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Introduction
Breast cancer is the most common cancer type worldwide, accounting for approximately 
30% of cancers in women [1]. Annually, approximately 2 million women are newly 
diagnosed with breast cancer [2], and its global incidence has been increasing, with an 
annual increase of approximately 3.1%; what is worse is that this trend may continue [3, 
4]. Despite notable advancements in high-quality prevention strategies, early detection, 
and treatment services that have led to a decline in breast cancer mortality rates, it still 
accounts for a substantial proportion of deaths, ranging from 15 to 30% among newly 
diagnosed cases [5–7]. Therefore, breast cancer remains a serious public health concern 
worldwide.

Abstract 

Breast cancer represents the most prevalent tumor type and a foremost cause of mor-
tality among women globally. The complex pathophysiological processes of breast 
cancer tumorigenesis and progression are regulated by protein post-translational 
modifications (PTMs), which are triggered by different carcinogenic factors and signal-
ing pathways, with small ubiquitin-like modifier (SUMOylation) emerging as a particu-
larly pivotal player in this context. Recent studies have demonstrated that SUMOylation 
does not act alone, but interacts with other PTMs, such as phosphorylation, ubiquitina-
tion, acetylation, and methylation, thereby leading to the regulation of various patho-
logical activities in breast cancer. This review explores novel and existing mechanisms 
of crosstalk between SUMOylation and other PTMs. Typically, SUMOylation is regulated 
by phosphorylation to exert feedback control, while also modulates subsequent ubiq-
uitination, acetylation, or methylation. The crosstalk pairs in promoting or inhibiting 
breast cancer are protein-specific and site-specific. In mechanism, alterations in amino 
acid side chain charges, protein conformations, or the occupation of specific sites 
at specific domains or sites underlie the complex crosstalk. In summary, this review 
centers on elucidating the crosstalk between SUMOylation and other PTMs in breast 
cancer oncogenesis and progression and discuss the molecular mechanisms contribut-
ing to these interactions, offering insights into their potential applications in facilitating 
novel treatments for breast cancer.
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As a heterogeneous disease, breast cancer is commonly classified into three subtypes 
based on receptor expression in clinical settings: luminal estrogen receptor (ER) and pro-
gesterone receptor (PR)-positive breast cancer, human epidermal growth factor receptor 
2 (HER2)-positive breast cancer, and triple-negative breast cancer (TNBC)  (ER−,  PR−, 
and  HER2−) [8, 9]. Luminal ER and PR-positive breast cancer can be further divided 
into two subtypes based on the proliferation marker Ki-67: luminal A, which exhibits 
low Ki-67 levels, and luminal B, characterized by high Ki-67 levels [9–11]. TNBC can be 
divided into six categories: basal-like 1, basal-like 2, immunomodulatory, mesenchymal, 
mesenchymal stem cell-like, and luminal androgen receptor [12]. Notably, these breast 
cancer subtypes exhibit varying mortality rates, with HER2-positive breast cancer being 
associated with the highest mortality rate, followed by TNBC, Luminal A, and then 
Luminal B subtypes [13].

Breast cancer is often accompanied by two types of gene mutations: gain-of-function 
mutations in oncogenes and loss-of-function mutations in tumor suppressor genes. 
Approximately 10% of all cases are associated with genetic predisposition or family his-
tory [9]. Breast cancer susceptibility gene 1 (BRCA1) (located at 17q21) and BRCA2 (at 
13q13) are two important and high-penetrance tumor suppressor genes whose muta-
tions exhibit an autosomal dominant inheritance pattern [4, 14–16]. Germline mutations 
in BRCA1 or BRCA2 contribute to approximately 15%–20% of all TNBC cases and 10%–
15% of HER2-negative, hormone receptor-positive breast cancers [17]. The development 
of next-generation sequencing has led to the identification of more mutated genes in 
a series of early breast cancers, including tumor protein p53 (TP53) (41% of tumors), 
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) (30%), 
MYC (20%), phosphatase and tensin homolog (PTEN) (16%), cyclin D1 (CCND1) (16%), 
ERBB2 (13%), fibroblast growth factor receptor 1 (FGFR1) (11%), and GATA3 (10%) [18, 
19]. This comprehensive genomic profiling has deepened insights into the molecular 
underpinnings of breast cancer development and potential therapeutic targets.

Although gene mutations affect specific protein sequences, the intricate functional 
regulation of proteins is primarily regulated by diverse post-translational modifications 
(PTMs). These PTMs involve chemical alterations to proteins that significantly modify 
their biochemical properties and are estimated to influence approximately 50% to 90% 
of all human proteins [20]. Each type of PTMs consists various enzymes to mediate the 
modification and de-modification to ensure it is in a dynamic balance. However, dysreg-
ulation of these enzymes contributes to a variety of pathologies to drive diseases. Owing 
to technological advancements over the past decade, several dysregulated enzymes [21–
28] have been discovered contributing to imbalanced PTMs, including phosphorylation, 
ubiquitination, SUMOylation, neddylation, citrullination, acetylation, methylation, gly-
cosylation, palmitoylation, succinylation, and S-Nitrosylation in breast cancer [24, 29–
41]. These PTMs regulate DNA damage repair, signal transduction, immune responses, 
metabolic reprogramming, cell proliferation, cell cycle regulation, angiogenesis, malig-
nant transformation, cell epithelial–mesenchymal transition (EMT) and invasion, and 
autophagy and apoptosis by effecting the stability, cellular localization, activity, interac-
tion with other macromolecules, and cellular responses to different stimuli of the tar-
get substrates [20, 42–48] to play either a promotive role or a suppressing role in breast 
cancer.
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SUMOylation, a type of ubiquitination-like modification, was described for the first 
time more than 25 years ago [49, 50]. It is characterized by the attachment of small ubiq-
uitin-like modifier (SUMO) proteins to the lysine residues of target proteins [50, 51]. 
The SUMO family consists of three members: SUMO1–3, in which SUMO1 shares only 
50% homology with SUMO2 and SUMO3, whereas SUMO2 and SUMO3 have > 97% 
sequence similarity [52–54]. SUMOylation is catalyzed by a cascade of three enzymes: 
activating enzyme (E1), conjugating enzyme (E2, UBC9), and ligating enzyme E3 [36, 
55]. As one of the most dynamic modifications, six SUMO-specific protease (SENP) 
family proteins, namely, SENP1–3 and SENP5–7, can readily deconjugate SUMO mole-
cules [56]. Among the SENPs, SENP1 plays a central role in deconjugating both SUMO1 
and SUMO2/3 modifications in many target proteins and is therefore involved in many 
cellular processes [57]. Our studies, as well as other’s have demonstrated that SUMOyla-
tion plays important roles in multiple cellular processes, such as signaling transduc-
tion, gene regulation, DNA damage repair, cell death, and cell proliferation, primarily 
by affecting the cellular localization, stability, activity, protein–DNA, or protein–protein 
binding of substrates [57–66].

SUMOylation exerts critical functions in breast cancer progression. In general, 
SUMOylation promotes breast cancer by boosting tumor cell proliferation, migration 
and EMT. For example, SUMOylation of BRCA1 at K32 and K1690 has been shown 
to induced G0/G1 phase transition in the ER-positive breast cancer cells [67]. In addi-
tion, SUMOylation of talin at K2445 and K841 positively impacts the migration of 
MDA-MB-231 cells through the facilitation of focal adhesion disassembly [68]. More-
over, SUMOylation of transforming growth factor beta (TGF-β) receptor 1 (TβRI) at 
K389 promoted cancer cell metastasis by enhancing the interaction between TβRI and 
SMAD2/3, which in turn activates the TGF-β–SMAD signaling pathway and EMT [69]. 
However, SUMOylation of SMAD4 at K159 inhibited the TGF-β–SMAD4 signaling 
pathway by enhancing the interaction between SMAD4 and the transcriptional core-
pressor Daxx [70]. Additionally, the SUMOylation of PIN1 at K6 and K63 suppressed 
its oncogenic function [71]. These findings collectively indicate that SUMOylation can 
serve both pro-oncogenic and tumor-suppressive roles in breast cancer. Considering 
that SUMOylation is somewhat newly discovered, more functions and mechanisms by 
which SUMOylation is involved in breast cancer remains to be further investigated.

Nevertheless, breast cancer is regulated by a complex network of signaling pathways 
that are not controlled by only one PTM, but rather by the coordinated actions of PTM 
combinations. During breast cancer progression, multiple PTMs or the same PTM at 
different modification sites always occur on a substrate. Multiple PTMs may simulta-
neously or sequentially occur, which is necessary for the distinct outcomes of signaling 
cascades. Therefore, understanding the crosstalk between different PTMs is crucial for 
unraveling the molecular mechanisms and developing precise therapeutic strategies for 
breast cancer. Up to date, SUMOylation has been found to interact with other PTMs, in 
particular, with phosphorylation, ubiquitination, acetylation, and methylation in breast 
cancer. Therefore, in the present review, we discuss the crosstalk between SUMOylation 
and these four PTMs to detail the role and molecular mechanisms of each of these cross-
talk pairs in regulating breast cancer oncogenesis, offering insights into their potential 
clinical applications in breast cancer treatment.
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Phosphorylation and SUMOylation in breast cancer

Phosphorylation is possibly the most common PTM type and has a history of more than 
60 years [72–74]. In breast cancer, phosphorylation is widely involved in multiple bio-
logical processes. Therefore, it frequently interacts with other types of PTM. Unsurpris-
ingly, there is extensive crosstalk between phosphorylation and SUMOylation in breast 
cancer. To date, this interaction has mainly been observed in nuclear proteins and sign-
aling transduction through phosphorylation-directed SUMOylation, although instances 
of SUMOylation-directed phosphorylation have also emerged. Thus, understanding the 
relationship between the two PTMs is vital for clarifying breast cancer pathogenesis, 
drug resistance mechanisms, or new therapeutic drug development.

Given that nuclear proteins are the predominant targets of SUMOylation [75], phos-
phorylation-directed SUMOylation mainly occurs on such proteins. In breast cancer, 
phosphorylation of Krüppel-like factor 8 (KLF8), a key oncogene regulating gene tran-
scription and breast cancer-related cellular processes, at Ser-80 is needed for SUMOyla-
tion at K67 upon DNA damage; this may be a novel mechanism promoting DNA repair 
and cell survival in breast cancer due to the inhibitory role of KLF8 SUMOylation on its 
transcription activity, functioning as a negative feedback [76]. Interestingly, this feed-
back is broad in the phosphorylation-SUMOylation crosstalk. For instance, phosphoryl-
ation dependent GATA1 SUMOylation inhibits its DNA binding activity [77, 78], while 
signal transducer and activator of transcription (STAT) 1 phosphorylation at Y701 pro-
motes SUMOylation at K703, which then suppresses further STAT1 phosphorylation to 
protect cells from interferon γ (IFNγ) hypersensitivity [79]. Therefore, phosphorylation 
dependent SUMOylation seems like a negative feedback mechanism to avoid substrate 
hyperactivity. However, SUMOylation can also positively reinforce substrate activity. 
The phosphorylation of ERRalpha1 at Ser19 enhances its SUMOylation at K14, further 
promoting the transcriptional activities of ERRalpha1 by affecting its response to coac-
tivator [80]. However, in the case of ERβ, phosphorylation at Ser6, while it does enhance 
SUMOylation at K4, this subsequent SUMOylation suppresses the transcriptional activ-
ity of ERβ in breast cancer cells [81]. On the other hand, if SUMOylation is depressed 
by phosphorylation, the situation diverges. For example, the inhibited SUMOylation 
of tumor suppressor p53 mediated by its phosphorylation can enhance p53 transcrip-
tion activity [82]. Another instance shows that the phosphorylation-mediated inhibition 
of SUMOylation on the pro-inflammatory factor inhibitor of kappa B alpha (IκBα) can 
boost IκBα ubiquitination, accelerating degradation and promoting p65/p50 transloca-
tion [83].

The biological process of tumorgenesis is driven by signaling transduction, of which, 
Rac-alpha serine/threonine-protein kinase (AKT) hyperactivation is one of the most 
commonly observed in breast cancer, typically stemming from PTMs rather than genetic 
mutations in the kinase. Among these PTMs, the crosstalk between phosphorylation and 
SUMOylation significantly affects AKT activity. AKT can be modified by SUMO1 and 
SUMO2; however, irrespective of SUMO1- or SUMO2-type modification, SUMOyla-
tion promotes AKT activity, thereby regulating MCF-7 cell proliferation [84]. This 
feedback affects not only cell proliferation but also macrophage polarization in tumors. 
Enhanced AKT1 SUMOylation upon SENP3 loss resulted in AKT1 hyperphosphoryla-
tion and activation, thereby facilitating M2 polarization, breast cancer cell proliferation 
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and metastasis [85]. Similarly, other kinases exhibit crosstalk, as seen in DDX5 where 
phosphorylation-dependent SUMOylation stabilizes the protein and boosts the forma-
tion of the DDX5/Drosha/DGCR8 complex, promoting microRNA-10b processing and 
ultimately contributing to breast cancer cell proliferation, invasion, and metastasis [86].

What could be the molecular mechanism behind the phosphorylation-directed 
SUMOylation in breast cancer? The main mechanism may be owing to the pres-
ence of a phosphorylation-dependent SUMOylation motif (PDSM) characterized by 
ΨKx(D/E)xxSP, where ΨKx(D/E) represents a SUMO consensus site followed by any 
two residues and a serine and a proline-directed phosphorylation site [77, 87, 88]. 
Many nuclear proteins contain the PDSM, including KLF8 (Fig. 1A), ER, heat shock 
transcription factor 1 (HSF1), myocyte enhancer factor 2 (MEF2), GATA1, peroxi-
some proliferator activated receptor gamma (PPARγ), and nuclear receptor corepres-
sor (NCoR) [77, 89]. The phosphorylation of the serine or proline residues of this 

Fig. 1 Three potential mechanisms of crosstalk between SUMOylation and phosphorylation in breast cancer. 
A Phosphorylation dependent SUMOylation of KLF8. Upon DNA damage signals, phosphorylation of KLF8 
at S80 promotes KLF8 SUMOylation at K67 because of the phosphorylation dependent SUMOylation motif 
at K67-S80, regulating DNA damage repair and breast cancer cell survival. B AKT SUMOylation enhances 
phosphorylation of UBC9 (the only SUMOylation E2) and SUMO1 to further promote global SUMOylation. 
Upon pro-tumorigenic stimuli, AKT undergoes phosphorylation at the T308 and S473 sites, and subsequently 
mediates SUMOylation at K276, leading to enhanced AKT activity. Upregulated AKT promotes mediated 
the phosphorylation of UBC9 at T35 and SUMO1 at T76, thereby further leading to the enhancement 
of SUMOylation of multiple proteins such as AKT, STAT1, PTEN, etc. Enhanced AKT SUMOylation further 
promotes AKT activity, thus forming a positive feedback loop to regulate the cellular function of tumor cells 
and the occurrence of tumors. C SUMOylation dependent phosphorylation of MZF1. SUMOylation of MZF1 
at K23 promotes MZF1 phosphorylation at S27, thereby further regulating the ERBB2 signaling pathway and 
breast cancer cell invasion
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motif provides the essential negative charge, enabling interaction with the basic resi-
dues of UBC9 or SUMOs, thereby enhancing SUMO conjugation [81, 90]. Similar to 
PDSM, the negative charge-dependent SUMOylation motif (NDSM) (ΨKXEXXEEEE) 
also contains the ΨKxE consensus motif, followed by at least two acidic residues 
localized < 10 residues away from the C-terminal end of the target lysine residue [90]. 
In addition to consensus covalent SUMOylation, the nonconsensus SUMO conju-
gation motif is also phosphorylation-dependent, where the consensus D/E residue 
is substituted for a serine residue, and whose phosphorylation provides the nega-
tive charge for nearby SUMOylation, such as ER [81]. This extended PDSM offers 
a valuable signature for predicting SUMO substrates that are regulated by protein 
kinases. Indeed, for PR, the PDSM is absent [87], and this may be why there is always 
controversial over whether there is phosphorylation dependent SUMOylation on 
PR. However, for proteins such as AKT, which also do not contain these motifs, its 
SUMOylation can also been modified by altering the characteristics of SUMO-related 
enzymes or molecules. Phosphorylation-dependent AKT SUMOylation could occur 
because AKT phosphorylation increases its own activity and directly phosphoryl-
ates UBC9 at Thr35 and SUMO1 at Thr76, fostering UBC9 thioester bond forma-
tion and SUMO1 stabilization, thereby amplifying AKT SUMOylation and creating 
a positive feedback loop. This heightened AKT-induced phosphorylation of UBC9 
and SUMO1 also impacts the SUMOylation of other proteins, such as PTEN, further 
governing cellular processes in breast cancer in breast cancer (Fig.  1B) [91]. How-
ever, for cases where phosphorylation inhibits SUMOylation, the precise mechanism 
remains unclear. One possibility is that substrate phosphorylation inhibits its bind-
ing to SUMO ligase, supported by the p53 case where SUMOylation of p53 is inhib-
ited by site-specific phosphorylation, which reduces the binding of p53 to UBC9 [92]. 
Although SUMOylation of c-Jun, ETS domain-containing protein Elk1 (ELK1), and 
promyelocytic leukemia (PML) are also repressed by phosphorylation, the crosstalk 
mechanism is still unknown, possibly due to a conformational change caused by phos-
phorylation that makes the SUMOylation site exposed to enable more rapid cleavage 
by SUMO proteases [93–96]. Taken together, phosphorylation-directed SUMOyla-
tion through PDSM or NDSM is the core mechanism driving the crosstalk between 
these two PTMs.

In addition to phosphorylation-directed SUMOylation, there is also a new cross-
talk called “SUMO-directed phosphorylation” in breast cancer. This process involves 
the poly-SUMOylation of myeloid zinc finger-1 (MZF1) at K23 directs MZF1 phos-
phorylation at S27 to further mediate invasive ERBB2 signaling in breast tumors 
(Fig.  1C) [97]. This crosstalk through a mechanism where SUMOylation at K23 
opens up and exposes the S27, which otherwise is masked and not approachable for 
phosphorylation.

In conclusion, the phosphorylation of substrate proteins may have either positive 
or negative effects on SUMOylation in breast cancer, with the majority of studies 
suggesting a positive effect. Given that SUMOylation regulates the subcellular locali-
zation, protein stability, and protein–protein/DNA binding of substrate proteins, 
phosphorylation directed SUMOylation may play a feedback role through these ways 
to prevent substrate hyperactivity and cellular homeostasis or work synergistically 
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with each other to enhance substrate activity. Through these mechanisms, phospho-
rylation-dependent SUMOylation can fundamentally alter the biological properties of 
substrate proteins, contributing further to breast cancer progression by influencing 
tumor cell proliferation, metastasis, and mitochondrial function.

SUMOylation and ubiquitination in breast cancer

Ubiquitination is a multi-step process catalyzed by ubiquitin-activating enzymes (E1), 
ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3), which is similarly to 
SUMOylation [43]. Ubiquitination either promotes or suppress breast cancer. There is 
substantial evidence demonstrating that SUMOylation directly influences ubiquitina-
tion, which we will discuss by examining three aspects: SUMOylation-induced ubiqui-
tination, SUMOylation-repressed ubiquitination, and SUMO type-specific effects on 
ubiquitination.

SUMOylation promotes ubiquitination to play a role in breast cancer suppression. 
For example, the SUMOylation of forkhead box M1 (FOXM1) at multiple sites—K201, 
K218, K460, K478, and K495—which facilitates ring finger protein (RNF) 168 recruit-
ment, leading to FOXM1 ubiquitination and degradation, thereby inhibiting MCF-7 cell 
proliferation and mitotic progression [98, 99]; this may suppress breast cancer progres-
sion, metastasis, and genotoxic agent responses [100–104]. The proteasome degrada-
tion pathway of c-MYC, a frequently overexpressed oncogene in breast cancer, may also 
depend on SUMOylation; its SUMOylation at K326 results in its subsequent ubiquityla-
tion and degradation by the proteasome (Fig. 2A) [105, 106]. This finding has been fur-
ther confirmed by another study showing that SENP1, the major deSUMOylase often 
overexpressed in breast cancer tissues, leading to c-MYC deSUMOylation and the sub-
sequent decrease in c-MYC polyubiquitination; this results in high c-MYC expression, 
leading to breast cancer cell proliferation and transformation [107].

Several reasons may contribute to SUMOylation-dependent ubiquitination: 1) Similar 
to phosphorylation, these proteins may contain a SUMOylation-dependent ubiquitina-
tion motif to ensure SUMOylated proteins are better substrates than non-SUMOylated 
proteins (Fig. 2B, module 1). To support this, a study has reported that SUMOylation 
promotes an MYC mutant that cannot target FBW7 to be a FBW7 substrate [107]. 2) 
Substrates may be co-modified by both SUMO and ubiquitin to form a SUMO–ubiq-
uitin chain because the ubiquitination of SUMO and SUMOylation at multiple lysine 
residues of ubiquitination have been identified [23, 108] (Fig. 2B, module 2–4). Evidence 
exists where MYC can be co-modified by both SUMO and ubiquitin, and SENP1 can 
stabilize MYC by removing ubiquitination via deSUMOylation [109]. Moreover, a single 
ubiquitin attached to MYC was identified by overexpressing SENP1 without proteasome 
inhibition; this indicates that SUMOylation occurs on a single ubiquitin molecule [109]. 
3) SUMOylation may affect the stability or activity of the ubiquitin ligases, thereby pro-
moting global ubiquitination [105, 109–112]. A similar mechanism has been observed 
during DNA double-strand break repair. Both SUMOylated RNF168 and HECT and 
RLD domain containing E3 ubiquitin protein ligase 2 (HERC2) enhance their association 
with RNF8, leading to the formation of an active UBC13-RNF8 complex that facilitates 
ubiquitin chain formation at the site of DNA damage [113]. 4) Another mechanism may 
involve the SUMO-targeted E3 ubiquitin ligase (STUbL) RNF4 [113]. The N-terminus 
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of RNF4 contains four SUMO-interacting motifs (SIMs, SIM1-4) for recognizing poly-
SUMOylated substrates. Among these motifs, SIM2 and SIM3 play a significant role in 
binding to SUMO-2 chains while SIM1 and SIM4 have a minor role [114, 115]. Bind-
ing to poly-SUMO chains induces the dimerization of the C-terminal RING domains 
of RNF4, which stabilizes the E2-ubiquitin thioester bond and subsequently catalyzes 
poly-ubiquitination of the substrates [113, 116–119]. Typically, this type of poly-ubiquit-
ination results in proteasome-mediated degradation [120, 121]. In addition, RNF4 is also 
implicated in recruiting proteasome components to indirectly promote ubiquitin conju-
gation and proteasomal degradation [117]. However, additional studies are warranted to 
reveal the in-depth molecular mechanism of the crosstalk in breast cancer.

On the other hand, SUMOylation predominantly inhibits substrate ubiquitination and 
proteasomal degradation pathways by competing for the same lysine residues. Breast 
cancer-associated gene 2 (BCA2), an E3 SUMO ligase for IκBα in breast cancer cells, 
promotes IκBα SUMOylation, thereby preventing its ubiquitination for proteasomal 
degradation and boosting breast cancer cell proliferation and migration [122]; similarly, 
K379 of delta-lactoferrin (DLf), which can be either ubiquitinated or SUMOylated, is 
a key site for controlling DLf stability. SUMOylation competes with ubiquitination and 

Fig. 2 Main mechanisms of the crosstalk between SUMOylation and ubiquitination in breast cancer. A 
SUMOylation of c-MYC promotes its ubiquitination and degradation. SUMOylated c-MYC at K326 increases 
recruitment of RNF168 (ubiquitination E3 ligase) to enhance c-MYC ubiquitination. B Potential mechanisms 
of crosstalk between SUMOylation and ubiquitination at c-MYC. (1) SUMOylation and ubiquitination at 
different sites. (2) Ubiquitination occurs on SUMO molecules. The SUMOylation of c-MYC induces the 
binding of ubiquitin molecules on SUMO, leading to c-MYC proteasome degradation. (3) SUMOylation 
occurs on ubiquitin molecules, followed by further ubiquitination on SUMO. (4) A mixture of form (2), (3), 
and (4). C Progesterone receptor isoform B (PRB) SUMOylation competitively inhibits its ubiquitination. The 
ubiquitination site and the SUMOylation modification site are both located at the K388 of PRB. Once the 
K388 is mutated, neither SUMOylation nor ubiquitination of PRB can occur. D Different SUMOylation types 
of HDAC1 regulate different ubiquitination. In breast cancer tissue, SUMO2-type modification mediated by 
E3 ligase PIASy inhibits HDAC1 ubiquitination, thus improving HDAC1 stability. However, the SUMO1-type 
modification promotes HDAC1 ubiquitination, thereby reducing its protein stability
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protects DLf degradation by positively regulating its stability [123]. In progesterone 
receptor isoform B (PRB), both ubiquitination and SUMOylation occur at K388, and 
reduced SUMOylation accelerates PRB ubiquitination, leading to a decrease in T47D cell 
proliferation [124]. Mutations in the K388 SUMOylation site of PRB hinder progester-
one-dependent PR degradation, indicating that K388 is a dual SUMOylation and ubiq-
uitination site; when the conjugation site is mutated, neither modification can take place 
(Fig. 2C) [87]. However, there are cases where mutations in SUMOylation sites enhance 
ubiquitination. For example, SUMOylation at Lys-2806 of zinc finger homeobox  3 
(ZFHX3) enhances the stability of ZFHX3 by interfering with its ubiquitination and pro-
teasomal degradation, while the ZFHX3 K2806R mutant decreases its protein stability, 
further suppressing breast cancer growth [125]. The estrogen-induced SUMOylation of 
pescadillo ribosomal biogenesis factor 1 (PES1) stabilizes PES1 by inhibiting its ubiq-
uitination, but mutation of K517R promotes the PES1 ubiquitin–proteasome pathway, 
thereby suppressing breast cancer cell proliferation and tumor growth [126]. These pro-
teins may be ubiquitinated at residues other than the main SUMOylation sites.

In addition, the interaction between SUMOylation and ubiquitination depends on 
SUMO type. While SUMO1-type SUMOylation of histone deacetylase (HDAC) 1 pro-
motes its ubiquitination and degradation, SUMO2-type SUMOylation of HDAC1 
enhances its protein stability. This selective SUMOylation may be mediated by specific 
SUMO E3 ligases in specific cellular environments, further leading to ubiquitination 
regulation. Protein inhibitor of activated STAT 4 (PIASy), overexpressed in breast can-
cer cells, selectively promotes the conjugation of HDAC1 to SUMO2 (Fig.  2D) [127]. 
However, further investigation is necessary to elucidate the mechanisms underlying how 
different SUMOylation types differently affect ubiquitination.

Overall, SUMOylation plays an important role in regulating ubiquitination, either 
enhancing or repressing it. Regardless of the direction, SUMOylation-regulated ubiquit-
ination constitutes a critical mechanism in breast progression. Targeting this regulatory 
mechanism presents a potential novel therapeutic strategy.

SUMOylation and acetylation in breast cancer

Acetylation is a reversible process mediated by lysine acetyltransferases and deacetylases 
for adding and removing the acetyl group from the side chain of lysine, respectively. Both 
histone and non-histone proteins are substrates of acetylation. Canonical acetylation 
occurs in histone proteins, where modifications play an essential role in breast cancer 
development and prognosis. Dysregulated deacetylation promotes cancer cell prolifera-
tion, cell cycle arrest, abnormal cell death, immune destruction, immune evasion, migra-
tion invasion, and metastasis [27, 128]. Interestingly, histone acetylation has crosstalk 
with non-histone protein SUMOylation. A notable example involves tripartite motif-
containing protein 24 (TRIM24), a histone reader aberrantly expressed in breast cancer. 
In that study, researchers observed that the association of chromatin with TRIM24 leads 
to TRIM24 SUMOylation at lysine residues 723 and 741, which depends on the acet-
ylated lysine 23 of histone H3, further promoting cell adhesion to extracellular matrix 
proteins (Fig.  3A) [129]. This interaction may be an important mechanism to explore 
the downstream functions that regulate specific genes implicated in breast cancer [129]. 
Besides it, histones themselves serve as substrates for SUMOylation, regulating multiple 
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cellular process, such as gene regulation, chromatin condensation, p300-mediated tran-
scription, double-strand break repair, and Set3-histone-deacetylase complex-mediated 
transcriptional regulation [130–132]. Therefore, it is not surprising that SUMOylation 
has crosstalk with acetylation on histone proteins. For example, SUMOylation of histone 
H4 at K12 inhibits H4 tail acetylation mediated by the acetyltransferase p300, indicating 
a negative crosstalk between histone SUMOylation and acetylation [131]. However, the 
role of this crosstalk in breast cancer progression remains unexplored.

Non-histone proteins are also subject to acetylation, a process referred to as non-
canonical acetylation. In breast cancer, this type of acetylation effects metastasis, cancer 
cells proliferation, and the sensitivity of tumor cells to anti-tumor therapy, by regulat-
ing the functions of target proteins, such as Twist, RelA/P65, oncogene nuclear recep-
tor coactivator amplified in breast cancer 1 (AIB1), homeobox B13 (HOXB13) [20]. In 
essence, the crosstalk between SUMOylation and acetylation mainly occurs competi-
tively on non-histone proteins. For instance, SUMOylation of the tumor suppressor p53 
at K386 inhibits its acetylation (Fig. 3B) [133], and a decrease in p53 acetylation is known 
to promote breast cancer development [134–136]. Another illustrative example involves 

Fig. 3 Crosstalk between SUMOylation and acetylation in breast cancer. A TRIM24 binds to chromatin and 
recognizes histone 3 with non-methylation at K4 and acetylation at K23 (H3K4me0/K23ac). Subsequently, 
TRIM24 undergoes SUMOylation at K723 and K741, leading to a decrease in TRIM24 stability. B SUMOylation 
of non-histone protein p53 inhibits its acetylation. p53 can be acetylated at multiple lysine sites under 
the mediation of P300. However, once the K386 of p53 is SUMOylated, it can inhibit p53 acetylation, thus 
affecting the breast cancer progression. Since the K386 is also one of the acetylation sites of P53, the 
SUMOylation at this site may have a competitive inhibitory effect on the acetylation at the same site. C 
Acetylation regulates SUMOylation by UBC9. Acetylation of UBC9 at K65 inhibits the binding of UBC9 to 
substrate proteins, thereby inhibiting systemic SUMOylation
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DLf, when it is acetylated at K13, this decreases its SUMOylation and enhances the tran-
scriptional activity of DLf, thereby may possess anti-breast cancer activity [123, 137]. A 
similar interplay can take place among transcription co-factors. When KRAB domain-
associated protein 1 (KAP1) undergoes SUMOylation, it leads to decreased H3-K9 and 
H3-K14 acetylation and enhanced H3-K9 methylation at the p21 promoter, thereby 
regulating Dox-induced p21 expression, desensitizing MCF-7 cells to Dox-elicited cell 
death [138]. Moreover, acetylation extends its influence to global SUMOylation by regu-
lating UBC9, the only E2 of SUMOylation. The acetylation of UBC9 at K65 attenuates 
the binding of UBC9 to substrates, decreasing overall SUMOylation (Fig. 3C) [139, 140]. 
The dynamic switch between deacetylation and SUMOylation may represent a novel 
mechanism underlying breast cancer progression.

The possible mechanism involves the crosstalk is that the conjugation site of 
SUMOylation and acetylation are the same. What can support it is that K386 is the 
competitive conjugation site for both acetylation and SUMOylation of p53 and K13 
is the competitive conjugation site for both acetylation and SUMOylation of DLf [82, 
123]. Another possible mechanism may involve the deacetylase, such as HDAC4, which 
has been considered as an E3 of SUMOylation of several proteins in breast cancer pro-
gression, such as silent information regulator 1 (SIRT1), IκBα, androgen receptor, and 
hypermethylated in cancer 1 (HIC1) [141–144]. This suggests that HDAC4 may mediate 
deacetylation/SUMOylation switch simultaneously. Additionally, it is intriguing to note 
that acetylation can neutralize the positive charge of lysine as well as SUMO surface, 
thereby preventing SUMO from binding to the negatively charged residues of SUMO-
interaction motifs, which contain a hydrophobic residue core that binds to the hydro-
phobic pocket on the SUMO for non-covalent binding [145]. Therefore, it is plausible 
that acetylation might also inhibit SUMOylation in breast cancer through a comparable 
charge neutralization mechanism.

SUMOylation and protein methylation in breast cancer

Protein methylation is a process of transferring the methyl group from s-adenosyl 
methionine to the side chains of target protein amino acid residues, mediated by meth-
yltransferases. The methylation at lysine and arginine residues of substrates is the promi-
nent and universal types of methylation in breast cancer. In general, protein methylation 
promotes breast cancer progression by activating oncogenic signaling pathways, facili-
tates breast cancer cells EMT and migration by activating oncogenic genes or repress 
antitumor ability of tumor suppressor proteins, such as p53. Methylation at residue K370 
on p53 represses its antitumor ability by inhibiting p53-mediated cancer cell apoptosis, 
while methylation at K382 represses its transcriptional activity [146, 147]. Interestingly, 
as mentioned above, p53 also can be SUMOylated. However, further study is required 
to analyze whether the methylation of p53 has a crosstalk with SUMOylation in breast 
cancer.

In fact, the crosstalk between protein methylation and SUMOylation is frequently 
observed in the regulation of methyltransferases or SUMO ligases themselves, rather 
than just oncogenes or tumor suppressors. For example, UBC9 can promote the 
SUMOylation of PR-Set7, a chromatin-modifying enzyme that specifically mono-
methylates lysine 20 of histone H4 (H4K20me1), to further decrease the expression 
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of downstream genes mediated by PR-Set7, potentially in response to DNA damage 
in breast cancer [148]. Given that H4K20me1 has been reported to be associated with 
gene bodies, promoters, and enhancers, the repressive role mediated by SUMOylated 
PR-Set7 could be attributed to altered methylation at histone H4’s K20 residue. On the 
other hand, methylation can also have an impact on SUMOylation. A case in point is the 
SUMO1 activating enzyme subunit 1 (SAE1), a SUMOylation enzyme; levels of DNA 
methylation at the SAE1 gene site (cg14042711) are negatively correlated with levels of 
SAE1 expression and global SUMOylation, indicating the regulatory role of methylation 
in SUMOylation in breast cancer [149]. Intriguingly, the AKT SUMOylation is mediated 
by SAE1 [150, 151], suggesting that SAE1 methylation may suppress cancer cell prolif-
eration by reducing AKT SUMOylation.

In conclusion, unlike other types of protein modifications where crosstalk often takes 
place on the same substrate, the interaction between methylation and SUMOylation typ-
ically manifests through regulation of the enzymes involved in these processes, rather 
than direct modification of a shared substrate. This distinctive pattern may stem from 
the fact that protein methylation can take place at multiple amino acid residue side 
chains, whereas ubiquitination and acetylation, like SUMOylation, predominantly occur 
on lysine residues. This inherent difference allows for an indirect yet significant interplay 
between methylation and SUMOylation pathways.

Conclusion and perspectives
Breast cancer is the most prevalent malignant tumor and a leading cause of mortal-
ity among women worldwide. The progression of breast cancer is intricately governed 
by various protein PTMs, which are modulated by an array of cytokines, drugs, tumor 
microenvironments, genetic factors, and signaling pathways. However, clinical trials 
on PTM in breast cancer are primarily focus on protein acetylation, and most of which 
are only in their initial stages [20]. Recent advances in omics technologies, such as mass 
spectrometry, high-throughput sequencing, and bioinformatics, have facilitated the 
identification of new PTMs and helped reveal the mechanisms by which they regulate 
breast cancer progression [21, 23, 48]. SUMOylation, a recently identified modification, 
plays an important regulatory role in regulating cancer cell proliferation, migration, 
and metastasis. Notably, in the progression of breast cancer, SUMOylation frequently 
forms intricate networks with other PTMs, leading to complex interactions. In this 
review, we highlighted the crosstalk between SUMOylation and other PTMs, including 
phosphorylation, ubiquitination, acetylation, and methylation, in breast cancer. Gener-
ally, SUMOylation has a crosstalk with these PTMs, which together regulate the vari-
ous stages of breast cancer development (Table 1). These pairs of crosstalk often serve 
as either redundant or negative feedback regulators to maintain cellular homeostasis; 
however, any dysregulation can disrupt this equilibrium and drive breast cancer pro-
gression. In the crosstalk network, SUMOylation plays a central role, providing feed-
back regulation to phosphorylation while also influencing subsequent ubiquitination, 
acetylation, and methylation. Mechanistically, changes in amino acid side chain charge 
distribution, conformational shifts, or the occupancy of specific sites due to post-trans-
lational modifications constitute the fundamental mechanisms driving crosstalk, with 
unique sequences like PDSM or specific modification sites serving as the mediators for 
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such interactions. This comprehensive review may widen our current understanding of 
the relationship between SUMOylation and other PTMs in breast cancer and provide 
new perspectives for breast cancer treatment. However, future studies are required to 
address several important questions that are still unanswered.

SUMOylation is a dynamic process, in which deSUMOylation is mediated by the SENP 
family proteins, while SUMOylation is primarily facilitated by various SUMOylation E3 
ligases [36, 55, 56]. Notably, the crucial SUMO protease SENP1 can be upregulated dur-
ing tumor development and progression [57, 107], possibly due to its transcriptional 
regulation by HIF1α, which is significantly upregulated by the tumor microenviron-
ment [152–157]. In addition, SUMOylation E3 ligases like BCA2 also highly expressed 
in breast cancer [122, 158]. These alterations in the enzymes of deSUMOylation and 
SUMOylation collectively disrupt SUMOylation homeostasis during breast cancer pro-
gression. SUMOylation predominantly targets nuclear proteins, and thus, the interplay 
between SUMOylation and other PTMs is largely observed in transcription factors, 
transcriptional co-regulators, and nuclear receptors. However, our previous studies have 

Table 1 The role of crosstalk between SUMOylation and other PTMs in breast cancer

Type of
other PTMs

Protein Cell type Regulated 
phenotype
(in vitro)

Animal
model

Regulated 
phenotype
(in vivo)

Ref

Phosphorylation KLF8 MDA-MB-231 DNA repair
Cell survival

/ / 76

Phosphorylation ERRα1 MCF-7 Transcription
activity

/ / 80

Phosphorylation ERβ Hs578t
MCF-7

Transcription
activity

/ / 81

Phosphorylation AKT MCF-7 Cell proliferation / / 84

Phosphorylation AKT Macrophage AKT activity Xenograft
(Py8119 Cell)

Tumor growth
Metastasis

85

Phosphorylation DDX5 MCF-7
MDA-MB-231

Proliferation
Invasion
Metastasis

Xenograft
(MCF-7 cell)

Tumor growth
Invasion
Metastasis

86

Phosphorylation MZF1 MCF-7 Invasion / / 97

Ubiquitination FOXM1 MCF-7 Cell proliferation
Mitotic progres-
sion

/ / 98–99

Ubiquitination c-MYC T47D
MDA-MB-231
SUM159

Cell proliferation
Transformation

/ / 107

Ubiquitination IκBα MCF-7
MDA-MB-231
MCF-12F

Cell proliferation
Cell migration

/ / 122

Ubiquitination PRB T47D Cell proliferation / / 124

Ubiquitination ZFHX3 MDA-MB-231 Cell proliferation Xenograft
(MDA-MB-231 
Cell)

Tumor growth 125

Ubiquitination PES1 MCF-7
T47D

Cell proliferation Xenograft
(MCF-7 Cell)

Tumor growth 126

Acetylation TRIM24 MCF-7 Cell adhesion / / 129

Acetylation p53 MCF-7
MDA-MB-231

Cell survival
Cell migration
Cell Invasion

Xenograft
(ZR-75–30/MDA-
MB-231 Cell)

Tumor growth 133–136

Acetylation KAP1 MCF-7 Cell survival / / 138
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found that SUMOylation also has dominant role in regulating membrane protein, such 
as FGFR1 [63], and mitochondria proteins like fission protein 1 (FIS1) [65]. Of signifi-
cance, these two proteins are instrumental in breast cancer progression due to their crit-
ical roles in regulating EMT and mitochondrial function, respectively. Moreover, both 
FGFR1 and FIS1 exhibit additional PTMs beyond SUMOylation, including phospho-
rylation and ubiquitination [63, 159–161]. Therefore, it is worth further investigations 
to reveal the crosstalk of SUMOylation and other PTMs in these non-nuclear proteins 
in breast cancer. Such investigations could potentially uncover novel regulatory mecha-
nisms and contribute significantly to our understanding of breast cancer development 
and progression.

In addition to PTMs mentioned above, some other rare PTMs have also been reported 
in breast cancer. Neddylation is another type of ubiquitination-like modification that 
involves covalent conjugation of neural precursor cell-expressed developmentally 
downregulated 8 (NEDD8) to a lysine residue in the target protein [162]. Studies have 
documented elevated levels of neddylation in breast cancer on various targets, such as 
p53, Smurfl, PTEN, murine double minute 2 (MDM2), BCA3, and TGF-β II [163–169]. 
Given the similarities between neddylation and SUMOylation, studies have reported 
the crosstalk between neddylation and SUMOylation. As an example, the SUMOylation 
of ribosomal protein L11 (RPL11) negatively modulates the conjugation of NEDD8 to 
RPL11 and promotes RPL11 translocation outside the nucleoli [170]. However, to date, 
no studies have specifically reported the crosstalk between SUMOylation and ned-
dylation in breast cancer. Based on the interaction between SUMOylation and ubiq-
uitination, it is plausible to hypothesize that SUMOylation might primarily suppress 
neddylation, thereby regulating substrate protein localization or activity and contribut-
ing to breast cancer tumorigenesis. Furthermore, protein glycosylation has been shown 
to play an oncogenic role in breast cancer by promoting proliferation and metastasis of 
cancer cells, inhibiting the sensitivity of tumor cells to anti-tumor therapy, and alter-
ing the immune microenvironment and antitumor immune response [20]. In addition, 
citrullination and palmitoylation have also been reported in breast cancer. Citrullina-
tion regulates epidermal growth factor (EGF)- phosphatidylinositol 3-kinase (PI3K) 
signaling, nuclear localization, and TGF-β signaling, further mediating gene transcrip-
tion, cell proliferation, cell invasion and migration, and cancer cell EMT in breast cancer 
tumorigenesis and progression [30, 45]. Palmitoylation of cluster of differentiation (CD) 
44 decreases its interaction with migratory binding partner ezrin, therefore inhibiting 
breast cancer cell migration [171]. Nevertheless, the crosstalk between SUMOylation 
and these three PTM type has not been revealed in breast cancer.

Because of the central role of SUMOylation in the crosstalk, some inhibitors targeting 
SUMOylation in breast cancer have been explored. However, these methods are primar-
ily conducted by regulating enzymes that affect SUMOylation, including the SAE1/2 and 
the unique E2 UBC9 [172–175]. Although these inhibitors play crucial anticancer roles 
in breast cancer cell lines, including MDA-MB-231, MCF-7, and BT474, by accelerating 
autophagy-dependent cancer cell death or repressing cell migration and invasion [176, 
177], it should be noted that targeting these enzymes can alter global SUMOylation 
patterns. The specific effects of such interventions therefore require further clarifica-
tion. Indeed, although the majority of SUMOylation events may facilitate breast cancer 
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tumorigenesis and progression through accelerating cell cycle transitions and promoting 
EMT and tumor cell migration, a subset of SUMOylation processes function as tumor 
suppressors. For example, the effects of SENP1- and SENP2-mediated deSUMOylation 
on tumor development are different, although both can suppress global SUMOylation 
[42]. Another example involves AKT and c-MYC, which are both deSUMOylated by 
SENP1 [107, 178], suggesting that using SENP1 inhibitors can simultaneously enhance 
the SUMOylation of the two substrates. Nevertheless, while c-MYC SUMOylation pro-
motes its degradation and thereby exerts suppressive effects on breast cancer [105], AKT 
SUMOylation enhances AKT activity to drive breast cancer progression [84]. Conse-
quently, broadly targeting SUMOylation enzymes to either augment or diminish global 
SUMOylation might compromise therapeutic efficacy due to potential off-target effects. 
To effectively inhibit breast cancer growth, intervention strategies need to be more pre-
cise and targeted, focusing on specific substrates and sites.

Previous discussion mentioned the crosstalk between SUMOylation and other PTMs, 
including phosphorylation, ubiquitination, acetylation, and methylation in breast cancer. 
However, a substrate protein always contains multiple types of PTM. These PTMs coor-
dinately regulate the function of substrate. As mentioned above, IκBα has multiple sites 
for phosphorylation, SUMOylation, and ubiquitination; here, phosphorylation at certain 
sites depresses SUMOylation, facilitating ubiquitination because the same site is shared 
by both modifications. Similarly, the tumor suppressor p53 also contains multiple PTMs, 
such as phosphorylation, SUMOylation, ubiquitination, and acetylation. SUMOyla-
tion of p53 at K386 inhibits its acetylation by p300 and decreases DNA binding activity. 
These results suggest the central role SUMOylation plays in the PTM network. Thus, 
to achieve effective therapeutic outcomes without causing unintended consequences, 
the inhibition of SUMOylation or the crosstalk between SUMOylation and other PTMs 
must be targeted specifically rather than relying on enzymes that globally promote or 
remove SUMOylation. To gain it, specific PDSMs and SUMOylation modification sites 
for a certain substrate are needed to be characterized for specifically regulation.

Further studies are warranted to elucidate the balance between SUMOylation and 
other PTMs in cancers, particularly under infection–inflammation-associated events. 
To this end, additional studies are suggested for the following: (1) performing a global 
RNA sequencing or microarray analysis of SUMOylation E3 ligases in different pri-
mary cancer samples and using bioinformatics tools to provide clues and predict the 
targets of E3 ligase; (2) analyzing cytokine profiles using microarray to characterize the 
physiochemical properties of the tumor microenvironment to associate with the type 
of SUMOylation E3 ligase that is active. The insights gained from these studies will be 
vital for developing improved combinatorial therapeutic strategies with a well-balanced 
approach to control cancer cell death without affecting the survival of normal cells. (3) 
SUMOylation has strong heterogeneity and cannot be generalized. It has both enhanc-
ing and inhibitory effects on breast cancer and should be considered comprehensively 
and precisely. The process of drug development should focus on targeting specific 
sequences of specific target proteins, thereby improving accuracy and specificity and 
decreasing side effects by affecting this interaction. (4) Methods could be developed to 
construct SUMO chips because of the heterogeneity of SUMOylation; these chips can be 
combined with mass spectrometry to comprehensively analyze the relationship between 
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SUMOylation and other PTMs. (5) In addition to SUMOylation, the crosstalk, among 
other modifications, can be explored to clarify the PTM network, facilitating the better 
development of drugs and therapeutic targets.

In conclusion, SUMOylation plays a vital role in breast cancer development; however, 
it does not regulate the biological characteristics of substrate proteins in a single man-
ner but via crosstalk with various other PTMs. The crosstalk may potentially be used in 
breast cancer treatment. We believe that a deep understanding of the crosstalk between 
SUMOylation and other PTMs may facilitate a novel treatment for breast cancer.
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