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Abstract 

Background: Burn injuries can be associated with prolonged healing, infection, 
a substantial inflammatory response, extensive scarring, and eventually death. In recent 
decades, both the mortality rates and long‑term survival of severe burn victims have 
improved significantly, and burn care research has increasingly focused on a better 
quality of life post‑trauma. However, delayed healing, infection, pain and extensive scar 
formation remain a major challenge in the treatment of burns. ADSCs, a distinct type 
of mesenchymal stem cells, have been shown to improve the healing process. The aim 
of this review is to evaluate the efficacy of ADSCs in the treatment of burn injuries.

Methods: A systematic review of the literature was conducted using the electronic 
databases PubMed, Web of Science and Embase. The basic research question was for‑
mulated with the PICO framework, whereby the usage of ADSCs in the treatment 
of burns in vivo was determined as the fundamental inclusion criterion. Additionally, 
pertinent journals focusing on burns and their treatment were screened manually 
for eligible studies. The review was registered in PROSPERO and reported according 
to the PRISMA statement.

Results: Of the 599 publications screened, 21 were considered relevant to the key 
question and were included in the present review. The included studies were almost 
all conducted on rodents, with one exception, where pigs were investigated. 13 
of the studies examined the treatment of full‑thickness and eight of deep partial‑thick‑
ness burn injuries. 57,1 percent of the relevant studies have demonstrated that ADSCs 
exhibit immunomodulatory effects during the inflammatory response. 16 studies have 
shown improved neovascularisation with the use of ADSCs. 14 studies report positive 
influences of ADSCs on granulation tissue formation, while 11 studies highlight their 
efficacy in promoting re‑epithelialisation. 11 trials demonstrated an improvement 
in outcomes during the remodelling phase.

Conclusion: In conclusion, it appears that adipose‑derived stem cells demonstrate 
remarkable efficacy in the field of regenerative medicine. However, the usage of ADSCs 
in the treatment of burns is still at an early experimental stage, and further investiga‑
tions are required in order to examine the potential usage of ADSCs in future clinical 
burn care.
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Introduction
Burn injuries are unpredictable traumas by their nature, and have varying degrees of 
severity. As with all wounds, the healing process of burns involves dynamic and over-
lapping phases including inflammation, proliferation and remodelling [1]. While partial 
thickness wounds can heal within 14 days with less scarring, deep partial and full-thick-
ness burns are associated with prolonged healing, infection, an extensive inflammatory 
response and pathological scarring [1, 2]. Over the past decades, good progress has been 
made in the acute treatment of burn injuries. The mortality rate as well as the long-term 
survival of severely burned patients have improved significantly [3]. In recent years, burn 
care research has shifted to a better quality of survival by focusing on improvement 
wound healing, scar quality and contracture prevention [4]. However, delayed healing, 
infection, pain and pathological scar formation remain major challenges in burn care [1, 
2]. The ultimate goal is to develop novel therapies that support the healing process and 
enable improved treatment outcomes.

Mesenchymal stem cells (MSCs) have emerged as a novel therapeutic approach in 
wound care and tissue regeneration [5, 6]. A distinct type of MSCs was discovered in 
large quantities within adipose tissue, namely adipose-derived stem cells (ADSCs) [7, 8].
The effectiveness of ADSCs application in wound healing, including an improved immu-
noregulation, neovascularisation, granulation  tissue formation, re-epithelialisation and 
remodelling, as well as their differentiation potential in various cell types was proven in 
several in vitro and in vivo studies [9–15]. The aim of this review is to evaluate the effi-
cacy of adipose-derived stem cells in the treatment of burn injuries.

Methods
The present systematic review was registered in the PROSPERO database 
(CRD42022364221) and conducted following a protocol guided by the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement [16].

Identify the research question

The fundamental research question was formulated with the PICO framework as fol-
lows: How effective are adipose-derived stem cells in the treatment of burn injuries 
in vivo? The creation process is illustrated in Table 1.

Search strategy

A systematic review of the literature was performed, in order to detect concerns 
from in vivo studies published up to 30th September 2022 on the efficacy of adipose-
derived stem cells in the treatment of burn injuries. To identify appropriate studies, 
the following online databases were searched: PubMed, Web of Science and Embase. 
The key terms of the applied search strategy for each online databank are displayed in 

Table 1 Creation of the research request according to the PICO framework

Population Intervention Control Outcome

In vivo wound models ADSCs application Control group improved wound healing

How effective are adipose‑derived stem cells in the treatment of burn injuries in vivo?
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Table 2. Additionally, pertinent journals that focus on burn care research were searched 
manually.

Study selection

The usage of adipose-derived stem cells in the treatment of burns was determined as 
the fundamental inclusion criteria. Firstly, all search results were exported into Men-
deley Desktop (Version 1.19.8) and duplicates were eliminated. In the next step, titles, 
abstracts, and later, full-text articles, were analysed in relation to the inclusion crite-
ria. Only full-text original articles published in the English language were eligible. Case 
reports, review articles, letter and comments, but also non in vivo studies were excluded. 
Furthermore, publications in which outcomes of ADSC therapy had inadequate focus 
or were not declared as primarily responsible for the treatment outcome were excluded. 
To ensure no inequity by wrongful exclusion, the whole analysis was performed by two 
investigators. In the event of a consensus between the two researchers being was found, 
a publication was included in the review process. With regard to missing or unclear 
information, the corresponding authors were contacted once by-email.

Study inclusion criteria:

• Randomized and non-randomized controlled in-vivo studies
• Only full-text original articles published in the English language will be eligible
• Studies must focus on adipose-derived stem cells in the therapy of burns in vivo.

Study exclusion criteria:

• Clinical trials
• Ex vivo studies
• Case reports
• Reviews
• Letters and comments
• Paper not available as full-text
• Paper not published in English language
• Wounds not classified as burns
• Depth extent of the injury is less than deep partial
• The exact depth of the wound is not specified
• ADSCs were not declared as primarily responsible for the treatment outcome

Table 2 Key terms of the applied search strategy

Key terms

PubMed ("adipose‑derived stem cells" OR "adipose tissue derived stem cells" OR "adipose‑derived mes‑
enchymal stem cells" OR "adipose derived mesenchymal stem cells" OR "adipose tissue‑derived 
mesenchymal stem cells" OR "adipose tissue derived mesenchymal stem cells" OR "adipose 
stem cells" OR "adipose mesenchymal stem cells") AND ("burns" OR "burn injury" OR "burn 
injuries" OR "thermal injury" OR "thermal injuries")

Web of Science ("adipose‑derived stem cells" OR "adipose‑derived mesenchymal stem cells" OR “adipose tis‑
sue stem cells” OR “adipose mesenchymal stem cells”) AND ("burns" OR "burn injury" OR "burn 
injuries" OR "thermal injury" OR "thermal injuries")

Embase ((adipose‑derived stem cells or adipose derived stem cells or adipose mesenchymal stem cells 
or adipose tissue stem cells) and burns).af
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Data extraction

The following data were extracted from the text, tables, and graphs of the eligible stud-
ies by two independent study associates: (1) Study design; (2) Animal model; (3) Condi-
tions of the wound; (4) Origin of ADSCs; (5) Dosage of ADSCs; (6) Carrier medium; (7) 
Method of application; (8) Comparison group; (9) Study duration; (10) Measured out-
comes. Table 3 encompasses the key data extracted from the included studies.

Results
A total of 599 publications were identified from searches of electronic databases by using 
the specified search strategy. After the elimination of duplicates (n = 274), 325 pub-
lications were manually screened for relevant publications. Based on the title and the 
abstract, 281 were excluded due to the wrong topic or because they were not considered 
to be original quantitative research (e.g.; review articles, comments etc.), with 44 full text 
articles being retrieved and assessed for eligibility. Of these, 23 articles were excluded for 
the following reasons: 11 studies had inadequate focus on the efficacy of ADSCs or they 
were not declared as primarily responsible for the treatment outcome, one was unavail-
able in the English language, four were irretrievable, three had no burn injury model, 
and four other studies did not give clarity on wound depth. Consequently, 21 publica-
tions fulfilled the inclusion criteria. The study’s inclusion process is displayed in Fig. 1.

Bias assessment

Upon applying the SYRCLE’s Risk of Bias tool to the included 21 in vivo studies, the fol-
lowing observations were made (Fig. 2):

In the domain of sequence generation, only seven study indicated a low risk of bias, 
leaving 14 studies with an unclear risk. For allocation concealment, the risk remained 
unclear for all included studies. All included studies showed a low risk of bias in the 
domain of baseline characteristics. The absence of clarity in sequence generation and 
allocation concealment could potentially result in selection bias.

According to the publications, all 21 studies had an unclear risk in the domain of ran-
dom housing and outcome assessment. In addition, seven studies had an unclear risk of 
blinding bias, both in the performance and detection bias section. This could potentially 
affect the reliability of the results and introduce performance and detection bias.

All of the included studies demonstrated a low risk of bias in the domain of incom-
plete outcome data and selective outcome reporting, indicating a low risk of attrition 
and reporting bias.

Moreover, all of 21 included studies demonstrated a low risk of bias in the domain of 
other sources of bias.

In conclusion, the application of the SYRCLE’s Risk of Bias tool to these 21 animal 
studies has provided valuable insights into the methodological strengths and weaknesses 
present. While the low risk of bias in areas such as baseline characteristics, incomplete 
outcome data, selective outcome reporting, and other sources of bias is commendable, 
the high level of uncertainty in key domains, notably in selection, performance, and 
detection bias, is a cause for concern.
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Study characteristics
Animal models

Of 21 studies included, 10 were based on a rat model [17–19, 21, 23, 26, 29, 31, 33, 35], 
10 on a mouse model [20, 22, 24, 25, 27, 28, 30, 34, 36, 37], and a pig model [32] was 
employed in another instance. A total of 517 animals were examined in the studies. In 13 
studies, full-thickness burns were inflicted on the laboratory animals, and in the remain-
ing eight trials, deep partial-thickness burns were induced. The injuries were established 
by using specific heated devices on the animals’ dorsa in 17 trials. In two studies [22, 33] 
were the wounds created by exposure to hot liquid and in another [31] by hydrochloric 
acid. 12 h after the burns, P. aeruginosa infection was induced in the treatment groups in 
the study by Banerjee et al. [21].

Fig. 1 Flow diagram (Preferred Reporting Items for Systematic Reviews and Meta‑Analyses—PRISMA) of 
the study inclusion process. *Reports excluded: Reason 1: had no or inadequate focus on inadequate focus 
on the efficacy of ADSCs in the treatment of burns; Reason 2: unavailable in the English language; Reason 3: 
irretrievable, Reason 4: no burn injury model, Reason 5: the depth extent of the burn was not defined
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Intervention

ADSCs were injected in nine studies [17–19, 22, 25, 29, 31, 35, 36] or applied topically 
as wound dressings in 10 [20, 21, 23, 24, 27, 28, 32–34, 37]. In two studies, both vari-
ants were applied [26, 30]. Injections were either intradermal [17, 19, 26, 29, 35], sub-
cutaneous [18, 22], or sub-escharal [25]. In six studies hydrogel [17, 21, 26, 27, 30, 37] 
was used as carriers for ADSCs. In another four the carrier was phosphate buffered 
saline (PBS) [18, 22, 25, 29]. Other carriers included medical honey [19], Dulbecco’s 
modified eagle medium (DMEM) [31, 35], human amniotic membrane [23, 24, 28], 
artificial dermis [20, 32], pig skin [28], and bio-printed gel scaffold [33, 34].

Please refer to Table 3 for the applied dose of ADSCs. In six studies, ADSCs were 
administered on the day of the burn [18, 20, 28, 29, 35, 36], in further five studies, 
on the day after the burn [22, 23, 25, 31, 33], in six other studies, two days [17, 19, 
26, 32, 34, 37] and in one study, 9 days [21] after the burn respectively. In the study 
conducted by Barrera et  al., the animals were treated with ADSCs five and 10  days 
after burning [30]. Zhou et al. compared a group that was injected with ADSCs on the 
day of the burn with a group in which the application was repeated on the fourth and 
eighth day post-burn [18]. One study did not specify the time-point of application 
[24].

In seven of the studies, the wounds were covered with transparent film dressings 
[19, 20, 27, 28, 33, 34, 37]. One study used hydrocolloid bandages [21] and another 
used Vaseline gauze as a secondary dressing [23]. Oryan et al. reported on the use of 
demineralized bone matrix to cover wounds [17]. In the study by Alemzadeh et  al., 
acellular dermal matrix was prepared from sheep skin as a wound covering [26]. A 
self-adhesive absorbent dressing (Mepore) was used by Azam et al. [31]. Daily dress-
ing with silver sulfadiazine impregnated sterile gauze was performed in the study by 
Karimi et  al. [36]. In all other studies, no additional dressing was described or the 
authors did not respond to the e-mail enquiry.

Country of study‑origin

In terms of the number of studies conducted in each country, Iran [17, 19, 23, 24, 26, 33, 
36] ranked highest with seven, followed by USA [21, 22, 25, 27, 30, 32] with six. China 
[18, 34] had two, while Taiwan [29], Japan [20], Mexico [28], Pakistan [31], Brazil [35] 
and Singapore [37] each had one. Accordingly, 13 studies originate from Asia [17–20, 23, 
24, 26, 29, 31, 33, 34, 36, 37], seven studies from North America [21, 22, 25, 27, 28, 30, 
32] and one from South America [35]. None of the studies were conducted in Europe, 
Africa, Oceania or Antarctica.

Outcome

18 out of 21 studies demonstrated accelerated wound healing in the groups treated with 
ADSCs [17–20, 22–24, 26, 27, 29–37], with the remaining three studies reporting no 
differences in comparison with the control groups [21, 25, 28]. 16 studies compared the 
different closure rates in wounds [17–20, 23, 24, 26, 27, 29–31, 33–37], while two studies 
focused on the reduction in wound depth [22, 32].
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13 studies have investigated the immunomodulation abilities of ADSCs during the 
inflammatory response [17–19, 23, 24, 26, 27, 30, 31, 33, 35–37], one of which found 
no difference from the control group [27]. A reduction in inflammatory cells through 
the use of ADSCs was demonstrated histologically in eight studies [17, 19, 23, 31, 33, 
35–37]. The studies by Roshangar et al. and Karimi et al. showed a reduction in the num-
ber of cells including polymorphonuclear leukocytes and macrophages due to ADSCs 
application [33, 36]. In turn, in the study by Dong et al., no significant difference in mac-
rophage or T-cell infiltration was detected in the groups treated either with or without 
ADSCs [27]. A decrease in pro-inflammatory cytokine interleukin 1-beta (IL-1β) after 
ADSCs application was shown in four studies [17, 19, 26, 31]. According to Gholipour-
malekabadi et al., after administration of ADSCs, there was a significant increase in the 
pro-inflammatory cytokines macrophage inflammatory protein 2 (MIP-2) and tumor 
necrosis factor alpha 1 (TNF-α1), which returned to their physiological levels during 
wound healing, whereas the control group remained in the inflammatory response [24]. 
Further studies have confirmed the decrease of tumor necrosis factor alpha (TNF-α) 
[30, 31], along with other pro-inflammatory cytokines such as interleukin 6 (IL-6) [31], 
through the usage of ADSCs. Zhou et al. have shown an increase in the anti-inflamma-
tory cytokine interleukin-1 receptor antagonist protein (IL-1ra) by ADSCs [18].

18 out of 21 studies involved the investigation of ADSCs in neovascularisation; 16 of 
these 18 demonstrated that the usage of ADSCs can support neovascularisation in vivo 
[17–22, 24–27, 29–34]. Only one study revealed a diminished neovascularisation due 
to the use of ADSCs [36], while another showed no effect [35]. For the research, tissue 
biopsies were harvested from within the wound areas. Evidence for the formation of the 
new vascular network was obtained either by haematoxylin and eosin [17, 19, 22–24, 
26, 27, 32, 33] and Masson’s trichrome [18, 20, 24, 25, 27, 30, 32] staining, or by using 
specific antibodies including CD31 [18, 22, 24, 25, 27, 29, 30, 32, 34], CD34 [33], isolect-
inB4 (ILB4) [20], neural/glial antigen 2 (NG2) and von Willebrand factor [21] as well 

Fig. 2 The quality of each included study according to the SYRCLE risk of bias tool for animal studies
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as vascular endothelial growth factor a1 (VEGFa1) and vascular endothelial growth fac-
tor receptor 2 (VEGFR2) [24]. In addition, several studies have demonstrated increased 
secretion of various proangiogenic growth factors including vascular endothelial growth 
factor (VEGF) [18, 24, 30, 31], basic fibroblast growth factor (bFGF) [17, 19, 24, 26, 31], 
hepatocyte growth factor (HGF) [31], hypoxia-inducible factor 1-alpha (HIF-1α) [31] 
and IL-1β [24] after the application of ADSCs.

15 studies have investigated the utility of ADSCs for granulation tissue formation 
[17–19, 21, 22, 24–26, 28, 31–36]. Enhanced granulation tissue formation in the ADSC 
groups compared to the control groups was demonstrated histologically in four studies 
[19, 21, 24, 31]. Cabello-Arista et al. reported an increase in granulation tissue in ani-
mals treated with human amnion and ADSCs, whereas the addition of ADSCs to por-
cine skin reduced granulation tissue formation [28]. An increase in fibroblast quantities 
by ADSCs was also demonstrated in four studies [17, 19, 26, 36]. Using green fluorescent 
protein (GFP) labelling, Zhou et  al. demonstrated that ADSCs differentiate into fibro-
blast-like cells in vivo [18]. Improved collagen synthesis and deposition were reported in 
eight studies [21, 25, 26, 28, 31–35]. Immunohistochemically, Zhou et al. found a higher 
level of ki67-positive cells in the dermis of ADSCs-treated animals [18], whereas no dif-
ference was found between the various groups in the studies by Loder et al.[22].

The supportive role of ADSCs in re-epithelialisation has been investigated in 15 pub-
lications [17–19, 21–26, 28, 30, 31, 33, 34, 36]. Of these, 11 authors reported improved 
re-epithelialisation induced by ADSCs [17, 19, 21, 23, 24, 26, 30, 31, 33, 34], while the 
other four detected no difference compared with the control groups [18, 22, 25, 28]. The 
re-epithelialisation was investigated by histology [17, 19, 21, 23, 26, 28, 30, 34], immu-
nohistochemistry [22], fluorescence microscopy [18] and comparison of 2-D photos [25, 
28, 34]. An enhanced transforming growth factor beta (TGF-β) level 14 days after treat-
ment with ADSCs, which returned to normal after 28 days, was observed in four studies 
[17, 19, 24, 26].

11 studies have reported on the influence of ADSCs during the remodelling phase [17, 
19, 21, 24–27, 29, 30, 33, 37]. Barrera et al. reported significant smaller scars in ADSCs-
treated animals compared to control groups [30]. Gholipourmalekabadi et. al found an 
approximate scar elevation index (SEI) in ADSCs treated wounds as in healthy skin. The 
authors assume that ADSCs are able to significantly reduce collagen expression and 
thus scar formation [24]. A significantly higher collagen type I to type III ratio in ADSCs 
treated animals was demonstrated in three studies [21, 27, 28]. Five studies document a 
more organized mature collagen in ADSCs treated groups compared with controls [17, 
19, 21, 26, 33]. Furthermore, an increased collagen density by ADSCs was observed in 
four studies [19, 24, 26, 33], while a separate study found no difference between ADSCs 
and control groups [30].

Dong et  al. found a significant reduction in myofibroblasts by using alpha-smooth 
muscle actin (α-SMA) staining [27]. No differences in α-SMA levels were observed 
between the ADSC and control groups in the study by Bliley and colleagues. Therefore, a 
significant increase in peroxisome proliferator-activated receptor gamma (PPARg) gene 
expression was observed in the ADSCS group at all test time points in this study [25]. 
In one study, elevated levels of matrix metalloproteinases 1 (MMP-1) and 2 (MMP-2) 
were detected [24]. Barrera et al. found that the expression of profibrotic tissue inhibitor 
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of metalloproteinase 1 (TIMP-1) was significantly downregulated by ADSCs. Inhibition 
of excessive scarring by down-regulation of TGF-β1 and bFGF genes on day 28 after 
wounding was addressed by Alemzadeh et al. [26]. ADSC-associated hair follicle regen-
eration was observed in five studies [19, 24, 25, 29, 37]. The impact of ADSCs on wound 
healing and its respective phases is delineated in Fig. 3, while Fig. 4 is dedicated to the 
presentation of the findings from the included studies across these phases.

Discussion
The result of our systematic review indicates a significant positive impact on different 
aspects of the wound healing process, including the initial inflammatory response, neo-
vascularisation, granulation  tissue formation, re-epithelialisation, and the remodelling 
phase. However, because of the remarkable variability among the studies, the possibility 
of conducting a meta-analysis was precluded.

The inflammatory response plays a fundamental role in wound healing and serves 
as the primary defence mechanism against microorganisms [38]. In severe burns, this 
response can be extensive and uncontrolled, leading to an augmented inflammation, 
which results in delayed wound healing [1, 39], and hypertrophic scar formation [1, 
40–42].

The study conducted by Gholipourmalekabadi et  al. demonstrated that the applica-
tion of ADSCs promotes the initial inflammatory phase by stimulating the production of 
pro-inflammatory cytokines. This response subsequently diminishes over time, with the 
control group maintaining a sustained inflammatory state [24]. Based on this finding, 
it can be concluded that ADSCs first facilitate the immune response by promoting the 
inflammatory process, and then attenuate the extensive inflammatory response usually 
associated with severe burns to ensure a smooth transition to the proliferative phase.

Following a severe burn injury, the systemic inflammatory response encompasses the 
release of large quantities of pro-inflammatory cytokines such as IL-1β, MIP-2, IL-6 or 
TNF-α [43, 44]. Increased IL-1β delays wound healing by stimulating inflammasome 
activity in macrophages and inducing inflammation in other cells, hindering the polari-
zation into the anti-inflammatory M2 phenotype [45]. MIP-2 acts as a chemokine and 
is secreted in response to infection or injury by cells including macrophages and mono-
cytes. It exhibits pro-inflammatory effects by promoting the recruitment and activation 
of neutrophils, supporting inflammatory reactions, thus leading to tissue damage [46]. 
IL-6 is instrumental in triggering the acute inflammatory response. It is also essential 
for the transition into chronic inflammation by being the key stimulator for most acute-
phase proteins, and by modifying leukocyte infiltration [47, 48]. Elevated levels of TNF-α 
are associated with decreased neovascularisation, cell migration and proliferation, and 
increased apoptosis [49]. Several of the studies included in this review, showed that the 
effects of ADSCs in reducing the levels of the pro-inflammatory cytokines IL-1β, MIP-2, 
IL-6 and TNF-α1 in animals with burn injuries [17, 19, 24, 26, 30, 31].

Furthermore, the majority of the included studies investigating the immunomodula-
tory capabilities of ADSCs during the inflammatory response have shown that ADSCs 
reduce the number of inflammatory cells [17, 19, 23, 24, 26, 27, 30, 31, 35].

Severe burn injuries with a large-scale surface area significantly heighten the risk 
of infection due to compromised immune response and disrupted skin barriers [1]. 
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It would be interesting to analyse the effects of ADSCs on inflammation in the study 
conducted by Banerjee et al., in which the burns of experimental animals were infected 
with Pseudomonas aeruginosa [21]. However, the impact of ADSCs on infection-
induced inflammation was not taken into account in their analysis. Instead, their focus 
was on examining the antimicrobial effect of chitosan microspheres loaded with silver 
sulfadiazine.

However, even if there are no results regarding the intentional bacterial infection of 
burns, one can summarily state that ADSCs appear to initially promote immunomodu-
lation by enhancing the initial inflammatory response. Subsequently, they ensure that 
inflammation remains regulated, which is crucial for the transition to the proliferative 

Fig. 3 Studies examining the influence of ADSCs on wound healing and its respective phases. Green: ADSCs 
had a positive effect during this phase, grey: ADSCs had no effect on this phase, red: ADSCs had a negative 
effect during this phase, orange: The effect was positive or negative depending on the carrier substance

Fig. 4 Analysis of the ADSCs associated improvement according to the wound healing phases. Green: ADSCs 
had a positive effect during this phase, grey: ADSCs had no effect on this phase, red: ADSCs had a negative 
effect during this phase, orange: The effect was positive or negative depending on the carrier substance, no 
colour: this phase was not investigated by the authors
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phase and important for the progression of the physiological healing process, thus pre-
venting the development of chronic wounds and pathological scars [42, 50–52].

The proliferative phase is distinguished by neovascularisation, the formation of granu-
lation tissue, and re-epithelialisation. The majority of studies have indicated that ADSCs 
promote the development and formation of new blood vessels, resulting in enhanced 
neovascularisation. Furthermore, multiple studies have highlighted the incidence of 
the elevated secretion of diverse proangiogenic growth factors, such as VEGF [18, 24, 
30, 31], bFGF [17, 19, 24, 26, 31], HGF and HIF-1α [31]. VEGF has a dual impact on 
endothelial cells, both stimulating their differentiation from endothelial progenitor 
cells and enhancing their migratory capacity, proliferation, and ability to organise into 
functional vascular tubules [12, 53–55]. HGF has the ability to induce the production of 
VEGF, and acts as a potent mitogen for endothelial cells, by interacting synergistically 
with VEGF [56, 57]. bFGF also supports the migration and proliferation of endothe-
lial cells [58, 59]. HIF-1 activation serves as a primary stimulus for neovascularisation 
through blood vessel growth and remodelling, inducing important pro-angiogenic fac-
tors such as VEGF, angiopoietin 2 (Ang-2), and stromal cell-derived factor 1 (SDF-1). 
Furthermore, HIF-1 plays a contributory role in oxygen and nutrient delivery to hypoxic 
tissues, and thus enhancing cell survival [60, 61].

Neovascularisation plays a pivotal role in wound healing, by supplying oxygen and 
essential nutrients to developing tissues [54, 62, 63], while decreased local neovasculari-
sation leads to impaired wound healing [63, 64]. The result of our review demonstrated 
that ADSCs support the neovascularisation process in burns.

Another important step in the wound healing process is the formation of granulation 
tissue. The creation of this new tissue is facilitated by fibroblasts which deposit extracel-
lular matrix (ECM) components into the wound. These latter then become main com-
ponents of the new granulation tissue, alongside the new blood vessels and fibroblasts 
themselves [38, 50, 51, 65]. The resulting newly formed tissue fills the wound gap and 
provides a scaffold for cell adhesion, migration, growth and differentiation during wound 
healing, thus enabling re-epithelialisation [50, 66, 67].

Several of the studies included in our review demonstrate that ADSCs result in an ele-
vation of TGF-β1 levels on the 14th day after the initial injury, followed by a significant 
reduction by day 28 of the healing process [17, 19, 24, 26]. TGF- β1 plays a crucial role 
in various aspects of wound healing. It is instrumental in cellular migration, particularly 
for cell types like fibroblasts and keratinocytes, facilitating their movement towards the 
wound site. Furthermore, TGF-β1 contributes to the deposition of the ECM, which is 
essential for the structural support and organization of the newly formed tissue [68–70]. 
A multitude of included studies demonstrated enhanced granulation tissue formation 
[19, 21, 24, 31] and re-epithelialisation [17, 19, 21, 23, 24, 26, 30, 31, 33, 36] through 
the utilisation of ADSCs in burns. Interestingly, Cabello-Arista et al. revealed contrast-
ing effects of ADSCs on granulation tissue formation depending on their carrier. The 
treatment with human amnion and ADSCs resulted in an increase in granulation tis-
sue. However, when ADSCs were added to porcine skin, a reduction in granulation for-
mation ensued [28]. These findings suggest that the interplay between ADSCs and their 
carrier may have varying effects depending on the material, and further research is war-
ranted to optimize their therapeutic potential.
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The application of ADSCs has been demonstrated to enhance the number of fibro-
blasts, according to several studies [17, 19, 26, 36]. bFGF is known to stimulate the pro-
liferation of fibroblasts and induce the formation of granulation tissue [71, 72], and its 
levels have been reported to increase through the application of ADSCs [17, 19, 24, 26]. 
Another potential mechanism for the rise in fibroblasts is the differentiation of ADSCs 
into these cells, as mentioned by Zhou et  al. [18]. This thesis is supported by several 
in vitro [10, 73–76] and other in vivo studies [74, 75]. According to Gersch et al., ADSC-
differentiated fibroblasts surpass the performance of primary fibroblasts by exhibiting 
accelerated wound infiltration, heightened expression of ECM markers such as elas-
tin and fibronectin, while reducing levels of scar tissue markers including α-SMA and 
MMP-1 [76].

One of the primary ECM components synthesized by fibroblasts is collagen, which 
provides structural support and strength to tissues. It plays a crucial role in wound heal-
ing by promoting tissue repair, wound closure, and eventually scar formation [38, 51, 
65]. Numerous included studies have evidenced that ADSCs elicit an augmentation in 
collagen synthesis [21, 25, 26, 28, 34]. It is noteworthy that the accurate balancing of col-
lagen synthesis is of paramount importance in attainment of wound healing. Insufficient 
collagen synthesis may inhibit wound closure and tissue repair, while excessive collagen 
production expedites pathological scar formation [41, 42, 77, 78]. Thus, sufficient col-
lagen synthesis assists in the minimisation of scar formation and promotes more physi-
ological tissue regeneration.

Furthermore, in the process of physiological healing process, a balance between depo-
sition and degradation of the synthesised collagen is crucial [42]. MMPs play a primary 
role in ensuring this balance is achieved [79]. It has been observed that hypertrophic 
scars are associated with a decrease in the expression of MMP-1, along with elevated 
levels of TIMP-1 [79, 80]. The latter of which functions as an inhibitor of specific MMPs. 
It is noteworthy that the expression of TIMP-1 is stimulated by MMP activity [80–82]. 
Barrera et  al. reported a decrease in TIMP-1 expression by ADSCs in burn injuries, 
which could have implications for hypertrophic scar formation [30]. The decreased 
expression of TIMP-1 by ADSCs suggests a potential mechanism by which the balance 
between MMPs and their inhibitors could be modulated by these cells. Through the 
reduction in TIMP-1 levels, a more favourable environment for MMP activity may be 
assisted by ADSCs. This result aligns with those reported by Gholipourmalekabadi et al., 
who observed elevated level of MMP-1 and MMP-2, which is associated with the degra-
dation of various ECM components [24]. Thus its upregulation supports tissue remod-
elling, but can also foster extensive scar formation in the event of excessive levels. The 
presence of elevated MMP-2 levels in conjunction with increased MMP-1 and decreased 
TIMP-1 expression suggests a complex interplay between these factors and ADSCs in 
the regulation of scar formation after burns. These findings provide further evidence for 
the potential role of ADSCs in the modulation of MMP expression and their involve-
ment in scar formation. While ADSCs may have beneficial effects on certain aspects of 
wound healing, further investigation is required to assess their potential influence on 
myofibroblasts, the expression of MMPs, and subsequent impact on scar formation.

If this interplay fails to operate effectively, an imbalance occurs, resulting in excessive 
or disorganised collagen deposition may result in hypertrophic or keloid scars [41, 42, 
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77, 83, 84], which can be aesthetically undesirable and functionally limiting. In several 
included studies, it was observed that ADSCs-treated groups exhibited well-organised 
and mature collagen bundles compared to the control groups [17, 19, 21, 26]. In physi-
ological wound healing, the initial type III collagen is converted into mature type I col-
lagen during the remodelling phase, resulting in strengthened wound integrity [83, 85]. 
Conversely, the progression of hypertrophic scars is characterized by a downregulation 
in collagen I expression alongside an excessive upregulation in collagen III [86]. Multiple 
studies included in our review consistently indicated an elevated collagen type I to type 
III ratio [21, 27, 28].

Moreover, hypertrophic scars are characterised by an elevated abundance of myofi-
broblasts, which express α-SMA and undergo apoptosis during the physiological wound 
healing but persist in hypertrophic scar formation [42, 84, 87, 88]. Dong et al. demon-
strated a significant decrease in the population of myofibroblasts through the reduction 
of α-SMA [27]. Various further in vivo studies have exhibited the suppression of α-SMA 
levels and diminished scarring resulting from the administration of ADSCs [89–95].

Several studies have demonstrated that ADSCs treatment leads to a decrease in TGF-
β1 levels concomitant with an elevation of bFGF, during remodelling [17, 19, 26]. This 
fact is of great interest, since TGF-β1 promotes the differentiation of fibroblasts into 
myofibroblasts [96, 97], while bFGF is known to inhibit extensive scar formation [98, 99].

Currently, hair follicle regeneration in full-thickness wounds continues to present a 
challenge in regenerative medicine [100, 101]. Whilst the body has the innate ability to 
repair certain tissues, such as the skin, hair follicles have a limited capacity for regenera-
tion, especially in deep wounds involving the dermis [102]. In full-thickness burns, the 
destruction extends to the whole dermis [1] involving its appendages including hair fol-
licles, the loss or damage of which can inhibit their regrowth [103–105]. Interestingly, 
five studies reported hair follicle regeneration in ADSCs-treated burns [19, 24, 25, 29, 
37]. In four of these studies, the regeneration of hair follicles, which are usually damaged 
beyond repair, was observed in full-thickness burn wounds [19, 24, 25, 37]. This process 
namely wound-induced hair neogenesis (WIHN) is of particular interest in the field of 
regenerative medicine, as the restoration of hair growth in such wounds can significantly 
improve the aesthetic outcome and functional recovery. WIHN was first described in the 
middle of the twentieth century in various mammals [106–109] and was rediscovered by 
Ito et al. [110] in 2007, who demonstrated the development of completely new hair fol-
licles in wounded mice. Several recent studies focusing on WIHN subsequently emerged 
[111–117]. According to several studies, full-thickness wounds with a diameter of at 
least 1 cm lead to neogenesis of hair follicles, while smaller full-thickness wounds heal 
with a hairless and adipose-free scar [110–114]. This largely aligns with our research, 
as, in three of the included studies, the full-thickness wound diameter was at least 1 cm 
[19, 24, 25]. Due to contraction in rodent wound healing, the edges of the hair-bearing 
areas are frequently distorted, giving the simulation of pre-existing hair follicles being 
encircled by scar tissue, thereby creating a false impression of WIHN [102]. Therefore, a 
detailed examination is of utmost importance to determine whether it is indeed WIHN. 
Recent insights suggest that adipocytes and their precursors are involved in hair folli-
cle regeneration [118]. However, this insight necessitates comprehensive research, and 
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further studies are imperative to understand the role of adipocyte lineage cells in hair 
follicle regeneration.

Despite their favorable properties in wound healing, ADSCs are presently used in burn 
care for experimental purposes only. Autologous skin grafting is still considered the 
gold standard for the treatment of severe burns [4]. Several studies have demonstrated 
that ADSCs support the therapeutic efficacy of split-thickness skin grafts in the treat-
ment of burns [119–121]. Both Gao et  al., and Foubert et  al., have found that ADSCs 
can significantly enhance the elasticity of the split-thickness skin grafts, resulting in an 
improvement of skin texture and functionality [120, 121]. According to the research 
conducted by Osamu et al., the application of ADSCs significantly enhances skin graft 
take and inhibits transplant shrinkage throughout the healing process [119]. In addition, 
the studies indicate that ADSCs foster skin neovascularisation, enhance skin thickness, 
and expedite wound epithelialisation [119–121].

In summary, ADSCs are a promising candidate for future therapeutic approaches in 
the treatment of burns. All of these experiments demonstrated aspects of ADSCs that 
positively influence the inflammatory response, cell proliferation and migration, neovas-
cularisation, granulation tissue formation and re-epithelialisation, as well as remodel-
ling. However, the validity of all these results must be critically scrutinized, since most 
of the included studies are conducted in mice and rats. Rodent wound models are often 
considered limited because of the perception that rodents have a loose skin and heal 
primarily by contraction, offering a fast wound closure, while humans heal by re-epithe-
lialisation [50, 122]. Nevertheless, rodents are the most extensively investigated animals 
in the field of burn research, primarily due to their ease of handling, rapid reproduc-
tion, and standardisation options, offering the significant benefit of accelerated healing 
process, which enhances research efficiency and reduces mortality [123, 124]. Rodent 
burn models are particularly suited for local phenomena investigations such as wound 
inflammation and application of various dressings [123]. Furthermore, rodents offer the 
opportunity to investigate the cellular architecture and interaction on wound healing, 
acknowledging differences from human biology [125, 126]. Whilst Chen et al. argue that 
re-epithelialisation in rodents is measurable [127], the predominant approach for exam-
ining re-epithelialisation involves manipulation through splinting, which minimises con-
traction to emulate human wound healing [122, 123, 125]. However, with the exception 
of two articles [25, 27], in which the use of splinting was negated, none of the included 
studies in our review reporting on its usage. Consequently, the effect of ADSCs on the 
re-epithelisation process remains unclear. Additionally, the reliability of comparing 
rodents to humans in the research of hair follicle regeneration remains questionable due 
to the significant differences in dermal cell biology [117, 128]. However, the investigation 
of ADSCs in the treatment of burns is at a very early experimental stage and the mecha-
nism of their action is currently not completely understood. Further studies in species 
with skin structures and healing physiology similar to humans, such as pigs [122, 129], 
are essential to determine the efficiency of ADSCs in burn wound healing. It is crucial 
to comprehend the precise processes involved in the interplay between ADSCs and the 
different phases in wound healing in order to develop targeted therapeutic strategies for 
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optimizing burn care. Additional research is needed to elucidate the specific signalling 
pathways and cellular interactions influenced by ADSCs in the context of wound healing 
and scar formation.

Limitations

Our systematic review has some inherent limitations. For one, only articles written in 
English language were taken in account within this review. As a result, some papers that 
are not available in English have not been considered. Only items discovered through 
our search strategy retrieved from PubMed, Web of Science and Embase, or manual 
search in relevant journals were considered, with the possibility of missed publications. 
Another addition to the limitations is that our review is limited to articles published 
before 30th September 2022. Since science is a dynamic process leading to constant 
developments, papers published after this date have not been considered within our 
review. in spite of literature screening by two investigators, a possible wrongful exclu-
sion cannot be ruled out. A major limitation is that most of the studies were conducted 
on rodents, which makes reproducibility and transfer in a clinical context challenging. 
Finally, despite the usage of the SYRCLE’s Risk of Bias tool and independent assessment 
by two reviewers, it’s important to acknowledge that bias assessment can be inherently 
subjective, and so the results should be interpreted with this in mind.

Conclusion
In conclusion, it appears that adipose-derived stem cells demonstrate remarkable effi-
cacy in the field of regenerative medicine, offering positive support throughout wound 
healing. However, the usage of ADSCs in the treatment of burns is still in the early 
experimental stage and the majority of the studies were conducted in rodents. The 
included studies have revealed varied approaches when considering cell count, admin-
istration protocol, and carrier selection. Given the foundational insights, it is impera-
tive to elucidate the optimal administration protocol for ADSCs and to discern the most 
appropriate carrier, considering the specific state of the wound. Hence, further investiga-
tions are necessary to investigate the efficacy of ADSCs in the treatments of burns and 
its potential adoption in clinical settings.
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