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Abstract 

Lysosomes are acidic organelles involved in crucial intracellular functions, includ‑
ing the degradation of organelles and protein, membrane repair, phagocytosis, 
endocytosis, and nutrient sensing. Given these key roles of lysosomes, maintaining 
their homeostasis is essential for cell viability. Thus, to preserve lysosome integrity 
and functionality, cells have developed a complex intracellular system, called lyso‑
some quality control (LQC). Several stressors may affect the integrity of lysosomes, 
causing Lysosomal membrane permeabilization (LMP), in which membrane rupture 
results in the leakage of luminal hydrolase enzymes into the cytosol. After sens‑
ing the damage, LQC either activates  lysosome repair, or induces the degradation 
of the ruptured lysosomes through autophagy. In addition, LQC stimulates the de novo 
biogenesis of functional lysosomes and lysosome exocytosis. Alterations in LQC give 
rise to deleterious consequences for cellular homeostasis. Specifically, the persistence 
of impaired lysosomes or the malfunctioning of lysosomal processes leads to cellular 
toxicity and death, thereby contributing to the pathogenesis of different disorders, 
including neurodegenerative diseases (NDs). Recently, several pieces of evidence have 
underlined the importance of the role of lysosomes in NDs. In this review, we describe 
the elements of the LQC system, how they cooperate to maintain lysosome homeosta‑
sis, and their implication in the pathogenesis of different NDs. 
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Graphical Abstract

Lysosomal functions
Lysosomes are membrane-enclosed acidic organelles found in all eukaryotic cells, 
discovered by De Duve in the middle of the last century [1, 2]. Lysosomes contain a 
wide range of hydrolases capable of degrading all macromolecules present in cells: 
nucleic acids, lipids, carbohydrates, proteins, and cell debris. For decades lysosomes 
have been considered the “trash bin” of cells, without any other specific role [3]. In 
the last 10 years, however, research on lysosomal function has intensively increased 
and nowadays these organelles are considered an important hub for cell metabo-
lism and nutrient sensing [4, 5]. Lysosomal functions are involved in: endocytosis, 
phagocytosis, autophagy [6], lysosome exocytosis and plasma membrane repair 
[7, 8], control of nutrient sensing [9, 10], and cell death processes [11]. This vari-
ety of functions implicates lysosomes in many human diseases. Notably, defects in 
genes coding for lysosomal enzymes are causative factors in a group of more than 50 
inherited metabolic disorders. These disorders, named lysosomal storage disorders 
(LSDs), are characterized by the lysosomal accumulation of undigested substrates, 
and include Gaucher disease, Fabry disease, and Neimann–Pick disease [12–14]. 
Lysosomal dysfunctions have been also found to play important roles in cancer [15, 
16] and neurodegenerative diseases (NDs) [17–24]. In most cases, these diseases 
show adulthood onset and a progressive decline. In addition, the decrease in lyso-
somal function observed during ageing may contribute to disease pathogenesis [25].
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Lysosomal membrane composition
Extracellular material, intracellular molecules, and organelles are driven to lysosomes 
for degradation. Lysosomal catabolic functions require that these components are trans-
ported and delivered to the lumen of the organelle, where the acidic hydrolytic enzymes 
degrade the substrates. The integrity of the limiting membrane is crucial for the proper 
functionality of lysosomes, and this is ensured by a thick membrane (around 8 nm) com-
posed of lipids and glycoproteins with a luminal glycosylated domain [26]. This lysoso-
mal glycocalyx has a protective role in the acidic environment, and it is fundamental for 
the functionality of the lysosomal membrane proteins [i.e., lysosomal integral membrane 
proteins (LIMPs) and lysosomal associated membrane proteins (LAMPs)]. Alongside 
soluble lysosomal hydrolases, lysosomal membrane proteins play a pivotal role in orga-
nelle biogenesis and functionality [27, 28]. Among these, LAMP-1, LAMP-2, LIMP-1/
CD63 and LIMP-2/SCARB2 are the most abundant, with the former two represent-
ing more than 50% of total lysosomal membrane proteins [29]. Since their discovery, 
LAMP-1 and LAMP-2 have been considered structural molecules committed to ensur-
ing lysosome integrity by protecting the membrane from the acidic luminal compart-
ment [30]. Recently, it has been demonstrated that these proteins perform functions 
beyond this preservation and that, despite their 37% sequence homology, they  show 
important functional differences from one another. Experiments performed in mice 
show that the inactivation of the Lamp1 gene does not alter lysosomal morphology and 
function [31], while in Lamp2-deficient mice, increased cell mortality correlating with 
the accumulation of autophagic vacuoles (AVs) occurred in several tissues [32]. Lamp2-
deficient mice model the symptoms of Danon disease in humans, an LSD caused by 
Lamp2 mutations characterized by abnormal accumulation of AVs in heart and in skel-
etal muscle [33, 34].

Another factor that contributes to the stability of the lysosomal membrane is lipid 
composition. Lysosomal membranes are enriched in sphingomyelin and are charac-
terized by the presence of bis(monoacylglycerol)phosphate, a negatively charged lipid 
exclusively present in lysosomes [35–37]. Of note, cholesterol is an essential heterogene-
ously distributed membrane component, mainly present in the plasma membrane [38]; 
however, the lysosome represents a unique organelle in terms of cholesterol content, 
since its membrane cholesterol composition is intermediate between that of the plasma 
membrane and that of other intracellular organelles [39]. Indeed, lysosomes play a key 
role in maintaining cholesterol homeostasis and in cholesterol dynamics [39–41]. Thus, 
alterations in the cholesterol content affect the integrity and stability of the lysosomal 
membrane and a reduction in its levels induces lysosomal membrane permeabilization 
(LMP; see below for a detailed description) [42]. Conversely, the addition of choles-
terol to isolated lysosomes or cell cultures increases lysosomal membrane stabilization 
[43–45].

Lysosomal quality control
Given the central role of lysosomes for cellular homeostasis, any stress or alteration 
that affects lysosomal integrity can critically impact cell viability. To maintain lysosomal 
functionality, lysosomal damage is recognized and resolved by lysosomal quality control 
(LQC). The LQC consists of multiple pathways dedicated to lysosomal repair, clearance 
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(lysophagy), exocytosis, and biogenesis. LQC is generally activated in response to LMP, 
an event characterized by membrane damage, lysosomal swelling, and the release of 
lysosomal luminal content into the cytosol with possible uncontrolled breakdown of 
biomolecules [46, 47]. In addition to the previously mentioned changes in cholesterol 
content in the lysosomal membrane, a variety of exogenous and endogenous factors can 
cause LMP, including lysosomotropic agents, compounds entrapped in the lysosomes 
after protonation (l-leucyl-l-leucine methyl ester hydrobromide, glycyl-l-phenylalanine 
2-naphthylamide, chloroquine, and the cationic amphiphilic drugs), reactive oxygen spe-
cies, the apoptotic regulator Bcl-2-like protein 4, and infectious pathogens [48, 49]. LMP 
may also occur in response to neurotoxic events in NDs (see Lysosomal Damage in Neu-
rodegeneration section for details) [50–56].

Lysosomal damage recognition and repair

To cope with lysosomal damage, cells have sensor proteins capable of recognizing lys-
osomal damage and activating intracellular responses (Fig.  1). These proteins are the 
galectins, a group of 15 proteins characterized by the presence of a common carbohy-
drate recognition domain, a beta-sandwich domain composed of 130–140 residues with 
high affinity for carbohydrates [57].

Galectins are small, soluble, and dynamic cytosolic proteins, that can shuttle into the 
nucleus or be secreted into the extracellular environment by unconventional secretion 
processes [58, 59]. Multiple pathways seem to be implicated in galectin secretion; evi-
dence suggests it can be mediated by direct release, by lysosome/endosome exocytosis, 

Fig. 1 Lysosome repair. Lysosomal membrane permeabilization (LMP) and damage is recognized and 
repaired by mechanisms such as the PITT, the ESCRT pathways, and the sphingomyelin scrambling and 
turnover. (i) The PITT mechanisms consist of protein complexes that promote lysosome lipid membrane 
turnover by interacting with endoplasmic reticulum (ER). (ii) The ESCRT machinery is recruited by galectins 
and restores lysosome membrane integrity. (iii) The remodeling of damaged lysosomal  membrane can be 
directed by sphingomyelin scrambling and turnover. Created with BioRender.com
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or by extracellular vesicle release [59]. In the extracellular space, secreted galectins may 
bind to specific beta-galactosides forming a cross-linked complex, a dynamic lattice [60], 
and play important roles in cell adhesion, cell migration, signaling, immune response, 
inflammation, and endocytosis [61–64]. At the intracellular level, galectins reside in the 
cytosol, but, when necessary, they can recognize and bind to damaged endosomal mem-
branes [65, 66], with galectins-3, 8, and 9 being mostly involved. In normal conditions, 
glyco-conjugates are present in the lumen of lysosomes and endosomes, but upon mem-
brane disruptions, they are exposed to the cytosol and may be recognized by galectins. 
Indeed, the accumulation of galectins in discrete cytosolic puncta is a hallmark of LMP 
[67]. In the presence of a small rupture in the lysosomal membrane, galectin-3 trans-
locates to the lysosomes and recruits the programmed cell death 6 interacting protein 
(PDCD6IP/ALIX), tumor susceptibility 101 (TSG101), the Endosomal sorting complex 
required for transport III (ESCRT-III) component charged multivesicular body protein 
4B (CHMP4B), and VPS4 essential proteins for lysosomal membrane repair [66, 68–70]. 
This process is followed by lysosomal calcium efflux and triggers the RAB29-mediated 
translocation of the leucine-rich repeat kinase 2 (LRRK2) to the damaged lysosomes. 
LRRK2 phosphorylates and engages RAB8A facilitating the recruitment of ESCRT com-
ponents for membrane repair [17, 71, 72]. Concurrently, LRRK2 also recruits and acti-
vates both RAB10 and its protein interactor C-Jun-amino-terminal kinase-Interacting 
Protein 4 (JIP-4) promoting the lysosomal tubulation sorting, a process driven by LRRK2 
and necessary for the release of vesicles from lysosomes [73, 74].

Evidence showing that ESCRT depletion was not fully capable counteracting lysoso-
mal repair suggests that this is not the only lysosomal repair mechanism [68, 70].

Recently, two ESCRT-independent pathways for lysosomal membrane repair have 
been discovered.

Tan and Finkel identified phosphoinositide-initiated membrane tethering and lipid 
transport (PITT), a specific set of proteins involved in LMP beyond the known ESCRT 
components including the membrane-bound phosphatidyl-inositol-4 kinase type 2 alpha 
(PI4K2A) [75, 76]. This enzyme catalyzes the phosphorylation of phosphatidyl-inositol 
(PI) to phosphatidyl-inositol 4-phosphate (PI4P), a lipid essential for the endolysosome 
system, as well as its binding proteins, the oxysterol binding protein (OSBP) related 9, 
10, and 11 (ORP9, ORP10 and ORP11). In this alternative repair pathway, LMP induces 
the activity of PI4K2A leading to the production of PI4P and the lysosomal accumula-
tion of ORP9, ORP10, and ORP11; these are subsequently involved in the formation of 
inter-organelle membrane contact sites (MCS). ORP proteins dimerize with each other 
and establish endoplasmic reticulum (ER)-lysosome MCS via the interaction of the ER-
resident VAMP-associated proteins A and B, favoring the exchange of PI4P with phos-
phatidyl-serine (PS) and transporting it to lysosomes. In a complementary way, OSBP 
transports cholesterol to damaged lysosomes for repair. The accumulation of PS in lys-
osomes stimulates the non-canonical activity of the autophagy-related 2 (ATG2) protein, 
involved in lipid transport [76]. The link between the ESCRT-pathway and PITT in lyso-
somal membrane repair remains to be elucidated.

The second ESCRT-independent mechanism for lysosomal repair has been uncov-
ered by Niekamp and colleagues. The process is triggered by cytosolic exposure of 
sphingomyelin to the surface of damaged lysosomes catalyzed by the  Ca2+-dependent 
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scramblase. This is followed by the cleavage of sphingomyelin by neutral sphingomyeli-
nase to produce ceramides facilitating membrane repair [77]. These repair pathways act 
in parallel to ensure lysosome integrity.

Interestingly, it has been shown that lysosomal damage inactivates mTOR, which 
normally functions to negatively regulate autophagy and catabolic pathways. This is 
mediated through a galectin-based system named GALTOR, suggesting a link between 
lysosomal damage and the regulation of cellular metabolism [78].The system is based 
on the interaction between galectin-8, the lysosomal aminoacidic transporter solute 
carrier family 38 member 9,and the ragulator–Rag complex. Concurrently, galectin-9 
activates AMP-activated protein kinase (AMPK) increasing its phosphorylating activ-
ity via association with the AMPK upstream kinase mitogen-activated protein kinase 7 
(MAP3K7/TAK1). The interaction between galectin-9 and the deubiquitinase ubiquitin-
specific peptidase 9 X linked (USP9X) governs the lysine 63 ubiquitination (K63) rate 
of MAP3K7/TAK1, a process that regulates and activates the enzyme. In physiological 
conditions, USP9X negatively regulates MAP3K7/TAK1 activity by deubiquitination; 
instead, under LMP conditions, galectin-9 interferes with USP9X promoting MAP3K7/
TAK1 ubiquitination and activation [66, 79].

Lysophagy

When the lysosomal membrane cannot be repaired, a complex mechanism is activated 
to promote the clearance of the whole organelle via selective autophagy, a process known 
as lysophagy (Fig. 2). Lysophagy is activated when repair mechanisms fail. To date, the 

Fig. 2 Lysophagy. Lysosome clearance through autophagy is activated when the repair mechanisms fail 
or the damage persists. Lysosome clearance can occur by marking the damaged lysosomes and recruiting 
them to the forming phagophore via various galectin‑dependent or independent mechanisms. Created with 
BioRender.com
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exact mechanism responsible for the switch from lysosomal repair to clearance has not 
been characterized. Indeed, the degradation of damaged lysosomes is mainly triggered 
by the recruitment of galectins; galectins sense the LMP, bind exposed glycans, and 
recruit enzymes involved in lysosome ubiquitination (E2, E3 enzymes); these processes 
mainly involve galectin-3 and galectin-8. Galectin-3 recruits and binds the tripartite 
motif-containing 16 (TRIM16), an atypical E3 ubiquitin ligase that contributes to lyso-
some ubiquitination and serves as a platform to recruit autophagy-related proteins such 
as ULK1, ATG16L, and BECN-1 [52, 80]. These proteins are all part of complexes that 
together regulate autophagy initiation by mediating the formation of the phagophore, 
a double-membraned structure, and the activation of microtubule-associated protein 
1 light chain 3 (MAP1LC3, or simply LC3). Thus, TRIM16 mediates the interaction 
between lysosomes and the forming phagophore, facilitating the engulfment of the dam-
aged lysosomes. Moreover, TRIM16 regulates the activation of the transcription factor 
EB (TFEB), the master regulator of autophagy and lysosome biogenesis (see below for 
a detailed description) [80]. In parallel to galectin-3, galectin-8 directly binds a specific 
autophagy receptor (AR), the calcium-binding and coiled-coil domain 2 protein (CAL-
COCO2, also known as NDP52). NDP52 recruits the forming phagophore and inter-
acts with the ragulator–Rag complex inhibiting mTOR and therefore activating TFEB 
[66]. Hence, TFEB activation induces the transcription of autophagic genes responsible 
for lysophagy and lysosomal biogenesis (see below for a detailed description of TFEB 
activity).

Ubiquitination of damaged lysosomes is also regulated through galectin-independ-
ent mechanisms by E2 and E3 enzymes, such as the SKP1/CUL1/F-box (SCF) protein 
ubiquitin ligase complex, Cullin-4A—DNA damage-binding protein—WD repeat and 
FYVE domain-containing 1 complex, and UBE2QL1. Ubiquitination can occur on K63- 
or K48- linked ubiquitin  chains. ARs recognize K63-linked ubiquitin conjugates, while 
K48-linked chains generally are associated with proteasome degradation. K63- and 
K48-ubiquitinations on lysosomal membrane proteins occur with a different timing and 
play different roles. K63-ubiquitination arises quickly after the damage, together with 
the recruitment of the AR sequestosome-1 (SQSTM1/p62). Different ligases can mediate 
K63 ubiquitination: F-box protein 27, the substrate recognition subunit of the SCF com-
plex, directly binds to glycans and damaged lysosome membranes promoting LAMP-1 
and LAMP-2 K63 ubiquitination; ITCH ubiquitylates membrane-associated proteins to 
initiate lysophagy. ITCH is recruited and activated by SPART/SPG20, a galectin/LMP-
independent detector of lipid-packing defects on the lysosome membrane. SPART/
SPG20 binds to IST1, a repair factor, and senses membrane defects that precede LMP. 
When lipid membrane alterations are unacceptable, SPART/SPG20 recruits ITCH initi-
ating autophagy [81, 82].

K48-ubiquitination occurs later on and is mediated by E2 or E3 enzymes such as 
UBE2QL1 or Cullin-4A [83–85]. The K48 conjugates targeted by UBE2QL1 are recog-
nized by the heat shock protein B1 (HSPB1), which favors their segregation by valosin-
containing protein (VCP) and their clearance by the proteasome [86, 87]. The first set 
of proteins targeted by ubiquitination is ARs, which promote phagophore engulfment 
[81]. Subsequently, the second set of ubiquitinated proteins is membrane traffick-
ing regulators, such as soluble n-ethylmaleimide-sensitive factor attachment protein 
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receptors, which suppress the fusion of damaged lysosomes with autophagosomes or 
late endosomes. Finally, the third set of proteins targeted by ubiquitination are proteins 
that orchestrate the cytoskeleton in lysophagy dynamics, such as cellular communica-
tion network factor 2. The clearance of this last set of proteins is regulated by VCP and is 
necessary for lysosomal degradation [86].

Damaged lysosomes, marked with ubiquitin-chains, are linked to autophagic mem-
branes by ARs [e.g.: SQSTM1/p62, optineurin (OPTN), NDP52, NBR1 autophagy cargo 
receptor (NBR1), Tax1 binding protein 1]. They possess an ubiquitin-associated domain, 
which recognizes ubiquitin chains, and an LC3-interacting region, which directly binds 
LC3 present on the forming phagophore. AR activation is regulated by TANK-binding 
kinase 1 (TBK1), which by phosphorylating them, increases their affinity to ubiquitin 
chains [88, 89]. SQSTM1/p62 is the major actor in lysophagy; in fact, it is consistently 
found on damaged lysosomes and its depletion prevents lysosome clearance [81, 83, 90]. 
The recruitment of SQSTM1/p62 upon lysosomal damage is regulated by HSPB1. Dur-
ing phagophore formation, HSPB1 is recruited to lysosomes and is phosphorylated to 
allow its inclusion in the SQSTM1/p62 condensates (also known as p62 bodies) formed 
by liquid–liquid phase separation (LLPS), favoring the maintenance of its liquid–liquid 
phase properties, and thus promoting lysophagy [90].

Besides the canonical pathway just described, lysosomal damage also induces non-
canonical lysophagy. In this process, the ATG12/ATG5/ATG16 complex is recruited to 
the lysosomal membrane through a V-ATPase-mediated process. Consequently, acti-
vated LC3 is directly attached to the lysosomal membrane by  non-canonical autophagy 
and conjugation of ATG8s to single membranes (CASM). This is likely followed by (i) 
recruitment of the lipid transfer protein ATG2, which is involved in PITT-dependent 
lysosome repair, and (ii) the fusion of LC3-labeled vesicles with other intact lysosomes 
[91–93].

Lysosomal biogenesis and exocytosis

Lysosomal biogenesis and replacement are adaptive mechanisms that maintain the 
functional pool of lysosomes needed for cellular homeostasis (Fig. 3). These processes 
depend both on the endocytic pathway and on the biosynthesis of new lysosomal pro-
teins; they further require the coordinated transcription of genes coding for lysosomal 
and autophagic proteins regulated by TFEB and by its cognate transcription factor E3 
(TFE3). These two proteins belong to the microphthalmia (MiT/TFE) family of basic 
helix-loop-helix-leucin zipper transcription factors, a class of evolutionarily conserved 
and structurally related proteins. This family includes four members: the microphthal-
mia transcription factor, TFEB, TFE3, and the transcription factor EC. TFEB and TFE3 
recognize a 10 bp palindromic responsive element (GTC ACG TGAC), termed the coor-
dinated lysosomal expression and regulation, present in genes controlling the integrated 
expression of networks regulating autophagy and lysosomal biogenesis, exocytosis 
[94–97].

TFEB and TFE3 continuously shuttle between cytosol and nucleus, and differ-
ent stimuli can modify the dynamics of this mechanism. When sufficient nutrients 
are available, the mTOR complex 1 (mTORC1) inhibits TFEB/TFE3 activity through 
their phosphorylation (at Ser138, Ser142, or Ser211 for TFEB; at Ser321 for TFE3) 
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[98]. Conversely, starvation or cellular stress conditions promote TFEB activation and 
nuclear translocation with two parallel mechanisms: by switching off mTORC1 activ-
ity and by inducing lysosomal calcium efflux via the mucolipin TRP cation channel 
1 (MCOLN1), an event that triggers the activation of the calcium-dependent serine/
threonine phosphatase calcineurin that dephosphorylates TFEB/TFE3, thus activat-
ing them. [94, 99]. The mitogen-activated protein kinase 1 (MAPK1/ERK2) and the 
protein kinase C type beta are also involved in TFEB phosphorylation and regulation 
[100].

How TFEB/TFE3 phosphorylation inhibits their function has been elucidated. Spe-
cific phosphorylated serine residues allow both the recognition and the binding of 
the chaperone YWHA/14-3-3 that retains TFEB/TFE3 in the cytosol [101–104] and 
mediates their nuclear export via exportin1 (known as chromosomal maintenance 1) 
[105, 106], thus preventing their nuclear localization.

Beyond phosphorylation, other post-translational modifications control TFEB/
TFE3 activity, including acetylation, a process regulated by histone deacetylases 
(HDAC2, HDAC5, HDAC6, HDAC9) and acetyltransferases (ACAT1, ELP3, CREBP). 
Treatment with pan-HDAC inhibitors, such as suberoylanilide hydroxamic acid or 
trichostatin, induces TFEB acetylation and accumulation into the nucleus, promoting 
lysosomal biogenesis and autophagy [107, 108]. Finally, TFEB/TFE3 are also involved 

Fig. 3 Lysosome biogenesis and exocytosis. To maintain the pool of functional lysosomes the damage of 
lysosomes activates galectin‑dependent mechanisms that induce the transcription factors TFEB and TFE3. 
Exocytosis of damaged lysosomes with a  Ca2+‑dependent process is induced as an alternative mechanism to 
lysophagy. Created with BioRender.com
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in the redox signaling mediated by the KEAP1/NRF2 pathway, suggesting that lysoso-
mal biogenesis might also be sensitive to the intracellular redox state [109].

In the nucleus, both TFEB and TFE3 exert their transcriptional activity through an 
LLPS-dependent mechanism involving the formation of physiological protein con-
densates, which also regulate their activity. It has been demonstrated that the inositol 
polyphosphate multikinase (IPMK) does not influence TFEB phosphorylation or nuclear 
translocation, but IPMK can associate with TFEB suppressing its LLPS. IPMK knock-
down induces the formation of TFEB condensates promoting its transcriptional activity 
and leading to autophagy induction and lysosomal biogenesis [110, 111].

Lysosomal damage and LMP have been shown to induce TFEB activation and lyso-
somal biogenesis to replace the pool of damaged lysosomes cleared by lysophagy [112, 
113]. Besides the role of galectin-8 described above, other proteins might be involved 
in the activation of TFEB following LMP. In kidney injury, it has been observed that lys-
osomal damage triggers the recruitment of LC3 by the activation of ATG conjugation 
system. LC3 interacts with MCOLN1 leading to calcium efflux, which induces TFEB 
nuclear translocation through the activation of calcineurin [114]. Interestingly, it has 
been recently observed that calcineurin is also indirectly regulated by galectin-3: galec-
tin-3 recruits the SMAD specific E3 ubiquitin-protein ligase SMURF1 to damaged lys-
osomes, which in turn binds and controls calcineurin promoting its phosphatase activity 
on TFEB [115].

A peculiar activity of TFEB is its involvement in the regulation of lysosome exocytosis; 
this process requires that lysosomes fuse directly with the plasma membrane to release 
their content into the extracellular environment. Lysosomal exocytosis was shown to be 
involved in the restoration or remodeling of the plasma membrane [116–119], as well as 
in neurite outgrowth processes and axonal myelinization [120–122].

Lysosomal exocytosis is regulated by lysosomal calcium efflux through the MCOLN1 
channel. Interestingly, TFEB overexpression stimulates the activation of MCOLN1 and 
calcium release from lysosomes mediating lysosomal exocytosis. TFEB and MCOLN1 
act in a feedback loop, where TFEB triggers MCOLN1 gene transcription, being a TFEB 
target gene, while MCOLN1 stimulates TFEB activation via calcineurin, as described 
above [95].

Recent findings suggest lysosomal exocytosis as a mechanism for the secretion of pro-
tein aggregates from neurons, contributing to the maintenance of cellular proteostasis 
when intracellular degradative systems are impaired [123].

Lysosome reformation

Beside lysosomal biogenesis, cells can provide a new pool of lysosomes via reforma-
tion processes. Lysosomes can also originate through the recycling of the autolyso-
some membrane via a mechanism known as autophagic lysosome reformation (ALR). 
ALR involves the protrusion of tubules from autolysosomes, giving rise to small vesicles 
named proto-lysosomes, which subsequently mature into functional lysosomes [124]. 
The initiation of ALR is dependent on the reactivation of mTOR. The mechanisms gov-
erning mTOR reactivation and the subsequent initiation of ALR during autophagy are 
still mostly unclear. An important process implicated in this context is the increased pro-
duction of amino acids, which activates mTOR [124]. Moreover, the release of calcium 
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by lysosomes also plays a role in mTOR activation through a calmodulin-dependent 
mechanism [125].

The remodeling of autolysosome membranes during ALR is finely regulated by the 
transient and reversible formation of a specific set of membrane-bound phospho-
inositides, following a precise spatiotemporal pattern. Notably, PtdIns P2 recruits clath-
rin to the autolysosome membrane, which, in turn, stimulates membrane budding [126]. 
Clathrin additionally serves as a membrane platform to facilitate the accumulation of 
AP-2-PtdIns  P2, which, in turn, promotes the recruitment and clustering of the kine-
sin family member 5B (KIF5B) protein. KIF5B is a kinesin motor protein that binds to 
autolysosome membranes and microtubule filaments, thereby facilitating the forma-
tion of autolysosome membrane tubules. Finally, the mechanism that promotes the final 
scission of the lysosome is still unclear [127]. Interestingly, it has been recently demon-
strated that, in the presence of severe LMP, the ALR machinery is recruited to damaged 
lysosomes by TBC1 domain family member 15 to regenerate functional lysosomal mem-
branes. This mechanism represents a prompt cellular response to compensate for the 
reduction of functional lysosomes before the activation of lysosomal biogenesis medi-
ated by TFEB/TFE3 [128].

Alternatively, lysosomes are also regenerated by the endocytic pathway. Transient “kiss 
and run” interactions between late endosomes and lysosomes occur to deliver the endo-
cytosed cargoes into the lysosomes. These events result in the formation of endolys-
osomes, hybrid and heterogeneous organelles from which lysosomes are regenerated 
with an analogous pathway to that occurring in ALR: characterized by tubulation of 
endolysosomes, scission, and maturation [129–133].

Lysosomal damage in neurodegeneration
NDs are fatal progressive disorders characterized by the loss of functionality and/
or the death of specific subpopulations of neurons controlling cognitive or motor 
functions. Different pathological mechanisms induce neuronal death, among which 
alteration in proteostasis is of great relevance. Proteostasis dysfunction coincides 
with the generation of damaged organelles involved in the protein quality control 
(PQC), variation in the expression of contributors to PQC, and the formation of 
protein aggregates which may ultimately lead to cell death through different mech-
anisms [134–137]. The most common NDs, depicted in Fig.  2, include Parkinson’s 
disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), fron-
totemporal dementia (FTD), and Alzheimer’s disease (AD). Their classification is 
based on primary clinical features, anatomical distribution of neuronal degeneration, 
and the main molecular alterations that characterize each of them. Although these 
NDs differ significantly in etiopathogenesis and clinical aspects, they generally pre-
sent certain common cellular and molecular alterations such as protein aggregation, 
impairment of degradative systems, and damage to degradation-related organelles 
such as lysosomes. Indeed, emerging evidence suggests that lysosomal dysfunction 
is strictly correlated with the pathogenesis of these diseases, either as a trigger or  a 
consequence of neuronal or microglial cell dysfunction. LMP and leakage of lysoso-
mal contents, including cathepsin B and calcium, have been observed in various NDs 
[138–140]. As shown in Table  1, lysosomal damage is associated with ND-related 
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mutations in genes encoding proteins directly involved in lysosomal membrane integ-
rity and lysosomal functionality. These include lysosomal transmembrane proteins 
such as transmembrane protein  (TMEM) 106B and ATPase cation transporting 13A2 
(ATP13A2) [141, 142]; or proteins implicated in lysosome repair or degradation, such 
as LRRK2 and VCP, SQSTM1/p62, OPTN, or TBK1 [143–146] (see below for fur-
ther details). Of note, neurons can uptake extracellular aggregates through endocy-
tosis; depending upon their nature and biophysical properties, these aggregates can 
induce lysosomal membrane rupture [55]. Proteins implicated in this mechanism can 
be found in Table  2. The lysosomal toxicity of protein aggregates has been directly 

Table 1 Genes mutated in NDs that are involved with lysosomes alterations

Gene Role ND-related References

LRRK2 ‑Recruits and phosphorylates RAB proteins to regulate 
lysosomal repair
‑Maintains lysosome pH by interacting with vATPase a1 
subunit

PD [160, 224, 225]

ATP13A2 P‑type ATPase which maintains lysosome pH PD [226]

GBA Lysosomal enzyme degrading glycolipids PD [227]

TMEM175 Ion channel that contributes in maintaining lysosomal pH PD [228]

SCARB2 Phospholipid receptor regulator of lysosome‑cholesterol 
interaction

PD [165]

SQSTM1/p62 AR that mediates damaged lysosome engulfment in 
autophagosomes

ALS/FTD [144, 229]

UBQLN2 Interacts with v‑ATPase contributing in lysosomal pH ALS/FTD [230, 231]

DCTN1 Binds damaged lysosome and promotes their addressing to 
autophagy degradation

ALS/FTD [232]

TBK1 Phosphorylates AR regulating lysosome degradation ALS/FTD [233, 234]

OPTN AR that mediates damaged lysosome engulfment in 
autophagosomes

ALS/FTD/PD [145, 188]

VCP Mediates degradation of lysosomal membrane proteins 
promoting lysosome degradation

ALS/FTD [146, 235]

TMEM106B Lysosomal transmembrane protein, regulates lysosomal 
morphology, acidification and transport

FTD [236]

MFSD8 Lysosomal transmembrane protein, indirect regulator of lyso‑
somal calcium content and activity

ALS/FTD [191, 237]

CTSF Lysosomal enzyme degrading proteins FTD [193]

PGRN Modulates lysosome enzymes activity FTD [238]

PSEN1 Transmembrane protein with enzymatic activity degrading 
proteins

AD [239]

Table 2 Genes mutated in NDs which induce lysosome alterations

Gene Role in lysosome damage ND-related References

SNCA Toxicity mediated by aggregation PD [54, 171]

C9ORF72 Toxicity mediated by aggregation ALS/FTD [240]

TARDBP Toxicity mediated by aggregation and loss of function ALS/FTD [195, 196]

MAPT Toxicity mediated by aggregation and loss of function FTD/ALS [199, 200]

FUS Toxicity mediated by aggregation ALS [202]

IT15 Toxicity mediated by aggregation HD [241]

APP Toxicity mediated by aggregation AD [215]
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demonstrated for various ND-related proteins, including alpha-synuclein (SNCA), 
β-amyloid (Aβ), tau, and superoxide dismutase 1 [83, 140, 147–149]. Together, these 
findings show a strong interaction between lysosomal alterations and NDs.

Parkinson’s disease

PD is the most common ND, affecting 1% of the population over 65  years old. The 
clinical manifestations of the disease can vary among individuals. The most recurrent 
symptoms and signs include bradykinesia, tremors, muscular rigidity, and speech and 
cognitive impairments [150]. The histopathological hallmark of PD is the presence of 
Lewy body (LBs) inclusions, which result from intracellular accumulation of SNCA. LBs 
are associated with the death of dopaminergic neurons present in the substantia nigra 
[151]. Other hallmarks of PD include a correlation of the disease with lysosome altera-
tions, such as increased galectin-3 plasma levels, which has been proposed as a potential 
biomarker to monitor PD-related neurodegeneration [152]. Moreover, patients exhibit 
an overactivation of microglia that leads to an inflammatory response. The activation of 
microglia is also associated with lysosomal alterations mediated by galectin-3 [153, 154].

Only 10% of PD cases occur in familiar forms, while 90% are sporadic. To date, a large 
part of the genetic causes of PD has still to be identified. Approximately 5–10% of hered-
itary PD cases are associated with identified mutations in genes such as SNCA, LRRK2, 
and PRKN [155, 156]. Conversely, in most cases, PD etiology is multifactorial and 
involves an interplay between environmental and genetic factors. Genome-wide associa-
tion studies have identified various risk genes and loci linked to PD [157, 158]; several 
have a strong link to lysosomes (as reviewed in [159]). In particular, LRRK2 encodes for 
a protein involved in lysosome repair thanks to its phosphorylation and interaction with 
RAB29, which also interacts directly with the a1 subunit of the vacuolar-type ATPase  H+ 
pump that maintains lysosomal pH [72, 160, 161]. Other relevant genes are ATP13A2, 
encoding for a cation transporter that maintains the proper pH in lysosomes [162]; GBA, 
encoding for glucocerebrosidase, a lysosomal enzyme that converts glucosylceramide 
and is involved in lysosome activity [163]; TMEM175, encoding for a lysosome channel 
regulator of potassium in lysosomes [164]; and SCARB2, encoding for a structural trans-
membrane lysosomal protein, which acts as a regulator of cholesterol-membrane com-
position and a receptor of β-glucocerebrosidase, which in turn controls the clearance of 
SNCA [165–167]. This long list of genes supports the notion that alterations of lysosome 
function and dynamics may contribute to PD onset and disease progression. Addition-
ally, other elements correlate PD and lysosome disruption, such as the close relationship 
between lysosomes misfunctioning and SNCA. This is evidenced by several facts: that 
lysosomes are essential for SNCA degradation [168] and their alterations or the accumu-
lation of lysosomal substrates result in increased SNCA cytoplasmatic levels, triggering 
the pathological aggregation [169–171]; that other key players in lysosome repair and 
clearance, such as galectin-3 and TRIM16, have been shown to promote SNCA release 
and its spreading into the extracellular environment upon lysosomal damage and to pro-
mote SNCA conversion into fibrils [54, 152, 153]; and that SNCA aggregation can alter 
the autophagic-lysosomal pathway either by directly disrupting lysosomal components 
or by inhibiting trafficking events [147, 168, 172]. Altogether, these findings show a dual 
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interaction between SNCA aggregation and lysosome functionality, underlying a crucial 
correlation between them.

Frontotemporal dementia and amyotrophic lateral sclerosis

FTD and ALS are two distinct NDs that display overlapping clinical signs and patho-
logical mechanisms [173]. FTD primarily affects the frontal and temporal lobes of the 
brain, leading to changes in behavior, personality, and language skills accompanied by 
a decline in social cognition, emotional regulation, and executive functions [174]. ALS 
mainly affects motor neurons, responsible for voluntary muscle control, leading to mus-
cle weakness and paralysis, and impairs the ability to speak, swallow, and breathe [175]. 
Both FTD and ALS present  familial (fFTD and fALS) and sporadic (sFTD and sALS) 
forms. Although FTD and ALS are distinct diseases, they belong to a spectrum of dis-
eases known as FTD/ALS, which highlights their overlapping nature.

FTD and ALS exhibit common molecular pathological features, including the mislo-
calization and aggregation of TAR DNA-binding protein 43 (TDP-43), a ribonucleotide 
protein that regulates mRNA metabolism, the accumulation of FTD/ALS-associated 
mutated proteins in inclusions, and the failure of the PQC system [173, 176, 177]. FTD/
ALS are also associated with alterations to the autophagy–lysosomal pathway, detectable 
in postmortem tissue of FTD/ALS patients [87, 178] and evidenced by increased levels 
of galectin-3 in the spinal cord and cerebrospinal fluid, suggesting changes in lysosome 
dynamics [178, 179].

FTD and ALS also overlap at the genetic level; roughly 30% of fFTD cases, 5–10% 
of sALS cases, and approximately 50% of fALS cases are linked to a mutation in the 
C9ORF72 gene [173, 180]. This mutation involves the abnormal expansion of a hexanu-
cleotide sequence  (G4C2) localized in the first C9ORF72 intron. This mutation triggers 
three pathological mechanisms, one related to a loss of function due to haploinsuffi-
ciency and the other two involving a gain of toxicity. The toxicity may be caused either 
by the formation of aberrant RNA foci in the nucleus or by an unconventional repeat-
associated ATG-independent (RAN) translation, which leads to the production of five 
different dipeptide repeat proteins. C9ORF72, known as a regulator of autophagic flux, 
plays a crucial role in maintaining the proper functionality of the  autophagy-lysosomal 
pathway [181]. Haploinsufficiency of C9ORF72 causes the impairment of autophagy 
and lysosome functions, resulting in the accumulation of lysosome-like organelles that 
precede neurodegeneration, thereby contributing to the pathogenesis of FTD and ALS 
(reviewed in [182]). These phenotypes are partially caused by a decreased TFEB expres-
sion and by its cytoplasmic retention [183].

Other genes associated with FTD and ALS cases, including SQSTM1/p62, UBQLN2, 
DCTN1, TBK1, OPTN, and VCP [184–189], have been previously described to play a 
role in autophagy. Moreover, other genes associated exclusively with FTD are implicated 
in lysosomal trafficking, including TMEM106B and the major facilitator superfamily 
domain containing 8 (MFSD8) or in lysosomal activity, such as Cathepsin F (Ctsf) and 
granulin precursor (GRN) [190–193]. Thus, mutations in genes associated with lyso-
somal stability, functioning, or degradation underline an important implication of lys-
osomes and autophagy in pathological neurodegenerative mechanisms.
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Lysosomal alterations in FTD/ALS can also be caused by a gain of toxicity associ-
ated with an increased toxic aggregation of TDP-43, mutated proteins such as tau, 
a microtubule-associated protein, or fused in sarcoma (FUS), a protein involved in 
regulating RNA metabolism. The aggregation of TDP-43 alters a specific autophagic 
pathway, chaperone-mediated autophagy (CMA), and disrupts lysosome func-
tion, which in turn exacerbates TDP-43 toxicity and loss of function [194, 195]. 
Indeed, TDP-43 aggregation and functional loss are associated with the activation 
of autophagosome and lysosome biogenesis through the inhibition of mTORC1 and 
activation of TFEB. Simultaneously, TDP-43 loss of function causes impairment in 
the fusion of autophagosomes with lysosomes, via an mTORC1-independent mecha-
nism. Consequently, the buildup of AVs contributes to the aggregation of TDP-43 
and neurodegeneration [196]. The aggregation of tau also impairs lysosomal func-
tions through various mechanisms. In physiological conditions, tau stabilizes micro-
tubules, facilitating the proper trafficking and maintenance of lysosomes [197, 198]. 
However, FTD-associated tau mutants are prone to aggregate, leading to hyperphos-
phorylation, ubiquitination, and destabilization of microtubules [199]. Moreover, 
tau aggregates also inhibit IST1, a member of the ESCRT complex, block CMA, and 
impair lysosome function. This results in the formation of enlarged dysfunctional 
lysosomes and even their rupture [200, 201]. Similarly, to tau, mutated FUS forms 
protein aggregates. These aggregates may sequester LAMP-1-positive structures, 
leading to the aberrant accumulation of functional lysosomes around the abnormal 
FUS aggregates [202].

Huntington’s disease

HD is characterized by the progressive deterioration of cognitive, motor, and psychi-
atric functions. As the disease progresses, HD symptoms include involuntary move-
ments (chorea), cognitive decline, psychiatric disturbances, and difficulties with 
speech and swallowing [203]. HD is an inherited condition caused by an expansion 
of CAG trinucleotide repeats in the Huntingtin (HTT) gene, resulting in the pro-
duction of an abnormal form of the HTT protein containing an elongated polyglu-
tamine tract. The mutation leads to the accumulation of toxic protein aggregates in 
the brain, particularly in the basal ganglia and cortex (Fig.  2). HD displays several 
hallmarks of impairments in lysosomal function and dynamics. For instance, galec-
tin-3 levels increase in the brains of HD mice and patients, suggesting alterations 
to lysosome activity. Galectin-3 levels increase in microglia before the onset of the 
disease and mediate the initiation of the inflammatory response which contribute 
to HD pathogenesis [204]. Moreover, an increase in the perinuclear accumulation 
of lysosomes is visible in HD models and it is normalized upon the overexpression 
of wild-type HTT. Mutant HTT (mHTT)-induced lysosome accumulation is associ-
ated with an increase in mTORC1 basal activity and the autophagic flux, resulting in 
a premature fusion of lysosomes with autophagosomes [205]. To further emphasize 
the autophagy–lysosome connection with HD, mHTT is recruited to vesicle-rich 
organelles that resemble multivesicular bodies or autolysosomes, suggesting a lyso-
some-dependent degradation of mHTT [206]. In addition, lysosomes are implicated 
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in mHTT removal through an unconventional lysosome-dependent secretion mech-
anism [207].

These findings underscore the importance of an autophagy-lysosome role in HD 
and provide insights into potential therapeutic targets for the disease.

Alzheimer’s disease

AD is the most common cause of dementia and primarily affects memory, cognitive abil-
ities, and behavior, gradually impairing daily functioning. AD typically starts with mild 
memory loss and progresses to severe cognitive decline and loss of independence [208]. 
The exact cause of AD is not fully understood, but age, genetic factors (such as the apoli-
poprotein E ε4 allele), and certain lifestyle and environmental factors are believed to play 
a role in AD pathogenesis [209]. AD is characterized by the accumulation of abnormal 
protein aggregates in the brain, such as Aβ plaques and tau tangles. Like in the previously 
discussed NDs, AD also presents signs of altered autophagy–lysosome pathways. This 
evidence includes galectin-3 accumulation in Aβ plaques in microglia, mediating the 
maladaptive activation of the inflammatory response [210]; dysregulation in endosome– 
and lysosome–ER contact sites due to amyloid precursor protein (APP) [211]; increased 
alkalinization in neuronal lysosomes which appears before Aβ deposition outside the 
cells. Lysosomal pH alteration is caused by decreased v-ATPase activity, associated with 
presenilin-1 mutations, and the accumulation of Aβ within enlarged autolysosomes that 
have lost their acidity. In line with this, in vitro studies have shown that the reacidifi-
cation of lysosomes rescues lysosome dysfunction and accumulation [212]. Moreover, 
in affected neurons, AVs containing Aβ accumulate in a tightly packed manner within 
large membrane protrusions [213–215]. Similar observations have been described in the 
brains of AD patients. Additional AVs merge to form networks of membrane tubules 
surrounding the nucleus, where fibrillar Aβ accumulates within the lumens. This leads 
to the disruption of lysosomal membranes, the release of cathepsins, and ultimately cell 
death, accompanied by the invasion of microglial cells [215]. Recently it was found that 
positive modulation of TRIM16-mediated lysophagy decreases the accumulation of 
Aβ/tau, further underlying the tight connection between lysosome alterations and AD 
pathology [216].

Conclusions
Lysosomes are essential organelles for cell viability and alterations in their function are 
associated with several diseases, including LSDs and NDs. Indeed, accumulating evi-
dence suggests that maintaining lysosomal integrity and efficient lysosomal degradation 
processes is crucial for neuronal protection and the prevention of NDs. To maintain 
homeostasis, cells activate different complex mechanisms to repair damaged lysosomes 
or, when this is not possible, to clear them away through lysophagy or exocytosis. These 
crucial processes are finely regulated by various proteins and complexes. However, many 
aspects of these processes remain unknown or not fully understood. Thus, unraveling 
the complex interplay between lysosomal dysfunction, aggregates accumulation, inflam-
mation, and neuronal cells death holds promise for identifying novel therapeutic targets 
and developing strategies to counteract or slow down ND progression.
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Some steps in this direction have already been taken, and therapeutic approaches and 
molecules that facilitate lysosomal clearance or biogenesis have been identified. Notably, 
certain molecules activate lysosome biogenesis by promoting the nuclear localization of 
TFEB. For example, compounds such as PP 242 and LY 294002 activate TFEB by inhibit-
ing mTOR [217, 218]. Other substances, such as trehalose and its analogs lactulose and 
melibiose, enhance TFEB activity through an mTOR-independent pathway, as described 
in ref. [219]. The use of these compounds in disease models has shown promising results, 
encouraging research in this direction [220–223].

Altogether, this review highlights the intricate nature of the mechanisms govern-
ing lysosomal function and dynamics, as well as the consequence of their dysfunction 
in the development of pathological conditions. The complexity and significance of the 
described mechanisms underline the necessity of further investigation to enhance our 
understanding of pathological processes and development of therapeutic strategies.
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