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Abstract

Vital organ injury is one of the leading causes of global deaths. Accumulating stud-

ies have demonstrated that dexmedetomidine (DEX) has an outstanding protective
effect on multiple organs for its antiinflammatory and antiapoptotic properties, while
the underlying molecular mechanism is not clearly understood. Autophagy, an adap-
tive catabolic process, has been found to play a crucial role in the organ-protective
effects of DEX. Herein, we present a first attempt to summarize all the evidence on the
proposed roles of autophagy in the action of DEX protecting against vital organ injuries
via a comprehensive review. We found that most of the relevant studies (17/24, 71%)
demonstrated that the modulation of autophagy was inhibited under the treatment
of DEX on vital organ injuries (e.g. brain, heart, kidney, and lung), but several studies
suggested that the level of autophagy was dramatically increased after administration
of DEX. Albeit not fully elucidated, the underlying mechanisms governing the roles

of autophagy involve the antiapoptotic properties, inhibiting inflammatory response,
removing damaged mitochondria, and reducing oxidative stress, which might be
facilitated by the interaction with multiple associated genes (i.e.,, hypoxia inducible
factor-1q, p62, caspase-3, heat shock 70 kDa protein, and microRNAs) and signaling
cascades (i.e, mammalian target of rapamycin, nuclear factor-kappa B, and c-Jun N-ter-
minal kinases pathway). The authors conclude that DEX hints at a promising strategy
in the management of vital organ injuries, while autophagy is crucially involved in the
protective effect of DEX.
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Introduction

Vital organ injury (i.e., cerebral, myocardial, renal, and lung injury) is one of the
leading causes of global deaths and seriously affects the lives of patients, resulting in
great healthcare and significant economic impacts in today’s society [1]. Acute organ
injury occurs frequently in the perioperative period, while chronic injury is com-
monly caused by long-lasting stimulation and toxic insult. Ischemia—reperfusion
(I/R) injury is a major cause of acute organ injury. I/R injury develops in response
to interruption in the blood supply to an area of tissue, leading to persistent tissue
hypoxia and severe microvascular dysfunction [2]. With the subsequent return of
blood flow and oxygen supply on reperfusion, further organ injury occurs following
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oxidative stress and the action of proinflammatory chemokines and cytokines [3,
4]. I/R-mediated microcirculatory dysfunction can cause multiple organ injuries
followed by the acute, subacute, and chronic phases after reperfusion, resulting in
stepwise organ fibrosis and failure [5]. Chronic organ injury is often correlated with
the rewiring of a complex metabolic network, imbalance of immune function, and
tissue remodeling [6]. Acute, repeated, and chronic injuries without interventions
commonly cause organ dysfunction. Consistently, intensive efforts have been made
to develop novel therapeutic measures to effectively prevent or treat vital organ
injuries.

Dexmedetomidine (DEX), a selective alpha, adrenoceptor agonist, not only exerts
sedative and anxiolytic effects but also exhibits sympathetic nerve suppression and
antiinflammatory properties. Thus, it is broadly applied in clinical anesthesia and
the intensive care unit (ICU) [7]. Basic and translational studies suggest that DEX is
superior to some types of sedatives (i.e., benzodiazepines and propofol) in terms of
multiple clinical outcomes, such as delirium, coma, subsequent infection, mechani-
cal ventilation, and even 28-day mortality [8—10]. Accordingly, present sedation
guidelines recommend DEX use over benzodiazepines for light-to-moderate seda-
tion in critically ill patients [11]. In addition, DEX is not solely recommended for
adult use as a short-term medication (<24 h) for analgesia and sedation in the ICU
but can also be applied for more than 24 h in ICU [12, 13]. Recently, mounting evi-
dence has confirmed that DEX has an outstanding protective effect on multiple
organs. Due to the antiinflammatory reaction and immunoregulation developed
by DEX, numerous clinical trials support the notion that DEX confers multiorgan
protection in acute organ injury events as well as during the perioperative period
[14-16]. Also, mounting experimental studies have demonstrated that DEX pro-
tects against various organ injuries using different animal models [17-19], while the
mechanisms underlying this protective effect are not completely understood and are
currently under investigation.

A growing body of research has revealed that autophagy might be involved in the
organ-protective actions of DEX [20, 21]. Autophagy, an adaptive catabolic process,
functions to maintain cellular homeostasis by engulfing cellular targets, including
damaged organelles, unfolded proteins, and pathogens [22-24]. Upon diverse stress
conditions, the activation and inhibition of autophagy have been speculated to play
roles in the protection against organ injury. Under different interventions, altered
autophagy has frequently been identified in the process of treating organ injuries [25,
26]. Similarly, autophagy abnormalities are also observed under DEX treatment of
vital organ injuries, including the brain [27], heart [28], kidneys [29], liver [17], and
lungs [30].

Since DEX has crucial clinical implications for treating vital organs injuries, elu-
cidating the underlying molecular mechanisms is of pivotal importance. Autophagy
may be one of the key regulators in the action of DEX protecting against organ injury.
However, to the best of the authors’ knowledge, there have been no comprehensive
reviews on the relationship between the DEX-mediated autophagy pathway and the
treatment of vital organs injuries. Therefore, it is timely to summarize and discuss the

current evidence on this issue.
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Pharmacokinetic properties of DEX
4-[(1S)-1-(2,3-dimethylphenyl)ethyl]-1H-imidazole (DEX) is the dextro-enantiomer
of medetomidine, with molecular formula C;3H;(N, (molecular mass 236.7 g/mol;
octanol/water partition coefficient 2.89) [31, 32]. DEX is currently approved for intrave-
nous use, while the loading doses and infusion rates are based on a milligram per kilo-
gram total body weight. DEX shows high protein binding (94% is bound to albumin and
al-glycoprotein) with an extensive volume of distribution (1.31-2.46 L/kg) and simply
crosses the blood—brain barrier [32]. The elimination half-life of DEX in the adult health
population and ICU patients is 2.1-3.1 h and 2.2-3.7 h, respectively [32, 33], while the
metabolic clearance in adult patients and ICU patients is 36—42 l/h and 31.8-57 l/h,
respectively [33, 34]. In children, the elimination half-life of DEX is approximate 2 h [35].
The pharmacodynamics of DEX includes sedative and hypnotic effects, analgesic
effects, cardiovascular effects, respiratory effects, etc. The sedative and hypnotic effects
developed by DEX may be associated with activation of central presynaptic and post-
synaptic alpha, adrenoceptor in the locus coeruleus, regulation of endogenous sleep-
promoting pathways, and an impact on the y-aminobutyric acid system [32]. Significant
and rousable sedation effects induced by DEX are recorded at plasma concentrations
between 0.2 and 0.3 ng/mL. The analgesic effects of DEX are thought to be mediated
through alteration of perception and reduction of anxiety. DEX has a biphasic hemo-
dynamic effect on the cardiovascular system, showing that low plasma concentrations
induce hypotension whereas higher concentrations lead to pulmonary and systemic
hypertension [36]. As reported, the hypertensive effects of DEX overcome the hypo-
tensive effects at concentrations between 1.9 and 3.2 ng/mL [36]. Minimal respiratory
depression is observed at therapeutic plasma concentrations up to 2.4 ng/mL, showing a
preservation of ventilatory response to CO, [37]. The ventilatory frequency can elevate
with dose escalation of DEX, which compensates for slightly decreased tidal volumes
[32]. With target concentrations between 0.2 and 0.6 ng/mL of DEX, no relevant phar-
macokinetic interactions were identified in DEX when combining with propofol, isoflu-
rane, midazolam, or alfentanil [32].

Current knowledge

a2-Receptors are frequently detected in various vital organs, including the central nerv-
ous system, kidneys, lungs, and liver [32]. Since DEX is a highly selective a2 adreno-
ceptor agonist, it may mediate a broad spectrum of pharmacodynamic actions on these
organs. In numerous animal studies [18, 38, 39], DEX appears to alleviate the inflam-
mation responses and the I/R injury of multiple organs, i.e., the brain, liver, and intes-
tines. More importantly, although a2 adrenoceptor is not found in the myocardium, a
large body of previous studies suggest that DEX plays a protective role on myocardial I/R
injury [40, 41]. DEX-mediated modulation of autophagy is considered to play the adr-
energic receptor agonist’s protective role in multiple organ injuries. Based on the above
evidence, DEX exerts an encouraging protective effect on multiple organs. Mechanis-
tically, recent experimental research has suggested that autophagy might be involved
in this action. In this review, we thus outline the molecular and biological functions of
autophagy in DEX-mediated organ-protective effects.



Zhao et al. Cellular & Molecular Biology Letters (2022) 27:34 Page 4 of 19

Literature search

A comprehensive review of the literature was undertaken using six databases (MED-
LINE, EMBASE, Google Scholar, Cochrane Library, Web of Science, and PsychINFO)
to identify relevant studies. The searching strategy in MEDLINE using MeSH and
keywords was: (((((((((("Autophagy"[Mesh]) OR (Autophagy, Cellular)) OR (Cel-
lular Autophagy)) OR (Autophagocytosis)) OR (Reticulophagy)) OR (ER-Phagy))
OR (ER Phagy)) OR (Nucleophagy)) OR (Ribophagy)) OR (Lipophagy)) AND
((((((("Dexmedetomidine"[Mesh]) OR (MPV-1440)) OR (MPV 1440)) OR (MPV1440))
OR (Precedex)) OR (Dexmedetomidine Hydrochloride)) OR (Hydrochloride, Dexme-
detomidine)). The reference list was also reviewed to detect additional studies. A data
collection table was applied to extract the key data from the relevant studies, including
the first author’s name, publication year, geographical distribution, cell/animal model,
types of organ injury, DEX administration, autophagy status, associated genes or path-
ways, and the main findings of the included studies. Finally, 24 studies [21, 27-30, 41—
59] were included. Among these, 14, 4, 3, and 3 eligible studies reported cerebral injury,
myocardial injury, kidney injury, and lung injury, respectively.

Organ-protective properties of DEX and the roles of autophagy
Cerebral injury
Fourteen publications reported autophagy involving the action of the protective effect of
DEX in brain injury. The experimental models among these eligible studies included rat,
mouse, and neurocyte (i.e., astrocytes, PC12, and neuroblastoma cells). The types of cen-
tral nervous injury included cerebral ischemia/reperfusion injury, traumatic brain injury,
neurological injury, cognitive impairment, hippocampus injury, oxygen—glucose depri-
vation—reoxygenation injury, and neonatal hypoxic ischemia. The route for DEX admin-
istration in an animal model included intraperitoneal injection and intravenous injection
via the femoral vein or the caudal vein. The dose of DEX in a rat model ranged from 3
to 50 pg/kg, but 20-25 pg/kg in a mouse model. DEX in a cell model was administrated
through cell supernatants, while the dose of DEX was 1 uM. Most of the included stud-
ies (12/14, 86%) reported the status of autophagy was inhibition in the protective effect
of DEX in cerebral injury. Multiple genes and signaling pathways have been found to be
involved in autophagy-mediated neuroprotection by DEX.

The characteristics and the main findings of the 14 relevant studies reporting cerebral
injury are summarized in Table 1. Figure 1 shows the main mechanisms of autophagy in
the cerebra-protective effects of DEX.

mTOR signaling pathway

The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR)
pathway is one of the most important signaling pathways with a critical biological func-
tion in various diseases [60, 61], including neurological disorders [62]. As reported,
numerous drugs exert their neuroprotective effect via the PI3K/Akt/mTOR signal-
ing pathway [63]. mTOR is considered to serve as a central player in the regulation of
autophagy because it can inhibit autophagy in the process of growth factors and abun-
dant nutrients [64]. Shen et al. [42] demonstrated that DEX alleviated the degree of
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Fig. 1 Main mechanisms of autophagy in the cerebra-protective effects of DEX. DEX is one the a2AR
agonists. Under administration of DEX in treating cerebral injury, the autophagy level was regulated by
multiple associated genes and a series of downstream signaling, resulting in reduction of inflammatory,
apoptosis, and damaged mitochondria. DEX dexmedetomidine, HIF-1a hypoxia inducible factor-1q, LC3
light chain 3 B, Drp1 dynamin-related protein 1, HSP70 heat shock 70 kDa protein, TOM20 translocase of
outer mitochondrial membrane 20, Dram2 DNA damage regulated autophagy modulator 2, FOXO3a
forkhead-box-protein 3q, TSC2 tuberous sclerosis complex 2, STIM1 stromal interaction molecule 1, ROS
reactive oxygen species, MDA malondialdehyde, Nrf2 nuclear factor erythroid 2-related factor 2

traumatic brain injury via inhibition of neuronic autophagy by activating the PI3K/AKT/
mTOR signaling pathway. In line with this finding, some investigators also found that the
inhibition of neuronic autophagy was one of the therapeutic targets for traumatic brain
injury treatment [65]. Also, the protective effects of DEX are speculated to be against
the process of autophagy and apoptosis. Zhu et al. [48] reported that DEX increased
the viability and inhibits apoptosis of astrocytes exposed to oxygen—glucose depriva-
tion, which might be related to the activation of autophagy by regulating the tuberous

Page 8 of 19
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sclerosis complex 2 (TSC2)/mTOR pathway. The authors indicated that DEX treatment
could upregulate the expression of TSC2 and subsequently reduce the phosphorylation
of mTOR. In contrast to Shen et al’s study, Zhu et al. found that the protective effect
played by DEX might be associated with augmented autophagy of astrocytes. Consistent
with Zhu et al’s findings, Yu et al. [21] demonstrated that DEX attenuated hippocampus
injury by activating SIRT3-mediated mitophagy. Of note, Zhu et al. and Yu, et al’s stud-
ies are the only two included studies (2/14, 14%) reporting that the status of autophagy is
activation when treating with DEX for cerebral injury. Commonly, autophagy is activated
in cerebral injury [66], while DEX may inhibit the autophagy level and thus contribute to
the neuroprotection in cerebral damage [53]. With the same cell line of astrocytes as
used in Zhu et al’s study [48], Qin et al. [67] suggested that the inhibition of autophagy
might exert the protective effect on astrocytes after ischemic astrocyte injury. This could
be partially explained by the finding that autophagy may play different roles in different
cerebral injury stages, i.e., ischemia and reperfusion [48]. The exact roles of autophagy at
different timepoints after cerebral injury deserve further investigation.

MicroRNAs (miRNAs)

miRNAs are a major class of conserved short noncoding RNAs with crucial biological
functions in the regulation of a third of the whole genome at the posttranslational level
[68]. miRNAs exert their roles by increasing messenger RNA degradation or by block-
ing messenger RNA translation [69]. Numerous studies have suggested that there is a
close association between miRNAs and autophagy in various diseases, including cere-
bral injury [70]. Also, miRNAs-mediated autophagy and the signaling cascades might
play critical roles in the effect of DEX in protecting cerebral injury. Li et al. [50] showed
that DEX could improve the neurological outcome in a traumatic brain injury rat model
by inhibiting autophagy and regulating the circLrplb/miR-27a-3p/Dram2 pathway. They
found that the protective effect of DEX after cerebral injury might be attributable to
the downregulation of circLrplb and the inhibition of injury-induced autophagy, while
these effects were dramatically abolished by miR-27a-3p suppression. Zhu et al. reported
that the autophagy level in the cerebral cortex increased in an animal model of cerebral
ischemia/reperfusion injury, while inhibited autophagy was observed after treating with
DEX. During this action, Zhu et al. further found that DEX significantly inhibited the
expression of miR-199a and thus improved neurocyte injury. The above evidence indi-
cated that inhibition of autophagy might be involved in the DEX-induced neuroprotec-
tive effect in cerebral injury.

Autophagy-associated proteins (Beclin-1, Bcl-2, LC3-1, and LC3-II)

The therapeutic implications of DEX in brain injury may also be strongly associated with
the altered expression of autophagy-associated proteins such as Beclin-1, Bcl-2, LC3-
I, and LC3-II. Beclin-1 is involved in the initiation and maturation steps of autophagy,
constituting the primary component of the autophagy mechanism [71]. Bcl-2, one of
the key interacting proteins of Beclin-1 and the antiapoptotic family members, can sup-
press autophagy initiation by inhibiting the cascade of autophagy formation [72]. Both
LC3-I and LC3-II are biomarkers for autophagy. LC3B-II/I indicates the generation of
autophagosomes. Shan et al. [43] found that DEX improved the abnormal morphology
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of hippocampal CA1 regions of rat-pup brains by inhibiting sevoflurane-induced acti-
vation of autophagy via upregulating Bcl-2. Lu et al. demonstrated that DEX exerted a
neuroprotective effect by repressing autophagy in a cerebral ischemia/reperfusion injury
rat model, which was partially caused by the upregulation of Bcl-2 expression. Xue et al.
[51] showed that the protective effects of DEX were evidenced by the inhibition of exces-
sive autophagy of neurons and microglia through downregulating LC3B-II and Beclin1.
In line with Xue et al’s findings, Yi et al. [44] found that the protective functioning devel-
oped by DEX might be via decreasing autophagy of hippocampal neurons, which pre-
sented with the reduction of LC3-I, LC3-II, and Beclin-1 expression. In contrast, though
Yu et al. [21] detected that DEX attenuated hippocampus injury, they observed that the
status of mitophagy was activated, characterized by enhancing LC3-II/LC3-I expression.

Other associated genes

In addition to the above factors, the roles of autophagy in the neuroprotective effects
mediated by DEX might also be caused by some other associated proteins and signal-
ing pathways, e.g., HIF-1a, p62, Drpl, Caspase-3, HSP70, TOM20, Dram2, FOXO3a,
BINP3, TSC2, 4EBP1, STIM1, Orail, ROS, MDA, Nrf2, HO-1, and JNK signaling [21,
27, 43, 45-50, 53]. Among these genes, a positive correlation has been found between
autophagy and Drp1, Caspase-3, Dram2, FOXO3«, BINP3, TSC2, 4EBP1, STIM1, Orail,
ROS, MDA, and JNK signaling pathway. In contrast, autophagy has a negative relation-
ship with the expression of HIF-1«, p62, HSP70, TOM20, Nrf2, and HO-1. All these
genes and signaling cascades might be linked to biogenesis and biological functions of
autophagy in the neuroprotective action of DEX.

Myocardial injury
DEX has also been reported to elicit cardioprotective effects via various molecule mech-
anisms. Autophagy regulation is considered to be one of the proposed mechanisms,
which is believed to constitute a crucial process in the self-preservation of the heart.
As reported, autophagy machinery involves immunity modulation through transmit-
ting microbes to lysosomes for degradation and facilitating the release of cytokines for
microbe digestion [73]. To date, four experimental studies have confirmed the essen-
tial roles of autophagy in DEX-mediated cardioprotection [28, 41, 54, 55] (Table 2).
According to Yu et al’s study, DEX could attenuate septic myocardial injury by increas-
ing autophagic flux via activating a7nAChR and the Akt/GSK-3f cascades, resulting
in a reduction of the myocardium apoptosis and inflammatory response. In line with
this finding, Xiao et al. also found that autophagy upregulation was associated with
the action that DEX protected human cardiomyocytes against I/R injury. They further
observed that a2-adrenergic receptor/AMPK signaling cascades greatly contributed to
the activation of autophagy during the protective process developed by DEX.
Conversely, although two other studies [41, 54] have also reported that DEX treatment
significantly attenuated myocardium injury, the researchers found that the autophagy
status was inhibited in this process. Zhang et al. [54] demonstrated that DEX allevi-
ated myocardial ischemia/reperfusion injury by dramatically decreasing overautophagy
and reducing cardiomyocyte apoptosis, oxidative stress, and inflammatory reactions via
upregulating the SIRT1/mTOR axis. DEX postconditioning could result in a decrease
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of LC3II and Beclin-1 and an elevation of p62 protein level, thus inhibiting autophagy.
Li et al. [41] reported that DEX upregulated the phosphorylation of Beclinl by activat-
ing the PI3K/Akt pathway and reduced the interactions of Atgl4L—Beclin 1-Vps34 com-
plex, thus inhibiting autophagy and protecting against myocardial ischemia/reperfusion
injury. As shown in Table 2, DEX administration in both Zhang et al. and Li et al’s study
was based on intravenous injection, and the dose was the same at 10 pg/kg.

The mechanisms of autophagy in the myocardial-protective effects of DEX are illus-
trated in Fig. 2.

Kidney injury

Acute kidney injury, a disease with high morbidity and mortality, is closely associated
with multiple organ dysfunction. Kidney I/R injury and sepsis are the two main causes
for the development of acute kidney injury. Autophagy has been shown to elicit some
protective effects in the pathological processes of renal tubular injury [74]. A previ-
ous study [29] suggested that DEX preconditioning ameliorated kidney I/R injury and
inflammatory response via the enhancement of autophagy and upregulation of the renal
p38-CD44 pathway. The authors found that autophagy was markedly downregulated by
kidney I/R injury, while intravenous treatment with 10 pug/kg DEX effectively prevented
the impairment of the autophagic response, thus maintaining the degradation and recy-
cling of multiple cellular components [29]. Consistent with this finding, two subsequent
studies also observed that the renoprotective effects of DEX were mediated by the
enhancement of autophagy after kidney injury. In a lipopolysaccharide-induced acute
kidney injury rat model, Yang et al. demonstrated that DEX ameliorated the inflam-
matory response by reducing the NLRP3 inflammasome and inflammatory cytokines
by enhancing autophagy via the AMPK/mTOR pathway. With the same acute kidney
injury model, Zhao et al. found that DEX could protect against kidney injury by enhanc-
ing autophagy, thus removing damaged mitochondria and reducing oxidative stress and
apoptosis through a2-AR and inhibition of the PI3K/AKT/mTOR pathway. Both ani-
mal models in Yang et al. and Zhao et al’s studies were treated with DEX by intrave-
nous injection with a dose of 30 pg/kg. The characteristics of the above relevant studies
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Fig. 2 Mechanisms of autophagy in myocardial-protective effects of DEX. 7nAChR a7 nicotinic acetylcholine
receptor, SIRTT Sirtuin 1, AMPK adenosine monophosphate-activated protein kinase, VPS34 vacuolar protein
sorting 34
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Fig. 3 Mechanisms of autophagy in kidney- and lung-protective effects of DEX. MAPK mitogen-activated
protein kinase, AMPK adenosine monophosphate-activated protein kinase, HIf-1a hypoxia inducible
factor-1a, BNIP3 B cell lymphoma 2 interacting protein 3, TLR4 toll-like receptor 4, ERK extracellular signal
regulated kinases

reporting kidney injury are summarized in Table 2. The mechanisms of autophagy in the
kidney-protective effects of DEX are illustrated in Fig. 3 (upper).

Lung injury

Acute lung injury, one of the serious forms of diffuse lung disease, has high morbid-
ity and mortality and imposes a substantial health burden globally [75]. The common
causes of acute lung injury include serious infection, burns, trauma, and shock. Fluid
conservative strategy and lung-protective ventilation are the two certain supportive
treatments to treat acute lung injury effectively. Recently, DEX has been suggested to
exert protective effects on pulmonary functions in acute lung injury and ventilator-
induced lung injury [76]. Mechanistically, the lung-protective effects developed by DEX
might be correlated to the autophagy-associated signaling pathways. To date, three stud-
ies [30, 58, 59] have reported the roles of autophagy in the action of DEX attenuating
lung injury. All these studies indicated that the autophagic response was inhibited when
treated with DEX in an animal model of lung injury. Zhang et al. [30] reported that pre-
conditioning with DEX protected against lung injury in a dose-dependent manner by
inhibiting autophagy, which might be associated with the upregulation of HIF-1a and
downregulation of BNIP3 and BNIP3 L in a lung ischemia/reperfusion injury rat model.
Ding et al. [58] showed that DEX protected against lipopolysaccharide-induced acute
lung injury via reducing the inflammatory response and inhibiting autophagy-related
proteins and the TLR4-NF-kB signaling pathway. Based on a toxic shock-induced lung
injury rat model, Li et al. [59] found that DEX remarkably protected against lung injury
by inhibiting autophagy and inflammation by decreasing the expression of pERK1/2 pro-
tein. The administration of DEX was the same in the above studies, viz. 50 pg/kg DEX
intravenously. The characteristics of the relevant studies reporting lung injury are listed
in Table 2, while the underlying mechanisms of autophagy in the protective effects of
DEX are shown in Fig. 3 (lower).
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Limitations and perspectives

To the best of the authors’ knowledge, this is the first comprehensive review to sum-
marize all the evidence of the crucial roles of autophagy in the action of DEX protect-
ing against vital organ injuries. First, all the included studies listed in Tables 1 and 2
were either in vivo or in vitro experiments. The exact roles of autophagy in the human
body under DEX treatment in organ injury have not been fully understood yet, which
deserves further investigation. Second, the level of autophagy flux in the process of
the DEX-mediated protective effect on organ injury is still controversial among differ-
ent studies. Most of the included studies (17/24, 71%) demonstrated that the modula-
tion of autophagy was inhibited during this process, but the remaining studies indicated
that the autophagy level was promoted. This phenomenon is particularly observed in
myocardial injury, with half of the included studies reporting inhibition and half report-
ing enhancement of the autophagy level. This inconsistency regarding the autophagy
level might be due to the various timepoints monitored in different studies. Besides,
autophagy may play a dual role in the protective effect against organ injury, which needs
further investigation.

Conclusions

This review highlights the crucial roles of autophagy in the protective effect of DEX
on multiple vital organs, including cerebral, myocardial, kidney, and lung injuries. The
vast majority of the included studies have shown that the autophagy level is suppressed
under treatment with DEX in organ injuries, but several studies suggested that the level
of autophagy was dramatically increased after administration of DEX. Albeit not fully
elucidated, the underlying mechanisms governing the roles of autophagy involve the
antiapoptotic properties, inhibiting inflammatory response, removing damaged mito-
chondria, and reducing oxidative stress, which may be facilitated by the interaction with
multiple associated proteins and signaling cascades. With the progress of extensive in-
depth studies, DEX-mediated autophagy will be fully understood to guide better clinical
applications for organ protection.
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