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Background
Lung cancer ranks as the second most commonly diagnosed cancer worldwide [1]. Non-
small cell lung cancer (NSCLC) is the predominant type of lung cancer. It can be classi-
fied into three histological subtypes: adenocarcinoma (LUAD), squamous cell carcinoma 
(LUSC), and large cell carcinoma (LCC). Although multiple therapeutic strategies have 
been applied to treat NSCLC, the prognosis of NSCLC patients remains dismal. Most 
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patients usually die from tumor recurrence or metastasis. Therefore, it is of great impor-
tance to investigate the mechanism underlying NSCLC oncogenesis, which may help 
develop new therapeutic/preventive strategies against NSCLC.

Glycosylation is a reaction that links glycans to lipids or proteins [2]. Changes in pro-
tein glycosylation can drive the neoplastic transformation of healthy cells [3]. Aberrant 
glycosylation not only mediates cell–cell and cell–matrix interactions but also impacts 
cell growth, survival, migration, and invasion. Accumulating evidence has indicated that 
glycosylation alteration is a hallmark of many cancers [4–6]. Glycosylation is catalyzed 
by glycosyltransferases (GTs), which consist of at least 200 members. GTs are frequently 
dysregulated in cancers, indicating that GTs may act as oncogenes or tumor-suppres-
sor genes [7, 8]. Thus, uncovering the relationship between GTs and NSCLC is very 
significant.
N-Acetylgalactosaminyltransferases (GALNTs) are highly eukaryotic-retaining GTs 

that control the initial steps of mucin-type O-glycosylation [9]. To date, 20 GALNT fam-
ily members (from GALNT1 to GALNT20) have been identified in the human genome. 
GALNTs play critical roles in numerous physiological and pathological processes [10–
12]. However, a comprehensive analysis of GALNTs in NSCLC has yet to be conducted. 
In this study, multiple online tools were utilized to evaluate the expression profiles and 
prognostic values of the GALNT family in NSCLC. Subsequently, in vitro and in vivo 
assays were carried out to clarify the biological function and regulatory mechanism of 
GALNT2. Our study is expected to provide a novel therapeutic target for NSCLC.

Methods
Data retrieving and analyzing

Differential expression and prognosis of the GALNT family members in NSCLC were 
analyzed using the following databases: Oncomine (http://​www.​oncom​ine.​org), The 
Cancer Genome Atlas (TCGA, https://​tcga-​data.​nci.​nih.​gov/​tcga/), UALCAN (http://​
ualcan.​path.​uab.​edu), Genotype-Tissue Expression (GTEx, http://​commo​nfund.​nih.​
gov/​GTEx/), and Kaplan Meier-plotter (http://​kmplot.​com). The LinkedOmics database 
(http://​www.​linke​domics.​org) was used to screen the genes or miRNAs associated with 
GALNT2 in NSCLC. The prognostic nomograms and Receiver-operating characteristic 
(ROC) curves were generated using the R package “rms” package or “pROC”, respec-
tively. Gene Set Enrichment Analysis (GSEA) was performed using the GSEA software. 
The adjusted P-value < 0.05 and |log2 (fold change) | > 1 were set as the threshold.

Microarray analysis

The cDNA microarrays of tissues (cDNA-HLugA030PG01; fifteen NSCLC samples and 
paired adjacent noncancerous lung tissue samples) and cells (MecDNA-HLugC042Ce01; 
thirteen NSCLC cell lines and one normal lung cell line) were acquired from Outdo Bio-
tech Co., Ltd (Shanghai, China). Gene or miRNA expression analysis was performed by 
reverse transcription-quantitative real-time PCR (RT-qPCR).

Cell culture, plasmids, and transfection

A549 and H1299 cell lines (Procell, Wuhan, China) were maintained in DMEM (Gibco, 
Carlsbad, CA, USA), supplemented with 10% fetal bovine serum (HyClone, Logan, UT, 

http://www.oncomine.org
https://tcga-data.nci.nih.gov/tcga/
http://ualcan.path.uab.edu
http://ualcan.path.uab.edu
http://commonfund.nih.gov/GTEx/
http://commonfund.nih.gov/GTEx/
http://kmplot.com
http://www.linkedomics.org
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USA). GenePharma (Shanghai, China) was responsible for the synthesis of GALNT2 
overexpression lentivirus (OV), GALNT2 shRNA lentivirus, and corresponding control 
lentiviruses (Mock or shNC). ITGA5 siRNA, negative control siRNA (siNC), miR-30d 
mimics, and negative control mimics were also chemically synthesized by GenePharma. 
Transfections were carried out using RNAi-mate reagent (GenePharma). Sequence 
information is provided in Additional file 1: Table S1.

RT‑qPCR

Total RNA was extracted using an RNA extraction kit (Tiangen Biotech, Beijing, China). 
For mRNA detection, the SuperScript IV reverse transcriptase system (Thermo Fisher 
Scientific, Carlsbad, CA, USA) was used for cDNA synthesis. PCR reactions were per-
formed using the SYBR® Premix Ex Taq™ (Takara, Dalian, China). For miRNA detec-
tion, RNA was reverse transcribed into cDNA by using the miRNA First-Strand cDNA 
synthesis kit (Tiangen). PCR was conducted using the miRNA qPCR detection kit (Tian-
gen). Data were processed with the 2−ΔΔCt method after normalizing to GAPDH or U6. 
Primer sequences are given in Additional file 1: Table S2.

Western blot

Total protein was isolated using RIPA buffer and separated by 10% SDS-PAGE. After 
transferring to PVDF membranes, the blot was incubated with specific antibodies. 
Primary antibodies were as follows: GALNT2 (abs117502; Absin, Shanghai, China), 
ITGA5 (abs101364; Absin), ERK1 + ERK2 (ab184699; Abcam, Shanghai, China), p-ERK1 
(T202) + p-ERK2 (T185) (ab201015; Abcam), Akt (ab8805; Abcam), p-Akt (T308) 
(ab38449; Abcam), and GAPDH (Absin; abs132004). Immunoreactive bands were visu-
alized using an enhanced chemiluminescence kit (Absin).

Cell Counting Kit‑8 (CCK‑8) and colony formation assays

Exponentially growing cells were seeded into 96-well plates (2 × 103 cells per well). 
Cell viability was measured using the Cell Counting Kit-8 (CCK-8) reagent (Beyotime, 
Shanghai, China) according to the manufacturer’s instructions. Absorbance at 450 nm 
was measured. For the colony formation assay, 1 × 103 cells were plated in each well of 
a 6-well plate. After 14 days of incubation, colonies containing more than 50 cells were 
stained with crystal violet.

Cell migration and invasion assays

Transwell chambers (Corning Incorporated, Corning, NY, USA; 24-well, 8-μm pore size) 
uncoated or coated with Matrigel (BD Biosciences, San Jose, CA, USA) were employed 
to determine cell migration and invasion, respectively. A total of 5 × 104 cells were 
seeded in the upper chamber and the complete culture medium was placed in the lower 
chamber. After incubation for 24 h, the migrated or invaded cells were stained with crys-
tal violet.

Cell cycle and apoptosis detection

Cell cycle and apoptosis were analyzed using flow cytometry as previously described by 
our group [13]. The cell-cycle analysis kit and Annexin V-PE/7-AAD apoptosis kit were 
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obtained from Keygen Biotech (Nanjing, China). Operations were carried out according 
to the kit instructions.

Mouse xenograft experiments

Female BALB/c nude mice, 4–5  weeks old, were purchased from the Animal Center 
of Hubei University of Medicine. Cells (2 × 106) were injected subcutaneously into the 
flanks of nude mice (n = 5 per group). Tumor volumes were calculated using the formula: 
length × width2 × 0.5. On day 28, the mice were sacrificed. The tumors were excised and 
stained with Ki-67 (abs123999, Absin) as previously described by other researchers [14].

Lectin pull‑down assay

The membrane protein was extracted using a specific extraction kit (Beyotime) accord-
ing to the manufacturer’s protocols. Then, Agarose bound Vicia Villosa Lectin (VVA; 
AL-1233-2, Vector Labs, Burlingame, CA, USA) was added to capture the lectin/glyco-
protein complexes. The eluted fractions were subjected to SDS-PAGE and analyzed by 
Western blot.

RNA‑sequencing (RNA‑Seq)

RNA-seq was conducted by Biotecan Pharmaceuticals Co., Ltd (Shanghai, China). 
Total RNA from A549 cells with or without GALNT2 knockdown was subjected to 
RNA-seq. Differentially expressed genes (DEGs) were identified using the DESeq2 R 
package. The screening criterion was set as false discovery rate (FDR) < 0.05 and | log2 
(fold change)| ≥ 1. DEGs were subjected to GO functional enrichment (Gene Ontol-
ogy, http://​www.​geneo​ntolo​gy.​org/) and KEGG pathway analysis (Kyoto Encyclopedia of 
Genes and Genomes, http://​www.​genome.​jp/​kegg/).

Luciferase assay

The wild-type and mutant 3′-untranslated region (3′-UTR) of human GALNT2 were 
constructed and cloned into the pGL3 luciferase reporter vector (GenePharma). Sub-
sequently, the above two vectors were co-transfected with miR-30d mimics or negative 
control mimics into A549 and H1299 cells, respectively. After 48 h of transfection, cells 
were collected for the luciferase activity assay using a Dual-Luciferase Reporter Assay 
System (Promega, Madison, WI, USA).

Statistical analysis

Data are presented as mean ± SD. Statistical analysis was done using the GraphPad 
Prism software (San Diego, CA, USA). Statistical significance was determined by Stu-
dent’s t-test, chi-square test, ANOVA, or Pearson test. P < 0.05 was considered statisti-
cally significant.

Results
A comprehensive analysis of the GALNT family in NSCLC

To define the expression patterns of GALNTs in NSCLC, the mRNA levels of 20 
GALNTs in NSCLC (LUAD, LUSC, and LCC) tissues and adjacent normal lung tissues 
were analyzed using the Oncomine database (Fig. 1A and Additional file 1: Table S3). 

http://www.geneontology.org/
http://www.genome.jp/kegg/
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Compared with the normal lung tissues, the mRNA levels of GALNT2/3/6/7/10/14 
were elevated in LUAD tissues, and GALNT15/18 mRNA levels were reduced. More-
over, GALNT1/2/3/14 mRNA levels were higher, while GALNT12/18 mRNA levels 
were lower in LUSC tissues than in normal lung tissues. Additionally, the mRNA lev-
els of GALNT2/14 were increased, but GALNT5/12 mRNA levels were decreased 
in LCC tissues compared with normal lung tissues. Subsequently, the mRNA levels 
of 20 GALNTs in NSCLC (mainly LUAD and LUSC) tissues were investigated based 
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Fig. 1  Gene expression profiles of the GALNT family members in NSCLC. A Oncomine analysis of GALNT 
mRNA expression. Red: up-regulation; blue: down-regulation. The number in the colored cell represents the 
number of datasets meeting the threshold (P-value, 0.05; fold change, 2; gene rank, top 10%). B Analysis of 
GALNT mRNA expression in TCGA. Red box represents tumor tissues and grey box represents normal tissues. 
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on the integrated analysis of TCGA and GTEx datasets (Fig.  1B). We observed that 
GALNT2/3/6/7/14 mRNA levels were upregulated in NSCLC tissues compared with 
the normal lung tissues; by contrast, GALNT5/13/16/18/20 mRNA levels were down-
regulated. Global gene expression analysis indicated that GALNT2 and GALNT14 
were highly expressed, whereas GALNT5 was lowly expressed in NSCLC.

To determine the prognostic values of GALNTs in NSCLC, Kaplan–Meier sur-
vival analysis was performed. We found that high expression of GALNT2/9/13 was 
linked to decreased overall survival (Fig. 2A). Besides, High GALNT2/16 expression 
was associated with unfavorable disease-free survival (Fig.  2B). TCGA data analysis 
showed that only GALNT2 was related to the poor prognosis of all NSCLC patients. 
Furthermore, the survival information extracted from the Kaplan–Meier plotter data-
base also confirmed that GALNT2 expression was negatively correlated with the 
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Fig. 2  Prognostic values of the GALNT family members in NSCLC. A Relationship between GALNT expression 
and overall survival. B Relationship between GALNT expression and disease free survival. Data for GALNT19 
and GALNT20 were not available
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overall survival of NSCLC patients (Additional file 1: Fig. S1). Considered collectively, 
we selected GALNT2 as a candidate gene for further study.

Clinical importance of GALNT2 in NSCLC

RNA-Seq data for NSCLC were downloaded from the TCGA database. Univariate 
analysis showed that T stage, M stage, pathologic stage, primary therapy outcome, and 
GALNT2 expression were significantly associated with the overall survival. Multivari-
ate Cox regression hazard analysis revealed that GALNT2 was an independent prog-
nostic factor for overall survival (Additional file 1: Tables S4 and S5). A nomogram was 
established to predict the probability of the 1-, 3- and 5-year overall survival of NSCLC 
patients by integrating all the independent prognostic indicators (Fig.  3A). The ROC 
curve indicated that GALNT2 expression could serve as a promising biomarker for dis-
tinguishing NSCLC patients from normal controls (Fig.  3B). To verify the expression 
pattern of GALNT2 in NSCLC, RT-qPCR was performed. We confirmed that GALNT2 
mRNA was overexpressed in NSCLC specimens (Fig. 3C). The results from the UAL-
CAN website also demonstrated that GALNT2 protein expression was upregulated in 
NSCLC samples (Fig. 3D). To characterize GALNT2 abundance in human cancers, we 
examined GALNT2 expression using the TCGA pan-cancer data. We discovered that 
the expression of GALNT2 was widely elevated across numerous cancers (Fig.  3E). 
These findings suggested that GALNT2 might play a key role as an oncogene in NSCLC.

Oncogenic role of GALNT2 in NSCLC

To elucidate the biological function of GALNT2 in NSCLC, we analyzed the expression 
of GALNT2 in a panel of NSCLC cell lines and a normal lung cell line using RT-qPCR. 
Upregulation of GALNT2 expression was frequently detected in various NSCLC cell 
lines (Fig. 4A). Then, we conducted loss- and gain-of-function assays to explore whether 
GALNT2 could affect the malignant behaviors of NSCLC cells. Successful overexpres-
sion or knockdown of GALNT2 in A549 and H1299 cells was confirmed by RT-qPCR 
(Additional file  1: Fig. S2) and Western blot (Fig.  4B). The CCK-8, colony formation, 
and Transwell assays demonstrated that GALNT2 knockdown repressed the prolifera-
tive, migratory, and invasive abilities of NSCLC cells (Fig. 4C–E). Flow cytometry analy-
sis revealed that knockdown of GALNT2 promoted apoptosis and induced G0/G1 cell 
cycle arrest (Fig. 4F, G). Overexpression of GALNT2 in A549 and H1299 cells, however, 
had the opposite effects. GALNT2 overexpression stimulated cell proliferation, migra-
tion, invasion, and cell cycle progression, and inhibited apoptosis (Fig. 5A–E). Together, 
these functional studies illustrated that GALNT2 exerted a tumor-promoting property 
in NSCLC.

GALNT2 facilitates NSCLC cell growth in vivo

To check whether GALNT2 could regulate tumorigenesis in vivo, A549 cells were sub-
cutaneously injected into nude mice. Tumor volumes were measured every week. We 
discovered that the sizes and weights of tumors in the GALNT2 knockdown group 
were smaller than those in the control group; thus, knockdown of GALNT2 suppressed 
tumor formation in vivo (Fig. 6A–C). Meanwhile, the expression of Ki67, a marker of cell 
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proliferation, was decreased in the GALNT2 knockdown group (Fig. 6D). These results 
confirmed the oncogenic potential of GALNT2 in NSCLC.

ITGA5 is a target glycoprotein of GALNT2 in NSCLC

To uncover the regulatory mechanism of GALNT2 in NSCLC, we used LinkedOm-
ics to screen the genes co-expressed with GALNT2. These genes were uploaded into 
GSEA for enrichment analysis (Additional file 2: Table S6). We observed a positive 
association between GALNT2 expression and the O-linked glycosylation or Integrin 
pathway (Fig. 7A). Lectin blot analysis proved that O-glycosylation was suppressed 
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following GALNT2 knockdown, as shown by reduced VVA staining in NSCLC cells 
(Fig.  7B). Among genes identified in the LinkedOmics database as related to the 
Integrin pathway, ITGA5 was most strongly correlated with GALNT2 (Fig. 7C). To 
evaluate whether GALNT2 could modify ITGA5 O-glycosylation, a lectin pull-down 
assay was performed. Interestingly, ITGA5 was pulled down by VVA, and the knock-
down of GALNT2 decreased VVA binding to ITGA5 (Fig.  7D). To assess whether 
ITGA5 was implicated in GALNT2-mediated malignant phenotypes of NSCLC 
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cells, we silenced ITGA5 expression with siRNA in GALNT2-overexpressing cells 
(Fig.  7E). We found that GALNT2-induced cell proliferation, migration, and inva-
sion were attenuated by silencing ITGA5 (Fig.  7F–H). Moreover, the interaction 
between GALNT2 and ITGA5 was validated by GeneMANIA (http://​genem​ania.​
org/) (Fig. 7I). Thus, ITGA5 acted as a downstream effector of GALNT2 in NSCLC.
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GALNT2 can activate the PI3K/Akt and MAPK/ERK pathways in NSCLC

GSEA analysis implied a crucial role for GALNT2 in the regulation of PI3K/Akt and 
MAPK pathways (Fig. 8A; Additional file 2: Table S6). To verify the GSEA results, we 
knocked down GALNT2 in A549 cells and extracted RNA for RNA-seq analysis (Addi-
tional file  3: Table  S7). Different gene expression profiles were displayed between 
GALNT2-knockdown and control cells (Fig.  8B). DEGs were subjected to GO and 
KEGG for annotation. KEGG analysis revealed that DEGs were also enriched in the 
PI3K/Akt and MAPK pathways (Fig. 8C). To validate the association between these two 
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signaling pathways and GALNT2, the total protein and phosphorylation levels of Akt 
and ERK were examined via Western blot. As expected, the phosphorylation levels of 
Akt and ERK, but not the total levels of Akt and ERK, were reduced following GALNT2 
knockdown (Fig.  8D). Furthermore, LY294002 (PI3K/Akt inhibitor, 10  μmol/L) or 
PD98059 (MAPK/ERK inhibitor, 10  μmol/L) could attenuate the promotive effects of 
GALNT2 on NSCLC cell proliferation, migration, and invasion (Fig. 8E–G). Therefore, 
the pro-oncogenic role of GALNT2 in NSCLC was related to the activation of the PI3K/
Akt and MAPK/ERK pathways.

miR‑30d is an upstream regulator of GALNT2 in NSCLC

To explore the mechanism underlying GALNT2 upregulation in NSCLC, the miR-
NAs potentially targeting GALNT2 were predicted using online analysis tools, such as 
TargetScan, RNA hybrid, PicTar, and miRanda. We found 9 potential miRNAs, which 
could interact with GALNT2 (Fig. 9A). In addition, the top 50 miRNAs associated with 
GALNT2 in NSCLC were screened out by the Pearson correlation test via LinkedOm-
ics (Fig.  9B). After taking the intersection of those predicted miRNAs, we discovered 
that miR-30d presented the strongest association with GALNT2. Data from TCGA and 
our microarrays indicated that miR-30d was downregulated in NSCLC tissues and cell 
lines (Fig. 9C, D). Consequently, miR-30d was selected as the candidate miRNA. To fur-
ther investigate whether GALNT2 was regulated by miR-30d, RT-qPCR and Western 
blot assays were conducted. Remarkably, both mRNA and protein levels of GALNT2 in 
A549 and H1299 cells were inhibited by miR-30d (Fig. 9E, F). Subsequently, the poten-
tial binding sequence between GALNT2 and miR-30d was predicted using TargetS-
can (Fig. 9G). As anticipated, miR-30d reduced the luciferase activity of the wild-type 
GALNT2 3′-UTR, while the luciferase activity of the mutant GALNT2 3′-UTR was not 
changed (Fig.  9H). To determine how the miR-30d/GALNT2 axis affected the malig-
nant properties of NSCLC cells, rescue assays were performed. We discovered that 
miR-30d suppressed NCSCL cell proliferation, migration, and invasion, but these inhibi-
tion effects were restored by GALNT2 overexpression (Fig. 9I–K). All the above infor-
mation pointed out that miR-30d was a negative modulator of GALNT2 in NSCLC. A 
schematic diagram was generated to illustrate the working mechanism of GALNT2 in 
NSCLC (Fig. 10).

Discussion
Altered glycosylation is a universal feature of human cancers. Glycosylation alteration 
also frequently occurs in lung cancer [15, 16]. Mucin-type O-glycosylation, which is 
produced by the GALNT family, is a fundamental form of glycosylation. GALNTs are 
ubiquitously expressed in a variety of tissues, and some GALNTs have oncogenic or 
tumor-suppressive properties. In the present study, we identified GALNT2, among the 
GALNT family members, as a key oncogene in NSCLC. This study is the first to clarify 
the critical role of GALNT2 in NSCLC. These findings enrich our understanding of the 
pathogenesis of NSCLC.

Multiple lines of evidence demonstrated that GALNT2 was dysregulated in several 
solid tumors, such as glioma [17], neuroblastoma [18], gastric adenocarcinoma [19], 
oral squamous cell carcinoma [20], and hepatocellular carcinoma [21]. Several recent 
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independent studies revealed that GALNT2 was overexpressed in lung adenocarci-
noma [22, 23]. The present study, however, showed that GALNT2 was upregulated 
in all subtypes of NSCLC. High expression of GALNT2 was closely correlated with 
the poor prognosis in NSCLC patients. Both loss- and gain-of-function experiments 
proved that GALNT2 was indispensable for NSCLC cell proliferation, migration, 
and invasion. In addition, GALNT2 was able to regulate cell cycle progression and 
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apoptosis. Moreover, GALNT2 exerted pro-tumorigenic activity in nude mice. Thus, 
our study provides evidence that GALNT2 plays an oncogenic role in NSCLC.

Numerous proteins could serve as substrates for the GALNT family. For example, the 
O-glycosylation of SARS-CoV-2 spike protein was mediated by GALNT1 [24]. Loss of 
GALNT3 in pancreatic cancer was related to aberrant O-glycosylation of the ErbB fam-
ily [25]. EGFR O-glycosylation in breast cancer was impacted by GALNT8 [11]. It was 
suggested that GALNT2 modulated the O-glycosylation of EGFR in glioma [17]. We 
confirmed that ITGA5 was O-glycosylated by GALNT2 in NSCLC, indicating that the 
substrates of GALNT2 may differ in various tissues. ITGA5, also known as integrin α5, is 
an important member of the integrin family. Integrins are transmembrane glycoproteins 
that participate in a range of biological events, including proliferation, adhesion, migra-
tion, and invasion [26]. Integrins have been extensively documented to play essential 
roles in NSCLC progression [27–29]. Importantly, the glycosylation of integrins is nec-
essary for their proper folding and functionality [30]. In the current study, we found that 
the knockdown of GALNT2 inhibited ITGA5 O-glycosylation. The promotive effects of 
GALNT2 on the malignant phenotypes of NSCLC cells were reversed by ITGA5 silenc-
ing. Hence, we have reason to believe that ITGA5 acts as a major downstream effector of 
GALNT2 in NSCLC.

The PI3K/Akt and MAPK/ERK pathways are involved in cell proliferation, migration, 
invasion, and survival [31, 32]. The two pathways are commonly activated in NSCLC [33, 
34]. Indeed, our GSEA and RNA-Seq data followed by functional assays confirmed that 
the oncogenic potential of GALNT2 in NSCLC was linked to the activation of the PI3K/
Akt and MAPK/ERK pathways. The findings of our study provide new insights into the 
mechanism by which GALNT2 contributes to NSCLC tumorigenesis and malignant 
progression.

It is generally known that miRNAs can down-regulate the transcription of target genes 
[35]. However, it is not yet clear which miRNAs regulate the abundance of GALNT2 in 
NSLLC. It was found that GALNT2 expression was negatively modulated by let-7b in 
IgA nephropathy [36]. We discovered that miR-30d targeted GALNT2 and suppressed 
its expression in NSCLC. It has previously been suggested that miR-30d is a well-char-
acterized tumor-suppressive miRNA [37]. To date, there is no published research on the 
association between miR-30d and GALNT2. In this study, we confirmed that miR-30d 
repressed NCSCL cell proliferation, migration, and invasion, whereas the inhibitory 
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effects of miR-30d were partially abrogated by GALNT2 overexpression. Therefore, 
miR-30d is an important upstream regulator of GALNT2 in NSCLC.

Undoubtedly, there are some limitations to this study. GALNT2 protein expression 
was not examined in NSCLC tissues. The O-glycosylation sites of ITGA5 are not well 
understood. It is of note that there exist other O-glycosylated proteins, which are not 
explored in this study. Further investigations are required to construct the regulatory 
network of miRNAs in controlling GALNT2 expression.

Conclusions
To sum up, we systematically illustrated the expression profile, prognostic value, biologi-
cal function, and regulatory mechanism of GALNT2 in NSCLC. GALNT2 overexpres-
sion was frequently detected in NSCLC and could serve as a prognosis predictor. High 
expression of GALNT2 exhibited a tumor-promoting function in NSCLC. GALNT2 
was able to enhance ITGA5 O-glycosylation and activate the PI3K/Akt and MAPK/ERK 
pathways. Additionally, the expression of GALNT2 was negatively regulated by miR-
30d. As an important oncogene, GALNT2 has emerged as a potential therapeutic target 
for NSCLC.
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