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Introduction
Vital organ injury (i.e., cerebral, myocardial, renal, and lung injury) is one of the 
leading causes of global deaths and seriously affects the lives of patients, resulting in 
great healthcare and significant economic impacts in today’s society [1]. Acute organ 
injury occurs frequently in the perioperative period, while chronic injury is com-
monly caused by long-lasting stimulation and toxic insult. Ischemia–reperfusion 
(I/R) injury is a major cause of acute organ injury. I/R injury develops in response 
to interruption in the blood supply to an area of tissue, leading to persistent tissue 
hypoxia and severe microvascular dysfunction [2]. With the subsequent return of 
blood flow and oxygen supply on reperfusion, further organ injury occurs following 
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oxidative stress and the action of proinflammatory chemokines and cytokines [3, 
4]. I/R-mediated microcirculatory dysfunction can cause multiple organ injuries 
followed by the acute, subacute, and chronic phases after reperfusion, resulting in 
stepwise organ fibrosis and failure [5]. Chronic organ injury is often correlated with 
the rewiring of a complex metabolic network, imbalance of immune function, and 
tissue remodeling [6]. Acute, repeated, and chronic injuries without interventions 
commonly cause organ dysfunction. Consistently, intensive efforts have been made 
to develop novel therapeutic measures to effectively prevent or treat vital organ 
injuries.

Dexmedetomidine (DEX), a selective alpha2 adrenoceptor agonist, not only exerts 
sedative and anxiolytic effects but also exhibits sympathetic nerve suppression and 
antiinflammatory properties. Thus, it is broadly applied in clinical anesthesia and 
the intensive care unit (ICU) [7]. Basic and translational studies suggest that DEX is 
superior to some types of sedatives (i.e., benzodiazepines and propofol) in terms of 
multiple clinical outcomes, such as delirium, coma, subsequent infection, mechani-
cal ventilation, and even 28-day mortality [8–10]. Accordingly, present sedation 
guidelines recommend DEX use over benzodiazepines for light-to-moderate seda-
tion in critically ill patients [11]. In addition, DEX is not solely recommended for 
adult use as a short-term medication (< 24 h) for analgesia and sedation in the ICU 
but can also be applied for more than 24 h in ICU [12, 13]. Recently, mounting evi-
dence has confirmed that DEX has an outstanding protective effect on multiple 
organs. Due to the antiinflammatory reaction and immunoregulation developed 
by DEX, numerous clinical trials support the notion that DEX confers multiorgan 
protection in acute organ injury events as well as during the perioperative period 
[14–16]. Also, mounting experimental studies have demonstrated that DEX pro-
tects against various organ injuries using different animal models [17–19], while the 
mechanisms underlying this protective effect are not completely understood and are 
currently under investigation.

A growing body of research has revealed that autophagy might be involved in the 
organ-protective actions of DEX [20, 21]. Autophagy, an adaptive catabolic process, 
functions to maintain cellular homeostasis by engulfing cellular targets, including 
damaged organelles, unfolded proteins, and pathogens [22–24]. Upon diverse stress 
conditions, the activation and inhibition of autophagy have been speculated to play 
roles in the protection against organ injury. Under different interventions, altered 
autophagy has frequently been identified in the process of treating organ injuries [25, 
26]. Similarly, autophagy abnormalities are also observed under DEX treatment of 
vital organ injuries, including the brain [27], heart [28], kidneys [29], liver [17], and 
lungs [30].

Since DEX has crucial clinical implications for treating vital organs injuries, elu-
cidating the underlying molecular mechanisms is of pivotal importance. Autophagy 
may be one of the key regulators in the action of DEX protecting against organ injury. 
However, to the best of the authors’ knowledge, there have been no comprehensive 
reviews on the relationship between the DEX-mediated autophagy pathway and the 
treatment of vital organs injuries. Therefore, it is timely to summarize and discuss the 
current evidence on this issue.
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Pharmacokinetic properties of DEX

4-[(1S)-1-(2,3-dimethylphenyl)ethyl]-1H-imidazole (DEX) is the dextro-enantiomer 
of medetomidine, with molecular formula C13H16N2 (molecular mass 236.7  g/mol; 
octanol/water partition coefficient 2.89) [31, 32]. DEX is currently approved for intrave-
nous use, while the loading doses and infusion rates are based on a milligram per kilo-
gram total body weight. DEX shows high protein binding (94% is bound to albumin and 
α1-glycoprotein) with an extensive volume of distribution (1.31–2.46 L/kg) and simply 
crosses the blood–brain barrier [32]. The elimination half-life of DEX in the adult health 
population and ICU patients is 2.1–3.1 h and 2.2–3.7 h, respectively [32, 33], while the 
metabolic clearance in adult patients and ICU patients is 36–42  l/h and 31.8–57  l/h, 
respectively [33, 34]. In children, the elimination half-life of DEX is approximate 2 h [35].

The pharmacodynamics of DEX includes sedative and hypnotic effects, analgesic 
effects, cardiovascular effects, respiratory effects, etc. The sedative and hypnotic effects 
developed by DEX may be associated with activation of central presynaptic and post-
synaptic alpha2 adrenoceptor in the locus coeruleus, regulation of endogenous sleep-
promoting pathways, and an impact on the γ-aminobutyric acid system [32]. Significant 
and rousable sedation effects induced by DEX are recorded at plasma concentrations 
between 0.2 and 0.3  ng/mL. The analgesic effects of DEX are thought to be mediated 
through alteration of perception and reduction of anxiety. DEX has a biphasic hemo-
dynamic effect on the cardiovascular system, showing that low plasma concentrations 
induce hypotension whereas higher concentrations lead to pulmonary and systemic 
hypertension [36]. As reported, the hypertensive effects of DEX overcome the hypo-
tensive effects at concentrations between 1.9 and 3.2 ng/mL [36]. Minimal respiratory 
depression is observed at therapeutic plasma concentrations up to 2.4 ng/mL, showing a 
preservation of ventilatory response to CO2 [37]. The ventilatory frequency can elevate 
with dose escalation of DEX, which compensates for slightly decreased tidal volumes 
[32]. With target concentrations between 0.2 and 0.6 ng/mL of DEX, no relevant phar-
macokinetic interactions were identified in DEX when combining with propofol, isoflu-
rane, midazolam, or alfentanil [32].

Current knowledge

α2-Receptors are frequently detected in various vital organs, including the central nerv-
ous system, kidneys, lungs, and liver [32]. Since DEX is a highly selective α2 adreno-
ceptor agonist, it may mediate a broad spectrum of pharmacodynamic actions on these 
organs. In numerous animal studies [18, 38, 39], DEX appears to alleviate the inflam-
mation responses and the I/R injury of multiple organs, i.e., the brain, liver, and intes-
tines. More importantly, although α2 adrenoceptor is not found in the myocardium, a 
large body of previous studies suggest that DEX plays a protective role on myocardial I/R 
injury [40, 41]. DEX-mediated modulation of autophagy is considered to play the adr-
energic receptor agonist’s protective role in multiple organ injuries. Based on the above 
evidence, DEX exerts an encouraging protective effect on multiple organs. Mechanis-
tically, recent experimental research has suggested that autophagy might be involved 
in this action. In this review, we thus outline the molecular and biological functions of 
autophagy in DEX-mediated organ-protective effects.
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Literature search

A comprehensive review of the literature was undertaken using six databases (MED-
LINE, EMBASE, Google Scholar, Cochrane Library, Web of Science, and PsychINFO) 
to identify relevant studies. The searching strategy in MEDLINE using MeSH and 
keywords was: (((((((((("Autophagy"[Mesh]) OR (Autophagy, Cellular)) OR (Cel-
lular Autophagy)) OR (Autophagocytosis)) OR (Reticulophagy)) OR (ER-Phagy)) 
OR (ER Phagy)) OR (Nucleophagy)) OR (Ribophagy)) OR (Lipophagy)) AND 
((((((("Dexmedetomidine"[Mesh]) OR (MPV-1440)) OR (MPV 1440)) OR (MPV1440)) 
OR (Precedex)) OR (Dexmedetomidine Hydrochloride)) OR (Hydrochloride, Dexme-
detomidine)). The reference list was also reviewed to detect additional studies. A data 
collection table was applied to extract the key data from the relevant studies, including 
the first author’s name, publication year, geographical distribution, cell/animal model, 
types of organ injury, DEX administration, autophagy status, associated genes or path-
ways, and the main findings of the included studies. Finally, 24 studies [21, 27–30, 41–
59] were included. Among these, 14, 4, 3, and 3 eligible studies reported cerebral injury, 
myocardial injury, kidney injury, and lung injury, respectively.

Organ‑protective properties of DEX and the roles of autophagy

Cerebral injury

Fourteen publications reported autophagy involving the action of the protective effect of 
DEX in brain injury. The experimental models among these eligible studies included rat, 
mouse, and neurocyte (i.e., astrocytes, PC12, and neuroblastoma cells). The types of cen-
tral nervous injury included cerebral ischemia/reperfusion injury, traumatic brain injury, 
neurological injury, cognitive impairment, hippocampus injury, oxygen–glucose depri-
vation–reoxygenation injury, and neonatal hypoxic ischemia. The route for DEX admin-
istration in an animal model included intraperitoneal injection and intravenous injection 
via the femoral vein or the caudal vein. The dose of DEX in a rat model ranged from 3 
to 50 μg/kg, but 20–25 μg/kg in a mouse model. DEX in a cell model was administrated 
through cell supernatants, while the dose of DEX was 1 μM. Most of the included stud-
ies (12/14, 86%) reported the status of autophagy was inhibition in the protective effect 
of DEX in cerebral injury. Multiple genes and signaling pathways have been found to be 
involved in autophagy-mediated neuroprotection by DEX.

The characteristics and the main findings of the 14 relevant studies reporting cerebral 
injury are summarized in Table 1. Figure 1 shows the main mechanisms of autophagy in 
the cerebra-protective effects of DEX.

mTOR signaling pathway

The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) 
pathway is one of the most important signaling pathways with a critical biological func-
tion in various diseases [60, 61], including neurological disorders [62]. As reported, 
numerous drugs exert their neuroprotective effect via the PI3K/Akt/mTOR signal-
ing pathway [63]. mTOR is considered to serve as a central player in the regulation of 
autophagy because it can inhibit autophagy in the process of growth factors and abun-
dant nutrients [64]. Shen et  al. [42] demonstrated that DEX alleviated the degree of 
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traumatic brain injury via inhibition of neuronic autophagy by activating the PI3K/AKT/
mTOR signaling pathway. In line with this finding, some investigators also found that the 
inhibition of neuronic autophagy was one of the therapeutic targets for traumatic brain 
injury treatment [65]. Also, the protective effects of DEX are speculated to be against 
the process of autophagy and apoptosis. Zhu et  al. [48] reported that DEX increased 
the viability and inhibits apoptosis of astrocytes exposed to oxygen–glucose depriva-
tion, which might be related to the activation of autophagy by regulating the tuberous 

Fig. 1  Main mechanisms of autophagy in the cerebra-protective effects of DEX. DEX is one the α2AR 
agonists. Under administration of DEX in treating cerebral injury, the autophagy level was regulated by 
multiple associated genes and a series of downstream signaling, resulting in reduction of inflammatory, 
apoptosis, and damaged mitochondria. DEX dexmedetomidine, HIF-1α hypoxia inducible factor-1α, LC3 
light chain 3 B, Drp1 dynamin-related protein 1, HSP70 heat shock 70 kDa protein, TOM20 translocase of 
outer mitochondrial membrane 20, Dram2 DNA damage regulated autophagy modulator 2, FOXO3α 
forkhead-box-protein 3α, TSC2 tuberous sclerosis complex 2, STIM1 stromal interaction molecule 1, ROS 
reactive oxygen species, MDA malondialdehyde, Nrf2 nuclear factor erythroid 2-related factor 2
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sclerosis complex 2 (TSC2)/mTOR pathway. The authors indicated that DEX treatment 
could upregulate the expression of TSC2 and subsequently reduce the phosphorylation 
of mTOR. In contrast to Shen et  al.’s study, Zhu et  al. found that the protective effect 
played by DEX might be associated with augmented autophagy of astrocytes. Consistent 
with Zhu et al.’s findings, Yu et al. [21] demonstrated that DEX attenuated hippocampus 
injury by activating SIRT3-mediated mitophagy. Of note, Zhu et al. and Yu, et al.’s stud-
ies are the only two included studies (2/14, 14%) reporting that the status of autophagy is 
activation when treating with DEX for cerebral injury. Commonly, autophagy is activated 
in cerebral injury [66], while DEX may inhibit the autophagy level and thus contribute to 
the neuroprotection in cerebral damage [53]. With the same cell line of astrocytes as 
used in Zhu et al.’s study [48], Qin et al. [67] suggested that the inhibition of autophagy 
might exert the protective effect on astrocytes after ischemic astrocyte injury. This could 
be partially explained by the finding that autophagy may play different roles in different 
cerebral injury stages, i.e., ischemia and reperfusion [48]. The exact roles of autophagy at 
different timepoints after cerebral injury deserve further investigation.

MicroRNAs (miRNAs)

miRNAs are a major class of conserved short noncoding RNAs with crucial biological 
functions in the regulation of a third of the whole genome at the posttranslational level 
[68]. miRNAs exert their roles by increasing messenger RNA degradation or by block-
ing messenger RNA translation [69]. Numerous studies have suggested that there is a 
close association between miRNAs and autophagy in various diseases, including cere-
bral injury [70]. Also, miRNAs-mediated autophagy and the signaling cascades might 
play critical roles in the effect of DEX in protecting cerebral injury. Li et al. [50] showed 
that DEX could improve the neurological outcome in a traumatic brain injury rat model 
by inhibiting autophagy and regulating the circLrp1b/miR-27a-3p/Dram2 pathway. They 
found that the protective effect of DEX after cerebral injury might be attributable to 
the downregulation of circLrp1b and the inhibition of injury-induced autophagy, while 
these effects were dramatically abolished by miR-27a-3p suppression. Zhu et al. reported 
that the autophagy level in the cerebral cortex increased in an animal model of cerebral 
ischemia/reperfusion injury, while inhibited autophagy was observed after treating with 
DEX. During this action, Zhu et al. further found that DEX significantly inhibited the 
expression of miR‑199a and thus improved neurocyte injury. The above evidence indi-
cated that inhibition of autophagy might be involved in the DEX-induced neuroprotec-
tive effect in cerebral injury.

Autophagy‑associated proteins (Beclin‑1, Bcl‑2, LC3‑I, and LC3‑II)

The therapeutic implications of DEX in brain injury may also be strongly associated with 
the altered expression of autophagy-associated proteins such as Beclin-1, Bcl-2, LC3-
I, and LC3-II. Beclin-1 is involved in the initiation and maturation steps of autophagy, 
constituting the primary component of the autophagy mechanism [71]. Bcl-2, one of 
the key interacting proteins of Beclin-1 and the antiapoptotic family members, can sup-
press autophagy initiation by inhibiting the cascade of autophagy formation [72]. Both 
LC3-I and LC3-II are biomarkers for autophagy. LC3B-II/I indicates the generation of 
autophagosomes. Shan et al. [43] found that DEX improved the abnormal morphology 
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of hippocampal CA1 regions of rat-pup brains by inhibiting sevoflurane-induced acti-
vation of autophagy via upregulating Bcl-2. Lu et al. demonstrated that DEX exerted a 
neuroprotective effect by repressing autophagy in a cerebral ischemia/reperfusion injury 
rat model, which was partially caused by the upregulation of Bcl‑2 expression. Xue et al. 
[51] showed that the protective effects of DEX were evidenced by the inhibition of exces-
sive autophagy of neurons and microglia through downregulating LC3B-II and Beclin1. 
In line with Xue et al.’s findings, Yi et al. [44] found that the protective functioning devel-
oped by DEX might be via decreasing autophagy of hippocampal neurons, which pre-
sented with the reduction of LC3-I, LC3-II, and Beclin-1 expression. In contrast, though 
Yu et al. [21] detected that DEX attenuated hippocampus injury, they observed that the 
status of mitophagy was activated, characterized by enhancing LC3-II/LC3-I expression.

Other associated genes

In addition to the above factors, the roles of autophagy in the neuroprotective effects 
mediated by DEX might also be caused by some other associated proteins and signal-
ing pathways, e.g., HIF-1α, p62, Drp1, Caspase-3, HSP70, TOM20, Dram2, FOXO3α, 
BINP3, TSC2, 4EBP1, STIM1, Orai1, ROS, MDA, Nrf2, HO‑1, and JNK signaling [21, 
27, 43, 45–50, 53]. Among these genes, a positive correlation has been found between 
autophagy and Drp1, Caspase-3, Dram2, FOXO3α, BINP3, TSC2, 4EBP1, STIM1, Orai1, 
ROS, MDA, and JNK signaling pathway. In contrast, autophagy has a negative relation-
ship with the expression of HIF-1α, p62, HSP70, TOM20, Nrf2, and HO‑1. All these 
genes and signaling cascades might be linked to biogenesis and biological functions of 
autophagy in the neuroprotective action of DEX.

Myocardial injury

DEX has also been reported to elicit cardioprotective effects via various molecule mech-
anisms. Autophagy regulation is considered to be one of the proposed mechanisms, 
which is believed to constitute a crucial process in the self-preservation of the heart. 
As reported, autophagy machinery involves immunity modulation through transmit-
ting microbes to lysosomes for degradation and facilitating the release of cytokines for 
microbe digestion [73]. To date, four experimental studies have confirmed the essen-
tial roles of autophagy in DEX-mediated cardioprotection [28, 41, 54, 55] (Table  2). 
According to Yu et al.’s study, DEX could attenuate septic myocardial injury by increas-
ing autophagic flux via activating α7nAChR and the Akt/GSK-3β cascades, resulting 
in a reduction of the myocardium apoptosis and inflammatory response. In line with 
this finding, Xiao et  al. also found that autophagy upregulation was associated with 
the action that DEX protected human cardiomyocytes against I/R injury. They further 
observed that α2-adrenergic receptor/AMPK signaling cascades greatly contributed to 
the activation of autophagy during the protective process developed by DEX.

Conversely, although two other studies [41, 54] have also reported that DEX treatment 
significantly attenuated myocardium injury, the researchers found that the autophagy 
status was inhibited in this process. Zhang et  al. [54] demonstrated that DEX allevi-
ated myocardial ischemia/reperfusion injury by dramatically decreasing overautophagy 
and reducing cardiomyocyte apoptosis, oxidative stress, and inflammatory reactions via 
upregulating the SIRT1/mTOR axis. DEX postconditioning could result in a decrease 
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of LC3II and Beclin-1 and an elevation of p62 protein level, thus inhibiting autophagy. 
Li et al. [41] reported that DEX upregulated the phosphorylation of Beclin1 by activat-
ing the PI3K/Akt pathway and reduced the interactions of Atg14L–Beclin 1–Vps34 com-
plex, thus inhibiting autophagy and protecting against myocardial ischemia/reperfusion 
injury. As shown in Table 2, DEX administration in both Zhang et al. and Li et al.’s study 
was based on intravenous injection, and the dose was the same at 10 μg/kg.

The mechanisms of autophagy in the myocardial-protective effects of DEX are illus-
trated in Fig. 2.

Kidney injury

Acute kidney injury, a disease with high morbidity and mortality, is closely associated 
with multiple organ dysfunction. Kidney I/R injury and sepsis are the two main causes 
for the development of acute kidney injury. Autophagy has been shown to elicit some 
protective effects in the pathological processes of renal tubular injury [74]. A previ-
ous study [29] suggested that DEX preconditioning ameliorated kidney I/R injury and 
inflammatory response via the enhancement of autophagy and upregulation of the renal 
p38-CD44 pathway. The authors found that autophagy was markedly downregulated by 
kidney I/R injury, while intravenous treatment with 10 μg/kg DEX effectively prevented 
the impairment of the autophagic response, thus maintaining the degradation and recy-
cling of multiple cellular components [29]. Consistent with this finding, two subsequent 
studies also observed that the renoprotective effects of DEX were mediated by the 
enhancement of autophagy after kidney injury. In a lipopolysaccharide-induced acute 
kidney injury rat model, Yang et  al. demonstrated that DEX ameliorated the inflam-
matory response by reducing the NLRP3 inflammasome and inflammatory cytokines 
by enhancing autophagy via the AMPK/mTOR pathway. With the same acute kidney 
injury model, Zhao et al. found that DEX could protect against kidney injury by enhanc-
ing autophagy, thus removing damaged mitochondria and reducing oxidative stress and 
apoptosis through α2-AR and inhibition of the PI3K/AKT/mTOR pathway. Both ani-
mal models in Yang et  al. and Zhao et  al.’s studies were treated with DEX by intrave-
nous injection with a dose of 30 μg/kg. The characteristics of the above relevant studies 

Fig. 2  Mechanisms of autophagy in myocardial-protective effects of DEX. 7nAChR α7 nicotinic acetylcholine 
receptor, SIRT1 Sirtuin 1, AMPK adenosine monophosphate-activated protein kinase, VPS34 vacuolar protein 
sorting 34
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reporting kidney injury are summarized in Table 2. The mechanisms of autophagy in the 
kidney-protective effects of DEX are illustrated in Fig. 3 (upper).

Lung injury

Acute lung injury, one of the serious forms of diffuse lung disease, has high morbid-
ity and mortality and imposes a substantial health burden globally [75]. The common 
causes of acute lung injury include serious infection, burns, trauma, and shock. Fluid 
conservative strategy and lung-protective ventilation are the two certain supportive 
treatments to treat acute lung injury effectively. Recently, DEX has been suggested to 
exert protective effects on pulmonary functions in acute lung injury and ventilator-
induced lung injury [76]. Mechanistically, the lung-protective effects developed by DEX 
might be correlated to the autophagy-associated signaling pathways. To date, three stud-
ies [30, 58, 59] have reported the roles of autophagy in the action of DEX attenuating 
lung injury. All these studies indicated that the autophagic response was inhibited when 
treated with DEX in an animal model of lung injury. Zhang et al. [30] reported that pre-
conditioning with DEX protected against lung injury in a dose-dependent manner by 
inhibiting autophagy, which might be associated with the upregulation of HIF-1α and 
downregulation of BNIP3 and BNIP3 L in a lung ischemia/reperfusion injury rat model. 
Ding et  al. [58] showed that DEX protected against lipopolysaccharide-induced acute 
lung injury via reducing the inflammatory response and inhibiting autophagy-related 
proteins and the TLR4-NF-κB signaling pathway. Based on a toxic shock-induced lung 
injury rat model, Li et al. [59] found that DEX remarkably protected against lung injury 
by inhibiting autophagy and inflammation by decreasing the expression of pERK1/2 pro-
tein. The administration of DEX was the same in the above studies, viz. 50 μg/kg DEX 
intravenously. The characteristics of the relevant studies reporting lung injury are listed 
in Table  2, while the underlying mechanisms of autophagy in the protective effects of 
DEX are shown in Fig. 3 (lower).

Fig. 3  Mechanisms of autophagy in kidney- and lung-protective effects of DEX. MAPK mitogen-activated 
protein kinase, AMPK adenosine monophosphate-activated protein kinase, HIF-1α hypoxia inducible 
factor-1α, BNIP3 B cell lymphoma 2 interacting protein 3, TLR4 toll-like receptor 4, ERK extracellular signal 
regulated kinases
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Limitations and perspectives

To the best of the authors’ knowledge, this is the first comprehensive review to sum-
marize all the evidence of the crucial roles of autophagy in the action of DEX protect-
ing against vital organ injuries. First, all the included studies listed in Tables  1 and 2 
were either in vivo or in vitro experiments. The exact roles of autophagy in the human 
body under DEX treatment in organ injury have not been fully understood yet, which 
deserves further investigation. Second, the level of autophagy flux in the process of 
the DEX-mediated protective effect on organ injury is still controversial among differ-
ent studies. Most of the included studies (17/24, 71%) demonstrated that the modula-
tion of autophagy was inhibited during this process, but the remaining studies indicated 
that the autophagy level was promoted. This phenomenon is particularly observed in 
myocardial injury, with half of the included studies reporting inhibition and half report-
ing enhancement of the autophagy level. This inconsistency regarding the autophagy 
level might be due to the various timepoints monitored in different studies. Besides, 
autophagy may play a dual role in the protective effect against organ injury, which needs 
further investigation.

Conclusions
This review highlights the crucial roles of autophagy in the protective effect of DEX 
on multiple vital organs, including cerebral, myocardial, kidney, and lung injuries. The 
vast majority of the included studies have shown that the autophagy level is suppressed 
under treatment with DEX in organ injuries, but several studies suggested that the level 
of autophagy was dramatically increased after administration of DEX. Albeit not fully 
elucidated, the underlying mechanisms governing the roles of autophagy involve the 
antiapoptotic properties, inhibiting inflammatory response, removing damaged mito-
chondria, and reducing oxidative stress, which may be facilitated by the interaction with 
multiple associated proteins and signaling cascades. With the progress of extensive in-
depth studies, DEX-mediated autophagy will be fully understood to guide better clinical 
applications for organ protection.
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