectively [79]. The dramatic increase of MG63 cell 
population in the pre-G1 phase was in accordance with the reduction in S and G2/M, 
while TQ after 48 h could arrest MNNG/HOS cell cycle at the G2/M phase, along with 
upregulated expression of p21WAF1 protein.

Shoeib and colleagues (2003) report that TQ administration inhibited the proliferation 
of canine OS cell lines (COS31) in a dose-dependent manner. The result of this exami-
nation indicated that, firstly, cell proliferation was predominantly prevented by apop-
tosis processes and, secondly, the necrosis machinery emerged after a longer duration 
of treatment as a consequence of lack of white cell phagocytosis in in vitro conditions 
[87]. Moreover, TQ (100 μM) decreased the population of COS31 cells in the S phase 
and increased it in the G1 phase. Authors concluded that, following TQ incubation, the 
G1-phase checkpoint was activated, and subsequently, cells might progress through 
either cell cycle or apoptosis. Therefore, TQ, by targeting two principal processes, 
namely cell cycle and apoptosis, exerted its inhibitory effect on canine SaOS-2 cells. 
TQ as an edible quinone compound, through generating free radicals, mediated several 
alterations in DNA, including alkylating, cross-linking, and double-strand breaking [87]. 
In another study conducted by Peng and co-workers (2013), the viability of SaOS-2 cell 
lines decreased dose-dependently (20, 40, and 80 μM) in the presence of TQ after 24 h. 
Moreover, morphological observations showed that TQ treatment caused the occur-
rence irregular, condensed, and huge nucleus as well as DNA breakage in SaOS-2 cells.

The effect of thymoquinone on cell death and induction of apoptosis

Apoptosis, defined as programmed cell death, is an intrinsic mechanism of cells that 
specifically perform a crucial function in the development and hemostasis of long-lived 
mammals [88]. As a highly elaborate and modulated process, apoptosis eradicates unde-
sirable and dispensable cells. Numerous conditions cause the signaling of apoptotic 
pathways, the most important of which are unrestrained proliferation and DNA dam-
age [89]. Apoptosis processes are triggered through either receptor-mediated extrinsic 
or mitochondrial-mediated intrinsic cascades capable of activating the upstream and 
downstream caspases (cysteine aspartyl-specific proteases) (Fig. 4) [90, 91]. Caspases are 
activated immediately after stimulating apoptosis and destroy important cellular compo-
nents such as nuclear and cytoskeletal proteins required for the normal functioning of 
cells [88]. Initiator caspases, including caspase-2, -8, -9, and -10, are activated by cellular 
damage, while executioner caspases, namely caspase-1, -3, -4, -5, -6, and 7, are activated 
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by initiator caspases [89]. In the extrinsic apoptosis pathway or the death receptor path-
way, cleavage of particular proteins by executioner caspases leads to DNA fragmenta-
tion, nuclear protein damage, protein cross-linking, and ultimately cell death, while 
the intrinsic or mitochondrial apoptosis pathway is modulated through protein-related 
BCL-2 family consisting of pro-apoptotic downstream and BH3-only proteins as well as 
anti-apoptotic BCL-2 proteins [92]. The latter blocks the apoptosis process by suppress-
ing the pro-apoptotic BCL-2 proteins, BAX, and BCL-2 homologous antagonist killer 
(BAK), while BH3-only proteins block the anti-apoptotic BCL-2 proteins [90] (Fig. 4). It 
is widely accepted that apoptosis is the prominent mechanism suppressing tumor cells. 
Thus, the anticancer properties of natural products such as TQ are highly dependent on 
their apoptotic induction abilities.

Roepke and colleagues (2007) report that TQ (20  μM, 24  h) prompted apoptosis in 
p53 null MG63 cells, whereas fewer disrupted cells were identified in MNNG/HOS cells. 
Additionally, it was shown that the number of cytoplasmic histone-related DNA frag-
ments in MG63 cells increased about twofold, while no considerable increment in this 
index was observed for MNNG/HOS cells after 48  h treatment with 40  μM TQ. This 
implies that TQ may trigger p53-independent apoptosis in OS cells by stimulating the 
intrinsic apoptosis pathways [79].

Roepke et al. (2007) employed an immunocytochemical M30 assay to determine the 
engagement of the mitochondrial pathway in apoptotic effects of TQ in OS cell lines. 
Cytokeratin, specifically cytokeratin 18, is an intermediate filament protein that is 
cleaved by caspase-3 or -7 in the early stages of the apoptosis process. M30 CytoDe-
ath is an antibody that is capable of recognizing the particular caspase cleavage posi-
tion within cytokeratin 18. In p53 null MG63 cell lines, the number of M30-positive cells 
(caspase cleaved cytokeratin 18) increased about threefold and tenfold after treatment 

Fig. 4  The molecular mechanisms underlying intrinsic and extrinsic apoptosis pathways
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with 20 μM and 40 μM TQ, respectively, while the number of M30-positive cells was not 
significant in MNNG/HOS cell lines. These results indicated that caspases are involved 
in the apoptotic effects of TQ.

In another series of examinations, it was revealed that TQ administration stimulated 
cleavage of initiator caspase-9, which in turn selectively cleaved procaspase-3 in MG63 
cells. Further investigations revealed that proteolytic cleavage and activation of procas-
pase-3 by TQ led to the generation of caspase-3 in MG63 cells.

Bax/Bcl-2 ratio is a crucial index determining the threshold of cells to resist apop-
tosis. In the presence of a pro-apoptotic compound, Bax is oligomerized on the outer 
membrane of mitochondria, resulting in increased permeability of the mitochondria to 
release cytochrome complex (cytochrome c), which induces apoptosis of effector tar-
gets such as caspase-9 [93]. Roepke et  al. (2007) declared that TQ treatment (40  μM) 
increased the Bax/Bcl-2 ratio about threefold in both p53 null MG63 and p53 mutant 
MNNG/HOS cells; however, no significant difference between Bax/Bcl-2 ratio after 24 h 
or 48 h of TQ treatment for both cell lines indicated that differential apoptosis modu-
lated by TQ was not exclusively due to the regulation of pro-apoptotic Bax and anti-
apoptotic Bcl-2 proteins [79]. Moreover, it was observed that increased Bax/Bcl-2 ratio 
as a consequence of TQ treatment in OS cell lines was due to significant downregulation 
of Bcl-2. The intensive apoptotic reaction in p53 null MG63 cells may be the secondary 
effect of a failure to stimulate p53/p21WAF1-associated cell cycle arrest.

P21, or p21WAF1, is a small protein from the CDK interacting protein/kinase inhibi-
tory protein (CIP/KIP) family of cyclin-dependent kinase (CDK) inhibitors. P21 is an 
inhibitor of the cell cycle capable of arresting the cell cycle in G1/S and G2/M transition 
phases by suppressing CDK4,6/cyclin D and CDK-2/cyclin E, respectively [94]. How-
ever, various studies have indicated that p21 plays a critical role in carcinogenesis and 
cancer development through inhibiting apoptosis. Furthermore, p21 inhibits CDKs and 
increases the expression of genes involved in cell cycle development, DNA repair, and 
apoptosis regulation, such as E2f family, NF-kB, c-myc, and STAT, resulting in dysfunc-
tion of the apoptosis process [95].

Recent investigations have indicated that p21WAF1 works in synergy with Bcl-2 to 
inhibit apoptosis in human lung cancer [96]. The reduced concentration of both Bcl-2 
and p21WAF1 proteins in p53 null MG63 cells after TQ treatment may cause checkpoint 
failure and consequently induction of apoptosis in response to DNA damage. However, 
downregulation of Bcl-2 and slight upregulation of p21WAF1 were reported in p53 mutant 
MNNG/HOS cells. To investigate whether p21WAF1 upregulation in MNNG/HOS cells is 
associated with p53, the small interfering RNA (siRNA) transduction approach, which 
is a method to knock down a specific gene, was applied. The results of this method 
indicated that the upregulation of p21WAF1 in MNNG/HOS cells was a p53-dependent 
phenomenon since cells treated with p53 siRNA did not show any increased levels of 
p21WAF1 after TQ administration. It seems that mutant p53 proteins in MNNG/HOS 
cells are partially active and their transcriptional functions cause the induction of their 
target gene, i.e., p21WAF1.

Therefore, the resistance of p53 mutant MNNG/HOS cells to TQ-stimulated apopto-
sis may be associated with the capability of these cells to arrest at the G2/M phase and 
repair DNA damage [79].
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The potential mechanism inducing apoptosis in both p53 null MG63 and p53 mutant 
MNNG/HOS cells may be the generation of ROS. Roepke and co-workers (2007) 
revealed that TQ dose-dependently functioned as a strong promoter to generate mito-
chondrial O2

•−. The increased levels of γ-H2AX in MNNG/HOS indicate that TQ 
induces a type of mitochondrial-related apoptosis in these cell lines through increasing 
oxidative stress [79]. TQ, due to its hydrophobic nature, enjoys high solubility in the lipid 
part of the inner membrane of mitochondria; moreover, TQ is capable of establishing a 
redox couple comprising oxidized, semi-reduced, and reduced species of TQ. Accord-
ingly, TQ can integrate into the inner membrane of mitochondria and function as 
ubiquinone, an electron carrier in the respiratory chain of mitochondria. Thus, oxidized 
TQ is simply reduced via complex I of the respiratory chain. Additionally, semi-reduced 
TQ improves the generation of O2

•− through electron leak from the complex III-associ-
ated respiratory chain. Despite mainly operating as a reductant compound, O2

•− leads to 
oxidative damage in proteins such as aconitase that possess [Fe-S] cluster in their cata-
lytic domain, causing these proteins to lose their enzymatic activity [97, 98].

In another study, Peng et al. (2013) showed the pro-apoptotic effect of TQ on SaOS-2 
cells in a concentration-dependent manner (0, 20, 40, and 80 μM) through upregulation 
of Smac and caspase-3 as well as downregulation of survivin and XIAP. Furthermore, 
treatment of xenograft mouse with TQ (6 mg/kg/day) reduced the expression of XIAP as 
well as survivin while increasing the levels of cleaved caspase-3 and Smac pro-apoptotic 
activity both in  vitro and in  vivo [74]. Compelling evidence has suggested that mem-
bers of the inhibitor of apoptosis protein (IAP) family such as XIAP and survivin, inhibit 
the activity of caspase-3. During apoptosis, the second mitochondria-derived activator 
of caspase (Smac) is released from mitochondria into the cytosol, blocking inhibitory 
effects of IAPs on caspase-3 [99]. Released from mitochondria in response to an apop-
totic inducer, Smac binds to the IPAs through an amino-terminal Reaper-associated 
motif, causing IAPs to displace from their caspase-reacting positions and caspase activa-
tion [100]. In an investigation on canine OS cell lines (COS31), it was reported that TQ 
(0, 25, 50, and 100 μM) dose-dependently augmented the rate of apoptotic cells, as indi-
cated by the increased levels of fragmented DNA in treated cells [87].

The effects of thymoquinone on cancer cell angiogenesis and metastasis

Angiogenesis is a physiological state in which new blood vessels are developed or gen-
erated from pre-existing ones; it is considered as an adaptation mechanism exploited 
by cells with endothelial origin in both in vitro and in vivo conditions [101]. The angi-
ogenesis process is controlled by multiple components, including angiogenin, angi-
opoietin, fibroblast growth factors (FGFa and FGFb), hepatocyte growth factor (HGF), 
interleukin-8, transforming growth factors (TGF-α and TGF-β), tumor necrosis factor 
(TNF-α), and VEGF, the latter being of considerable importance compared with the oth-
ers. In vitro examinations have revealed that VEGF induces the growth of endothelial 
cells predominantly driven by arteries, lymph drainage vessels, and veins [102]. Since 
the angiogenesis process is required for tumor cell growth, migration, and metastasis, 
recently, various observations have focused on the inhibition of angiogenesis machinery 
to restrict the growth of cancer cells and a novel approach for tumor-associated thera-
pies [103]. Peng and co-workers (2013) demonstrated that TQ treatment of SaOS-2 cell 



Page 19 of 28Homayoonfal et al. Cellular & Molecular Biology Letters           (2022) 27:21 	

lines resulted in reduced expression of VEGF, an indicator of angiogenesis, in a dose-
dependent manner. Moreover, in  vivo studies on the xenograft mouse exhibited that 
the administration of TQ (6 mg/kg/day) decreased the level of CD34 [74]. CD34 is an 
antigen found in hematopoietic progenitor as well as endothelial cells. CD34 is mainly 
applied for identifying the microvascular vessel density (MVD) as a hallmark of the neo-
angiogenesis rate [104]. The underlying mechanism is attributed to the NF-κB signaling 
axis. It has been shown that the angiogenesis of cancerous cells is modulated via NF-κB-
related gene products such as TNF and VEGF. Therefore, blocking NF-κB signaling leads 
to the downregulation of angiogenesis promotors, such as VEGF [73].

Despite substantial progress in early-stage diagnosis and therapeutic approaches 
of different types of cancer, metastasis remains the main cause of cancer mortality 
and accounts for 90% of cancer-associated death [105]. Malignant transformation and 
metastasis arise from genomic alterations of cancer cells as well as environmental and 
architecture variations of both host and target tissue [106]. Furthermore, the metasta-
sis process is targeted by numerous signaling molecules such as chemotactic stimuli, 
cytokines, extracellular matrix modifications, and growth factor targets. Consequently, 
cancer development is generally regarded as a sequenced process through which the 
phase of a cell metamorphoses from a benign state into an invasive and metastatic clas-
sification [107]. The bone is the third most prevalent metastasis site for a broad domain 
of malignant tumors, including breast, colorectal, gynecologic, lung, melanoma, pros-
tate, and thyroid [108]. It has been reported that bone metastasis occurs in around 70% 
of metastatic breast and prostate cancer. Following the migration of cancer cells to the 
bone, treatment of patients seldom leads to improvement, and such a process is accom-
panied with an extensive variety of morbidities, including hypercalcemia, fracture, and 
severe pain [109].

Among various proposed approaches to combat bone metastasis, the application of 
phytochemicals such as TQ is a promising strategy since these compounds show less 
toxicity against normal cells. Shanmugam et al. (2018) reports that TQ via inhibition of 
the chemokine receptor type 4 (CXCR4) signaling pathway suppressed osteolytic bone 
metastasis of breast cancer. Accordingly, mice bearing MDA-MB-231-Luc+ expressing 
cells were treated with TQ of different concentrations, 2 or 4 mg/kg/day, via intraperito-
neal injection. Bioluminescence images after 4 weeks revealed that the number of trans-
ferred malignant cells to the other distant tissues including bone was significantly less 
than in control mice without any treatment [110]. Upregulation of CXCR4 is correlated 
with tumor cell viability, growth, migration, and metastasis. Reportedly, overexpression 
of CXCR4 has been detected in a wide range of cancer, including cervical, colon, gastric, 
melanoma, ovarian, pancreatic, renal, and hematological malignancies [111].

The interaction between CXCR4 and its specific ligand, i.e., stromal-derived factor-1 
(SDF1 or CXCL12), is of considerable importance in the development of invasion and 
metastasis of different solid tumors, particularly breast cancer [112]. CXCL12 is a type 
of autocrine/paracrine growth factor for a variety of cancers and is capable of increas-
ing the level of CXCR4 in triple-negative breast cancer (TNBC) cells. Thus, breast can-
cer cells with high levels of CXCR4 have a marked tendency to migrate to the sites rich 
in CXCL12, including bone marrow [113]. In vitro examinations carried out by Shan-
mugam and colleagues (2018) revealed that pretreatment of MDA-MB-231 cell lines 
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with TQ downregulated the expression of CXCR4 in a time- and dose-dependent fash-
ion owing to reduction of transcript numbers rather than proteolytic cleavage of recep-
tors. This study also showed that TQ reduced the expression of NF-κB signaling, which 
could be a mechanism underlying the adverse effect of TQ on CXCR4, since the pro-
motor of the CXCR4 gene has numerous sites to bind to NF-κB [110]. Sharifi and co-
workers (2020) applied TQ encapsulated in chitosan nanoparticles to evaluate bone 
metastasis in hepatocellular carcinoma. A metastasis-on-a-chip platform was designed 
to model and follow the trend of bone metastasis-associated hepatocellular carcinoma 
(HCC). The bioreactor designed for this purpose was composed of two chambers con-
taining HepG2 cell lines and a bone-mimetic structure consisting of hydroxyapatite. 
A microporous membrane above the chambers stimulated the barrier function of ves-
sels when the medium was passed through the membrane. HepG2 cell lines grew in the 
tumor microtissue, distributed to the circulation flow, and ultimately penetrated the 
bone chamber. The results indicated that nanoparticle-incorporated TQ could induce 
antimetastatic characteristics in the bone tissue for a longer time than the samples con-
taining free TQ [114].

The role of thymoquinone in overcoming drug resistance in osteosarcoma cells

Drug resistance continues to be a formidable obstacle in the development of an appro-
priate approach to the treatment of various cancer types. Drug resistance is the state 
in which medical drugs lack enough efficiency and potency to produce effective thera-
peutic responses [115]. Only a few types of cancer, including pediatric tumors, certain 
hematological malignancies, and cancerous germ cells, particularly the ones emerging in 
the testis, are susceptible to chemotherapeutic agents and responsive to treatment [116]. 
Nevertheless, the common epithelial groups of cancer diagnosed in adults are rarely 
treatable in the metastatic stage of cancer [116]. DNA mutation and metabolic varia-
tions are fundamental causes of inadequacy and degradation of medicines [117]. Drug 
resistance is classified into two distinct categories: acquired and intrinsic resistance. 
Acquired resistance involves a series of steps wherein sensitivity of tumors to particular 
treatments gradually decreases until signs of inefficiency appear. Intrinsic resistance is 
present in conditions in which malignant tumors present a lack of sensitivity to antican-
cer drugs without any initial exposure [118]. The suggested procedures for OS treatment 
include surgery, high-dose chemotherapy via employing chemotherapeutic agents (such 
as bleomycin, cisplatin, doxorubicin, etoposide, oxaliplatin, taxol, and 5-fluorouracil), 
and radiotherapy [119].

Despite being effective, chemotherapy regimens are associated with adverse side 
effects and relatively high cytotoxicity [120]. Furthermore, about 35–44% of cases of 
OS demonstrate inherent resistance to chemotherapy [119]. Recently, the application of 
herbal medicines in combination with traditional chemotherapeutic agents for cancer 
treatment has attracted a great deal of attention owing to its promising results [121]. TQ 
is one of the phytochemicals that can noticeably inhibit cancer development in combi-
nation with chemo- or radiotherapy [122]. It has been observed that TQ in combina-
tion therapy, i.e., co-administration of TQ and chemotherapeutic drugs, has profound 
cytotoxic effects on tumor cells [24]. Sarman et  al. (2016) examined the effect of TQ 
on MG63 cell lines alone and in combination with 5-fluorouracil (5FU) or oxaliplatin 
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(OXA) [123]. It was illustrated that individual administration of the mentioned chemi-
cals (TQ, 5FU, and OXA) to MG63 cells reduced the cell viability in a dose- and time-
dependent fashion. Moreover, MG63 cells were treated with TQ at a concentration of 
10 or 20 μM in combination with different doses of 5FU or OXA. The result indicated 
that combining TQ with 5FU at doses 10 μM and 1 μM, respectively, declined the cell 
viability by around 28% after 72 h while, after this timepoint, the viability of SaSO-2 cells 
decreased by about 38% as a result of incubation with TQ (10 μM) and OXA (1 μM). The 
results were astonishing since the individual application of 5FU and OXA at a dose of 
1 μM for MG63 cells showed no efficiency, highlighting the promising chemosensitiz-
ing role of TQ. Additionally, the results revealed that treatment of MG63 with TQ at a 
concentration of 10 μM had some apoptotic effect (1.15%), but the combination of 5FU 
(5 μM) and OXA (1 μM) with TQ (10 μM) increased the apoptotic induction from 35% 
and 40.2% to 60.35% and 61.65%, respectively [123].

Shoieb et  al. (2003) compared the sensitivity of COS31 and its cisplatin (CDDP)-
resistant variant (COS31/rCDDP) cell lines to TQ [87]. Results revealed that IC50 of 
COS31 and COS31/rCDDP was 34.8 and 7.7 μM, respectively, suggesting TQ was four 
to five times more cytotoxic to COS31/rCDDP than COS31 cells. It has been asserted 
COS31 cells are seven to eight times more sensitive to the cytotoxic effects of higher 
doses of cisplatin than COS31/rCDDP cells [124]. It has been claimed the high sensi-
tivity of COS31/rCDDP cells to TQ is associated with their augmented expression of 
glutathione-S-transferases (GSTs) [125]. GSTs are a class of enzymes that possess funda-
mental functions, including anti-apoptotic responses, anti-, and pro-inflammatory activ-
ity, regulation of cell signaling, and detoxification of reactive electrophilic substances 
such as epoxides, nitroso derivatives, hydroxyamines, etc. [126]. One of the critical roles 
of GSTs is their catalytic activity, they catalyze the conjugation of various electrophilic 
compounds as byproducts of xenobiotics or reaction-associated oxidative stress to glu-
tathione (GSH), a principal nonprotein thiol compound synthesized de novo in the cells 
of mammals. The mentioned interaction results in the eradication of cytotoxic com-
pounds from cells and preservation of significant cell components such as proteins and 
nucleic acids [127].

The detoxification process elucidates the resistance mechanism of particular cell lines 
to chemotherapeutic drugs since GSTs are upregulated in such cell lines. Moreover, the 
sensitivity of resistant cells to TQ may be attributed to the overexpression of GSTs. GSH, 
known as the substrate of GST conjugation, perform a pivotal function in the bioac-
tivation of specific xenobiotics such as quinone compounds. The interaction between 
quinones and GSH produces quinol–glutathione conjugates with high biological reac-
tivity promoting DNA single-strand breaks; this interplay is indispensable to the cyto-
toxic effect of this type of chemical [128, 129]. Upregulation of GSTs in CDDP-resistant 
cells may lead to TQ bioactivity and, ultimately, increased sensitivity of these cell lines 
to TQ [87]. These results strongly suggest that employing TQ as an adjuvant therapeutic 
agent along with chemotherapy leads to the adverse effects of chemotherapeutic drugs 
being minimized owing to their reduced concentrations, thus elevating the efficacy of 
treatment.
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Conclusions and future perspectives
Poor diagnostic and therapeutic strategies of osteosarcoma and bone metastasis as 
the principal bone malignancies have led to low rates of patient survival in the past. 
Although advancements in surgery and chemotherapy methods in recent years have 
converted increased the lifespan of patients who suffer from such types of fatal disease, 
the death rate is still high owing to the development of drug resistance and side effects of 
chemo- and radiotherapies reducing the life quality of patients. Accordingly, increasing 
the efficiency of the current methods and decreasing their adverse impacts is an impor-
tant goal, which may be achieved through naturally derived products such as TQ. Vari-
ous studies have elucidated that TQ, through mediating different processes regulated by 
various signaling pathways, exhibits anticancer properties.

TQ inhibits bone malignancies through its anti-inflammatory and antioxidant features 
as well as modulation of various cell-related types of machinery such as angiogenesis, 
apoptosis, cell cycle and proliferation, and metastasis. Furthermore, TQ with radio- and 
chemosensitizing effects can reduce the destructive side effects of traditional chemical 
drugs such as 5-fluorouracil, oxaliplatin, and cisplatin. However, few studies have been 
conducted in the field of bone malignancies; hence, further investigations, especially 
in vivo with xenograft mouse, should be considered to reveal other targeting pathways 
involved in antitumor attributes of TQ.

As TQ is a phytochemical with hydrophobic nature and, consequently, poor bioavail-
ability and pharmacodynamics, it is recommended that more studies be carried out with 
the focus on enhancing such quality attributes; one potential method is the encapsula-
tion of TQ in nanomaterials. As previously mentioned, numerous investigations have 
been conducted on the effects of TQ-loaded nano-carriers, either individually or in com-
bination with conventional chemotherapy agents, on various types of cancer, but not OS. 
Hence, co-application of TQ and traditional chemotherapy drugs in nano-delivery sys-
tems in treatment of OS appears to be a promising approach to suppress cancer develop-
ment and reduce the side effects of current chemical agents because it has been claimed 
that designing a co-loading of TQ and chemotherapy agents with nano-carrier function-
alized for targeting delivery may lead to reduction of concentration and, therefore, tox-
icity of chemotherapy agents. Another practical strategy for improving the anticancer 
efficiency of TQ is the synthesis of TQ derivatives that are more stable against various 
physical, chemical, and physiological conditions while intensifying the toxicity against 
cancer cells. Among the few studies in the field of OS and TQ, no study has investigated 
the effect of TQ derivatives on OS. Thus, fabrication of TQ-relative compound, indi-
vidually or in combination with other effective compounds, functionalized to controlled 
release and delivery to OS tissues or bone metastasis sites may be an appropriate thera-
peutic approach to suppress the development of such malignancies, and may be repre-
sent a valuable field of future research.
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