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Introduction
Cysteine-aspartic proteases, commonly known as caspases, are a family of proteases 
characterized by their specificity for cysteine at their active sites and their ability to cleave 
after aspartic acid residues [1]. These proteases are typically present in cells as inactive 
zymogens (procaspases) and become biologically active upon conversion to their active 
form. Due to their specificity, caspases selectively cleave certain proteins at specific sites, 
triggering the activation or inactivation of downstream proteins. This evolutionarily 
conserved family of proteases whose dysregulation in activity or expression levels 
is intimately linked to the pathogenesis of numerous human diseases, such as cancer, 
autoimmune disorders, and neurodegenerative diseases (NDDs). Research indicates that 
modulation of caspase activity can significantly ameliorate disease progression [2].

Caspases are primarily responsible for regulating programmed cell death 
(PCD), such as apoptosis, and play a crucial role in modulating immune and 
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inflammatory responses by activating cytokines and cell death-related signaling 
pathways. According to their functions, caspases are categorized as either apoptotic 
(caspase-2, -3, -6, -7, -8, -9, and -10) or inflammatory (caspase-1, -4, -5, and -11). 
Apoptotic caspases are further divided into initiator and executioner caspases. 
Initiator caspases, including caspase-2, -8, -9, and -10, can initiate apoptosis by self-
activation and regulating effector caspases. Executioner caspases, such as caspase-3, 
-6, and -7, are responsible for cleaving cellular proteins and executing the apoptotic 
process. Upon stimulation by extrinsic signaling proteins, initiator caspases are 
activated, leading to the cleavage and activation of downstream effector caspases. 
The activated executioner caspases then hydrolyze target proteins, thereby initiating 
the apoptotic process [3–5].

Inflammatory caspases are activated by inflammasomes, resulting in pyroptotic cell 
death and the production of inflammatory mediators. These mediators subsequently 
trigger both protective and pathological immune responses. The N-terminal regions 
of initiator and inflammatory caspases contain a caspase recruitment domain (CARD; 
caspase-1, -2, -4, -5, -9, -11) or two death effector domains (DEDs; caspase-8, -10), 
which facilitates their recruitment and activation within protein complexes [1].

Caspase-8 is a prototypical initiator caspase, encoded by the CASP8 gene and 
known as MACH (MORT1-associated CED-3 homolog), FLICE (FADD-like ICE), 
or Mch5 (mammalian Ced homolog 5). First cloned in 1996 by Muzio et  al., the 
precursor of caspase-8, known as procaspase-8 or caspase-8 zymogen, consists of 479 
amino acids. Caspase-8 is a crucial enzyme in the apoptotic pathway, and its structure 
and function are highly conserved across mammalian species, including humans. Its 
N-terminal domain contains two DEDs (DED1 and DED2), each approximately 70 
amino acids in length, while its C-terminal domain includes a large protease subunit 
(p20/p18) with an active catalytic cysteine and a small protease subunit (p12/10) with 
a substrate-binding domain; the large and small subunits are constituted by Ser217-
Asp374 and Asp384-Asp479 segments, respectively, giving caspase-8 a molecular 
weight of 55 kD [6–9].

Caspase-8 plays pivotal roles in various physiological and pathological functions 
in the human body, most notably in regulating apoptosis via the extrinsic death 
receptor pathway. Recent studies have also revealed its importance in pyroptosis 
and necroptosis, as well as in immune and inflammatory processes. Dysregulation 
of caspase-8 and its mediated signaling pathways is associated with various diseases 
in humans, including inflammatory bowel disease (IBD), autoimmune diseases, 
and cancer [10–12]. As a pivotal molecule, caspase-8 mediates and participates in 
signaling pathways involved in various pathophysiological processes, functioning as 
a “molecular switch” that influences multiple diseases and aspects of human health.

Understanding apoptosis and related processes has always been fundamental 
to cellular biology. The association between these processes and inflammation, 
particularly through molecules like caspase-8, has emerged as a critical area of 
research. This is due to the increasing recognition of inflammation’s role in a wide 
range of diseases, from autoimmune diseases to cancer. Our review underscores the 
relevance of caspase-8 within this context, highlighting its potential as a therapeutic 
target.
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Caspase‑8 and apoptosis

Current research unequivocally establishes that caspase-8 stands as the most pivotal 
initiator caspase in the cell death pathways mediated by death receptors (DRs) such as 
FAS, TNFR1, or DR4. Caspase-8, a crucial mediator of extrinsic apoptosis, is activated 
by the death-inducing signaling complex (DISC), demonstrating its functional efficacy. 
Within this assembly, FAS discerns external signals by binding with the FAS ligand 
(FASL) to convey the pro-apoptotic signals. FAS-associated protein with death domain 
(FADD), an adapter protein, is characterized by a C-terminal death domain (DD) and 
an N-terminal DED. Upon signal reception, FAS recruits and binds FADD through 
homotypic DD interactions. This chain of events then prompts a conformational 
change in the DED of FADD after DR binding, enabling it to engage with the DED1 
of cytosolic procaspase-8, culminating in the formation of DISC [7, 13, 14]. Within 
the DISC, procaspase-8 molecules aggregate and undergo self-activation, generating 
the active caspase-8, which initiates apoptosis by cleaving and activating executioner 
proteins such as caspase-3 and caspase-7 to execute apoptotic effects [5]. Beyond the 
FAS receptor, TNFR1 can also mediate apoptosis via caspase-8, albeit through a more 
intricate mechanism. During TNFR1’s orchestration of the apoptotic pathway, tumor 
necrosis factor receptor type 1-associated death domain protein (TRADD) is activated 
first and subsequently recruits FADD. Besides inducing apoptosis, it can also trigger the 
expression of cFLIP through the NF-κB pathway, thus inhibiting apoptosis. Within this 
process, receptor-interacting protein kinase 1 (RIPK1) emerges as a critical molecule. 
Post-translation, its ubiquitination and phosphorylation status determine cellular 
fate—survival or death. Once recruited by adapter protein TRADD, RIPK1 undergoes 
extensive ubiquitination by cellular inhibitors of apoptosis (cIAP) 1 and 2, activating 
NF-κB and MAPK pathways, releasing pro-inflammatory cytokines and promoting an 
anti-apoptotic response. In this process, TRADD and RIPK1 may engage in competitive 
interactions. Under specific conditions, if RIPK1 is not effectively recruited or its 
expression is suppressed, the apoptotic pathway is inhibited, thereby enabling the cell 
to evade programmed cell death [15–17]. In contrast, when RIPK1 is deubiquitinated 
by “death signal” cylindromatosis (CYLD) [18–22], it associates with FADD and 
procaspase-8 to form RIPK1-FADD-caspase-8 complex (complex IIa), leading to cellular 
death [14, 23].

In the context of apoptosis, cellular FLICE-inhibitory protein (cFLIP) plays a decisive 
role. This catalytically inactive homolog of caspase-8 modulates caspase-8 activity 
by binding to it [10]. cFLIP exists in two primary isoforms: the long variant  (cFLIPL) 
and short variant  (cFLIPS), with different structure and function. Comprising a long 
C-terminus, two DEDs, and a caspase-like domain,  cFLIPL closely resembles caspase-8, 
forming heterodimers with procaspase-8, but lacks the complete active site necessary 
for substrate cleavage. The roles of  cFLIPL are complex and not fully understood, but 
it is generally believed to have a dual influence on caspase-8, enhancing apoptosis at 
lower concentrations while inhibiting it at higher concentrations [14]. At low levels, 
procaspase-8 is prone to heterodimerization with  cFLIPL rather than homodimerization. 
Such heterodimers, with their DED chains akin to those on procaspase-8 homodimers, 
can activate procaspase-8, potentially promoting apoptotic signaling at lower levels 
[6, 7, 13, 24]. Conversely,  cFLIPS, composed of two DEDs and a truncated C-terminus 
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lacking a complete Caspase-like domain, can competitively inhibit DED-mediated DISC 
recruitment of procaspase-8, thereby blocking the activation of caspase-8 and preventing 
the initiation of apoptosis [6, 8, 25–28]. For the aforementioned phenomenon, the 
traditional competitive model posits that cFLIP competes with caspase-8 for binding 
to FADD, thereby inhibiting the recruitment and activation of caspase-8. However, the 
co-operative and hierarchical binding model proposed by Michelle A et al. [7] suggests 
that procaspase-8 binds to the FL motif of FADD through its DED1 hydrophobic pocket, 
and subsequently interacts with the DED1 of  cFLIPL/S via the FL motif of its DED2, 
forming procaspase-8:  cFLIPL/S heterodimers. The composition of these heterodimers 
ultimately determines the activity of caspase-8. Notably,  cFLIPS is unable to form death 
effector filaments, thus preventing the oligomerization of procaspase-8 and inhibiting 
the activation of caspase-8. In cells overexpressing  cFLIPS, the ratio of FADD: caspase-8: 
cFLIP approaches 1:1:1, indicating that  cFLIPS can alter the composition of the DISC 
and inhibit caspase-8 activity. In summary, the interaction between cFLIP and caspase-8 
represents a complex regulatory process that collectively determines cell fate. The 
co-operative and hierarchical binding model elucidates the dual functions of  cFLIPL 
and reveals the unique mechanism by which  cFLIPS inhibits caspase-8 [7, 13]. Thus, the 
isoforms and levels of cFLIP are critical in regulating apoptosis, a process essential for 
growth and development as it can eliminate potential pathogenic cells, such as inflamed 
or damaged cells, thereby maintaining homeostasis in the body.

In summary, caspase-8 serves as a pivotal initiator of the extrinsic apoptosis pathway, 
activated through the DISC upon death receptor engagement. This protease not only 
triggers a cascade involving effector caspases like caspase-3 and caspase-7 but also 
intricately interacts with regulatory proteins such as cFLIP and RIPK1, modulating the 
balance between cell survival and apoptosis. Uniquely, the dual roles of cFLIP isoforms 
highlight a sophisticated regulatory mechanism where lower  cFLIPL levels enhance 
caspase-8 activation, while higher levels inhibit it. This nuanced regulation, coupled 
with the interplay of ubiquitination and deubiquitination processes involving RIPK1, 
underscores the essential role of caspase-8 in apoptosis. From a novel perspective, 
targeting the modulatory interactions of caspase-8 with cFLIP and RIPK1 presents 
promising therapeutic potential for conditions characterized by aberrant apoptotic 
signaling. The role of caspase-8 in extrinsic apoptosis is illustrated in Fig. 1.

Caspase‑8 and necroptosis

Beyond the well-established role of caspase-8 in apoptosis, recent discoveries have 
highlighted its involvement in the regulation of necroptosis. Historically, necrosis was 
postulated as an uncontrolled form of cell death, resulting from accidental demise due to 
extrinsic environmental insults [29–31]. However, recent insights have revealed a form 
of cell death, necroptosis, which shares similarities with both apoptosis and necrosis 
but remains distinct. Morphologically akin to necrosis, it is characterized by cellular 
swelling, organelle distension, and plasma membrane rupture [31], yet it is differentiated 
by its programmatic regulation by genetic components, setting it apart from necrosis. 
Dependent on the interplay and modulation of various proteins, it is now understood 
that the extrinsic apoptotic and necroptotic pathways are intricately intertwined, with 
caspase-8 at the center of this interaction [14]. Necroptosis can be activated by receptors 
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such as tumor necrosis factor receptor 1 (TNFR1), DRs like TNFR and FAS, and Toll-
like receptors 3/4 (TLR3/4) [32–38], with the signaling cascade proceeding through 
the RIPK1-RIPK3-MLKL pathway. As previously mentioned, upon receptor activation, 
active RIPK1 is recruited to a complex containing FADD and caspase-8 (complex IIa). 
In the absence of active caspase-8, RIPK3 is recruited and phosphorylated by RIPK1, 
forming a structure known as the ripoptosome [37–40], which then recruits and 
phosphorylates MLKL, assembling the necrosome and mediating necrotic cell death 
[38, 41–44]. Moreover, once the ripoptosome is activated, RIPK3 can phosphorylate the 
mitochondrial pyruvate dehydrogenase complex (PDC), enhancing aerobic respiration 
and mitochondrial ROS production [37]. Numerous studies [35, 45, 46] corroborate 
that necroptosis can occur independently of RIPK1, though RIPK3 and MLKL are still 
key players. This finding challenges the conventional view of RIPK1 as an indispensable 
initiator of necroptosis, suggesting alternative pathways or regulatory mechanisms. The 
independence of necroptosis from RIPK1 implies a more robust and adaptable cell death 
mechanism, potentially involving other kinases or cellular stress responses that can 
directly activate RIPK3.

Caspase-8 has been shown to cleave key proteins involved in necroptosis, including 
RIPK1 [47], RIPK3 [48], and CYLD [49]. This cleavage activity serves as a critical 
regulatory mechanism, inhibiting necroptosis and promoting apoptosis, thereby 
modulating the inflammatory and tumorigenic microenvironment [6]. The pivotal role 
of caspase-8 in this process underscores its importance as a determinant of cellular 

Fig. 1 Schematic representation of caspase-8 mediated extrinsic apoptosis. Caspase-8 is activated by the 
death-inducing signaling complex (DISC), subsequently cleaving effector proteins caspase-3 and caspase-7, 
thereby initiating apoptosis. In the apoptosis pathway activated by tumor necrosis factor receptor 1 (TNFR1), 
the ubiquitination status of receptor-interacting protein kinase 1 (RIPK1) is a critical determinant of cell fate, 
dictating survival or death. Moreover, when the activity of caspase-8 is inhibited, the apoptotic pathway is 
suppressed, potentially triggering necroptotic cell death (by Figdraw)
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fate and the subsequent inflammatory outcomes. Apoptosis and necroptosis function 
as opposing forces within the cellular equilibrium, dictating the fate and inflammatory 
response of cells under stress or injury. Apoptosis, characterized by the orderly 
dismantling of cellular components into apoptotic bodies, typically results in an anti-
inflammatory environment, as these bodies are efficiently phagocytosed without 
triggering an inflammatory response in neighboring cells. In contrast, necroptosis leads 
to cell death through plasma membrane disruption, releasing intracellular contents 
that provoke a robust inflammatory reaction in adjacent cells, thereby escalating the 
overall inflammatory response [14]. The dynamic interplay between apoptosis and 
necroptosis, mediated by caspase-8, suggests a sophisticated cellular strategy to adapt to 
various pathological conditions. By controlling the balance between these two cell death 
pathways, cells can tailor their response to different stressors, optimizing survival or 
triggering death in a context-dependent manner.

The intricate interplay between caspase-8 and RIPK1 has emerged as a pivotal 
node in the regulation of inflammatory responses and cell death signaling. Evidence 
suggests that caspase-8-mediated cleavage of RIPK1 serves not only as a checkpoint in 
apoptosis but also a critical mechanism for maintaining inflammatory homeostasis. A 
study by Panfeng et  al. highlighted the importance of this mechanism, demonstrating 
that its inhibition can lead to an autoinflammatory state with heightened sensitivity to 
both apoptotic and necrotic stimuli [50–53]. However, the regulation of necroptosis 
is a multifaceted process, and while the cleavage of RIPK1 and RIPK3 is significant, 
it is not the sole determinant [9, 37, 54, 55]. A novel perspective is introduced by the 
observation that mutations at the RIPK1 cleavage site can lead to embryonic lethality 
in mice, a phenotype that cannot be rescued by the absence of RIPK3 or MLKL. This 
finding indicates that the interaction between caspase-8 and RIPK1 is essential for 
the survival of developing organisms and that the balance between apoptosis and 
necroptosis is delicately maintained. Caspase-8-mediated cleavage of RIPK1 acts as a 
central hub, coordinating the suppression of both apoptotic and necroptotic pathways. 
Concurrent inhibition of FADD-caspase-8-mediated apoptosis and RIPK3–MLKL-
mediated necroptosis is necessary to prevent mortality in mice, signifying a dual role for 
caspase-8 in regulating these pathways [31, 50, 51, 53]. These insights suggest a potential 
therapeutic strategy where modulating the caspase-8/RIPK1 axis could provide a dual 
mechanism of action against diseases characterized by dysregulated cell death and 
inflammation. In summary, the caspase-8/RIPK1 axis represents a critical junction in the 
regulation of cell death and inflammation. A nuanced understanding of this axis not only 
illuminates the fundamental mechanisms of cell death but also opens new avenues for 
developing targeted therapeutics. Future research should strive to elucidate the precise 
molecular underpinnings of this axis and explore its therapeutic potential in vivo, which 
could pave the way for novel precision medicine treatments for inflammatory and 
degenerative diseases.

In conclusion, caspase-8 is integral to the regulation of necroptosis through the 
cleavage of essential proteins, including RIPK1, RIPK3, and CYLD. This proteolytic 
activity inhibits the necroptotic pathway but facilitates the induction of apoptosis. 
This regulatory function is crucial for maintaining the balance between apoptosis and 
necroptosis, thereby influencing the inflammatory and tumorigenic microenvironment. 
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The innovative perspective on caspase-8’s role suggests that it serves as not only a 
gatekeeper between these two cell death pathways but also potentially modulates other 
cellular functions such as inflammatory homeostasis and apoptotic signaling. This 
multifaceted role of caspase-8 underscores its significance in cellular fate determination 
and highlights the potential for targeted therapeutic interventions aimed at manipulating 
caspase-8 activity to manage pathological conditions characterized by dysregulated 
necroptosis. The role of caspase-8 in necroptosis is depicted in Fig. 2.

Caspase‑8 and pyroptosis

Although pyroptosis is recognized as a form of PCD distinct from necroptosis, it was 
traditionally considered a response to certain bacterial damage factors, pathogens, and 
damage-associated molecular patterns (DAMPs), primarily mediated by caspase-1 
[6, 56]. However, recent discoveries have unveiled that other members of the caspase 
family can also contribute to the pyroptosis process, and there even exist caspase-
independent pathways (such as those involving granzyme A or B) [57, 58]. Pyroptosis 
often occurs following infection by pathogens, suggesting its probable role as part 
of an anti-infection or antimicrobial response. This process can release a plethora of 
cytokines to recruit immune cells, amplifying the inflammatory response to combat 
infections or cancer [59, 60]. Upon pyroptosis, cell membranes rupture, cells swell, 
chromatin condenses, and intracellular contents are released, thereby summoning 

Fig. 2 The role of caspase-8 in necroptosis. Necroptosis can be initiated by receptors such as the Fas receptor 
(FasR), TNF receptor (TNFR), and other death receptors (DRs), and proceeds via the receptor-interacting 
protein kinase 1 (RIPK1)–receptor-interacting protein kinase 3 (RIPK3)–mixed lineage kinase domain-like 
protein (MLKL) signaling axis. Following receptor activation, active RIPK1 is co-opted into a complex 
comprising Fas-associated death domain (FADD) and caspase-8 (complex IIa). When caspase-8 activity is 
inhibited, RIPK3 is then recruited and phosphorylated by RIPK1, leading to the formation of a complex known 
as the ripoptosome. The ripoptosome subsequently recruits and phosphorylates MLKL to assemble the 
necrosome, which ultimately orchestrates necroptotic cell death (by Figdraw)
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more inflammatory factors, exacerbating the inflammatory response and leading to 
tissue damage. However, unlike necrosis, the integrity of the nucleus and mitochondria 
remains intact during pyroptosis [37]. Traditional pyroptosis pathways are categorized 
into the caspase-1-mediated canonical pathway and the caspase-4/5/11-mediated 
noncanonical pathway. The canonical pathway involves the activation of procaspase-1 by 
pattern recognition receptors (PRRs), including the nucleotide-binding oligomerization 
domain-like receptors (NLRs) family, the DNA receptor absent in melanoma 2 (AIM2), 
and the pyrin receptor [36], upon detecting invasive microbial signals or pathogen-
associated molecular patterns (PAMPs) and intrinsically released DAMPs. This 
subsequently leads to the release of inflammatory cytokines and cleavage of gasdermin 
D (GSDMD), inducing pore formation in the cell membrane, which causes a massive 
release of inflammatory substances and triggers a cascading inflammatory storm [61–
63]. The noncanonical pathway, mediated by human caspase-4/5 and mouse caspase-11, 
can directly recognize and oligomerize bacterial lipopolysaccharides (LPS) and cleave 
GSDMD, promoting pore formation in cell membranes and inducing pyroptosis through 
the release of IL-1α [64–67]. Beyond these pathways, researchers discovered a caspase-
3-dependent pyroptosis pathway in 2017, the caspase-3-GSDME pathway [68]. Further 
exploration into this novel target revealed that caspase-3 can recognize and cleave the 
N-terminal domain of GSDMD, thereby exerting an inhibitory effect on pyroptosis [69], 
highlighting the complexity of the pyroptosis process.

Previously, caspase-8 was primarily considered involved in apoptosis rather than 
pyroptosis [6]. However, recent studies indicate that caspase-8 can mediate an 
alternative pathway independent of caspase-1 and caspase-4/5/11. It shares the same 
cleavage site on GSDMD with caspase-1, albeit with significantly lower efficiency. In the 
absence of caspase-1 or the pyroptotic effector GSDMD, inflammasomes can activate 
caspase-8, leading to a delayed, alternative secondary pyroptosis. This might serve as a 
protective mechanism against infections, with GSDMD-dependent pyroptosis inhibiting 
the activation of caspase-8 within the inflammasome, thus blocking the aforementioned 
process [70]. Danielle et  al. found that in the presence of Legionella pneumophila 
flagellin, the binding and assembly of neuronal apoptosis inhibitory protein 5 (NAIP5), 
NLR family CARD-containing protein 4 (NLRC4), and apoptosis-associated speck-
like protein containing a CARD (ASC), could recruit and activate caspase-8 in the 
absence of caspase-1 or GSDMD, inducing cell death. This mechanism might serve as 
a reserve strategy for cell death, aiming to limit bacterial replication or macrophage 
functionality [71]. In the study conducted by Fritsch et  al. [68], it was elucidated that 
in murine models, mutating the caspase-8 Cys362 (C362) residue to C362S abrogates 
its catalytic activity and plays a pivotal role in triggering caspase-1-mediated pyroptosis. 
The expression of  CASP8C362S catalyzes the formation of ASC specks, activation of 
caspase-1, and secretion of IL-1β, suggesting that catalytically inactive caspase-8, serving 
as a molecular scaffold, is crucial for the activation of inflammasomes and the pyroptosis 
process when both apoptosis and necroptosis are inhibited [72]. Furthermore, in the 
presence of caspase-1, the DED of caspase-8 can interact with the pyrin domain (PYD) 
of ASC, contributing to the activation of the NLRP3-dependent, caspase-1-mediated 
pyroptosis pathway. This interaction facilitates the formation of the IL-1 and NLRP3 
inflammasomes [73, 74]. Additionally, research has revealed that caspase-8 can act as 
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an upstream protein to activate caspase-3, which in turn cleaves GSDME to regulate 
pyroptosis, or directly cleave GSDMD or GSDME to induce pyroptosis [75–77]. In 
summary, although the research on caspase-8 in pyroptosis is still in its early stages, 
it is clear that caspase-8 is a critical determinant in the interplay and influence among 
apoptosis, necroptosis, and pyroptosis, serving as a key regulator of cellular homeostasis 
and determines cell fate.

In conclusion, the role of caspase-8 in pyroptosis extends beyond its conventional 
association with apoptosis, demonstrating a multifaceted function in the regulation of 
cell death pathways. Caspase-8 can initiate pyroptosis independently of caspase-1 and 
caspase-4/5/11, potentially acting as a supplementary mechanism in the defense against 
infections. Additionally, caspase-8’s capacity to scaffold inflammasome assembly and 
activate caspase-1 further highlights its critical role in inflammatory responses. This 
dual functionality establishes caspase-8 as a pivotal regulator in balancing apoptosis, 
necroptosis, and pyroptosis, underscoring its potential as a therapeutic target for 
inflammatory diseases and infections. The role of caspase-8 in pyroptosis is depicted in 
Fig. 3.

Caspase‑8 and PANoptosis

Apoptosis, necroptosis, and pyroptosis are all manifestations of PCD, acting as an 
intrinsic protective mechanism orchestrated by the organism itself. Despite the 

Fig. 3 The function of caspase-8 in cellular pyroptosis. Beyond the canonical pyroptosis pathway 
orchestrated by caspase-1, as well as the noncanonical pathway facilitated by human caspase-4/5 and 
murine caspase-11, caspase-8 initiates an alternative pathway that operates independently of caspase-1 
and caspase-4/5/11, targeting the same cleavage site on gasdermin D (GSDMD) as caspase-1. This 
GSDMD-dependent pyroptosis can suppress the activation of caspase-8 within the inflammasome, effectively 
halting the processes described above. Furthermore, caspase-8 can act as a precursor protein to activate 
caspase-3, which subsequently cleaves gasdermin E (GSDME) to modulate pyroptosis, or caspase-8 can 
directly cleave GSDMD or GSDME to trigger pyroptosis (by Figdraw)
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potential harm on the organism, their roles in development and survival are crucial 
[78, 79]. Often, the functions of these cell death pathways overlap, making them 
difficult to differentiate. To address this complexity, scholars have proposed a new, 
comprehensive form of cell death that encompasses apoptosis, necroptosis, and 
pyroptosis, termed PANoptosis [77]. This newly defined cell death modality is regulated 
by a cytosolic protein complex known as the PANoptosome. The initial components 
identified in the PANoptosome include RIPK1, ASC, NLRP3, and caspase-8 [80], 
with later studies adding RIPK3, caspase-6, ZBP1, and caspase-1 to the list [81]. The 
structural domains conducive to homo-interaction, found in many proteins involved 
in PCD pathways—including CARD, DD, DED, PYD, and receptor-interacting protein 
homotypic interaction motif (RHIM)—along with protein–protein interactions, 
provide the molecular foundations for the assembly of the PANoptosome. Within the 
PANoptosome, all three forms of cell death—apoptosis, necroptosis, and pyroptosis—
can be activated concurrently. Blocking one pathway can trigger another inflammatory 
cell death pathway. Caspase-8, the traditional initiator of apoptosis, plays a pivotal role 
in PANoptosis, acting as a key molecule that interlinks the three death modalities. 
Regulating caspase-8 can directly influence PANoptosis. For instance, caspase-8, apart 
from initiating apoptosis, can mediate pyroptosis, and its activity can directly inhibit 
MLKL-mediated necroptosis. Studies have shown that when pyroptosis is inhibited, 
caspase-8 can activate an inflammation-based cell death termed secondary pyroptosis 
or apoptosis, via the assembly of inflammasome mechanisms [70, 71, 73, 82–85]. These 
findings underscore that the activation of apoptosis, necroptosis, and pyroptosis during 
PANoptosis is regulated by a common complex. Therefore, within PANoptosis, the 
PANoptosome can act as a conceptual scaffold, recruiting core molecules from different 
cell death pathways to execute the inflammatory cell death process. Within this intricate 
framework, interacting proteins with diverse catalytic functions ensure the progression 
of cell death [85]. The assembly of the PANoptosome is flexible, allowing for the timely 
recruitment and functional deployment of core components from different cell death 
pathways. However, as a complex and programmed process, PANoptosis inevitably is 
influenced by external factors such as host factors and pathogen proteins, including 
the synthesis of related proteins and assembly of complexes, and the activity of various 
effectors. From the initiation of cell death signals to the triggering of cell death and 
the generation of multiple effects, numerous effector proteins and signaling pathways 
are involved. Thus, regulating the expression of these proteins and signaling pathways 
could be an effective approach to modulating PANoptosis [86]. Among these, caspase-8, 
serving as a molecular switch between the three types of cell death, undoubtedly draws 
significant attention from researchers and scholars. A schematic of PANoptosis and the 
related three cell death pathways is depicted in Fig. 4.

Caspase‑8 and inflammasome

Innate immunity serves as the primary defense against infections, playing a critical 
role in the detecting and recognizing pathogenic microorganisms and necrotic 
cells [87, 88]. Relying on PRRs, the innate immune system can identify PAMPs and 
DAMPs, thereby triggering the activation of subsequent anti-infection mechanisms 
[89]. However, with the discovery of more innate immune receptors, it become 
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evident that not all innate immune receptors recognize danger signals through direct 
binding to PAMPs or DAMPs. Instead, many discern harmful conditions by detecting 
cellular disturbances exerted by PAMPs or DAMPs. In most cases, upon detecting 
these disturbances, the receptors induce the expression of cytokines, inflammatory 
mediators, and other factors that enhance the defense mechanisms of host cells. 
Nonetheless, the host can also inhibit pathogen dissemination by inducing cell death, 
a process that is generally beneficial to the host [14, 90]. Inflammasomes are cytosolic 
supramolecular complexes that activate caspase-1 or other inflammatory caspases 
[91–94], with some inflammasome sensors being PRRs themselves. As discussed, 
PRRs encompass various receptor families, with the NLR family being among the 
most extensively studied. The NLRC4 inflammasome, for instance, can activate 
caspase-8-mediated apoptosis through the interaction between SUG1 and FADD, 
while in epithelial cells, caspase-8 can be activated by the NLRP3-ASC complex 
formed in mitochondria, thereby influencing the apoptosis process it mediates [95, 

Fig. 4 Schematic representation of PANoptosis and the associated triad of cell death pathways. PANoptosis 
embodies a comprehensive form of cell death that incorporates pyroptosis, apoptosis, and necroptosis. It is 
governed by a cytoplasmic protein conglomerate known as the PANoptosome, which encompasses core 
elements from various cell death modalities, including caspase-8. Within PANoptosis, the inhibition of one 
death pathway precipitates the activation of an alternative inflammatory cell death route. The PANoptosome 
serves as a conceptual scaffold, orchestrating the recruitment of pivotal molecules from disparate cell death 
pathways to facilitate the process of inflammatory cell death (by Figdraw)
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96]. Inflammasomes play a crucial role in regulating caspase-8 activity. Specifically, 
in macrophages, caspase-8 can be activated by the NLRP3, AIM2, and NLRC4 
inflammasomes, while in dendritic cells (DCs), it is activated primarily by the NLRP3 
inflammasome. This activation mechanism involves the recruitment of caspase-8 to 
the inflammasome complex, where it undergoes conformational changes and cleavage, 
leading to its activation. This interplay between inflammasomes and caspase-8 
highlights a multifaceted regulatory axis that influences both inflammatory responses 
and PCD. A novel perspective suggests that manipulating the inflammasome-
caspase-8 axis could offer innovative therapeutic strategies for diseases characterized 
by aberrant cell death and inflammation [73, 97–101]. Future research should focus 
on elucidating the precise molecular dynamics of this interaction and exploring 
how selective modulation of these pathways can be leveraged to treat chronic 
inflammatory and autoimmune disorders.

Moreover, caspase-8 also plays a regulatory role with inflammasome activity, with its 
effect varying depending on the cell type [14]. In macrophages, for example, caspase-8 
and FADD can promote the production of IL-1β by activating both canonical and 
noncanonical NLRP3 inflammasomes. Conversely, in DCs, caspase-8 may inhibit the 
activation of the NLRP3 inflammasome mediated by the RIPK1–RIPK3–MLKL pathway 
[102, 103]. Caspase-8 has also been implicated in an alternative NLRP3 activation 
process mediated by TLR4, exhibiting monocyte specificity and species specificity, as 
it occurs only in human and pig monocytes, not in mouse monocytes. In this context, 
NLRP3, as a relevant factor, can be activated by the adapter protein TIR domain-
containing adapter molecule 1 (TICAM1, also known as TRIF) and caspase-8 [104, 
105]. Furthermore, necroptotic cell death can also activate NLRP3; when caspase-8 
activity is inhibited, necroptosis occurs, and RIPK3-mediated formation of MLKL pores 
on the plasma membrane leads to the efflux of potassium ions, thereby promoting the 
activation of NLRP3. It is worth noting that the activation of caspase-8 downstream of 
RIPK3-mediated TLR3, can also independently activate NLRP3, separate from MLKL 
activation, highlighting the intertwined role of RIPK3-mediated NLRP3 activation and 
pro-inflammatory potential of necroptosis [104, 106–108]. Studies also indicate that 
caspase-8 can participate in the regulation of upstream inflammasomes of NLRP3 [108, 
109]. Thus, while the precise molecular mechanisms by which caspase-8 is involved in 
these processes are not fully elucidated, its role in the regulating the expression and 
maturation of inflammasomes and inflammatory mediators provides new insights into 
targeting caspase-8 for regulating cell death and maintaining cellular homeostasis.

In summary, the interaction between caspase-8 and inflammasomes constitutes a 
central regulatory axis for inflammatory responses and programmed cell death (PCD). 
Given these intricate dynamics, we propose that therapeutic strategies targeting the 
inflammasome–caspase-8 axis could effectively manage diseases characterized by 
dysregulated inflammation and cell death. Future research should aim to elucidate the 
precise molecular interactions governing this axis, potentially unveiling new, selective 
methods to modulate these pathways for therapeutic benefits in chronic inflammatory 
and autoimmune disorders. This approach not only provides a promising avenue 
for disease intervention but also deepens our understanding of the fundamental 
processes controlling immune homeostasis.
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Caspase‑8 and inflammatory diseases

While the apoptotic function of caspase-8 has been extensively studied, its nonapoptotic 
roles have also attracted considerable attention, especially for their importance in 
cellular development [14]. Mice deficient in caspase-8 exhibit embryonic lethality 
at E10.5, and similarly, mice harboring catalytically inactive caspase-8 mutations, 
 casp8C382A/C362A, also display embryonic lethality. Although this observation does not 
necessarily implicate a non-cell death function of caspase-8, it underscore the essential 
role of caspase-8 activity in embryonic development [102, 110]. In humans, aberrant 
expression of caspase-8 is associated with a range of refractory diseases, including 
autoimmune lymphoproliferative syndrome (ALPS), immunodeficiency, inflammatory 
bowel disease (IBD), neurodegenerative disorders (NDDs), and cancer. Research 
indicates that inhibiting the nonapoptotic functions of caspase-8 may help suppress 
excessive inflammatory gene transcription, including key inflammatory molecules 
such as NLRP3 and IL-1β, thereby alleviating inflammation. Enhancing the expression 
of caspase-8 could potentiate its apoptotic or necroptotic defenses against tumors or 
infections [10]. Therefore, understanding the relationship between caspase-8 and disease 
onset, as well as the potential molecular mechanisms or signaling pathways involved, is 
of paramount importance. It is essential to summarize and review the role of caspase-8 
in relevant diseases to gain a deeper understanding of its function within disease 
contexts, thereby providing a reference and inspiration for the design and development 
of targeted therapeutics focusing on caspase-8 or related pathways in cell death.

Caspase‑8 and autoimmune diseases

Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune demyelinating 
disease predominantly affecting the central nervous system (brain and spinal cord), 
characterized by multifocal demyelinating lesions [111]. The exposure to a plethora of 
pro-inflammatory agents within the meninges is a principal factor leading to pathologic 
alterations in the MS cortex. Postmortem studies of cortical gray matter from individuals 
with progressive MS have revealed an upregulation of TNFR1/RIPK1 signaling within 
cortical neurons. This upregulation triggers downstream necroptotic cell death via 
the RIPK1–RIPK3–MLKL pathway, contributing to the formation of necroptotic 
bodies within the MS cortex and playing a role in the pathological progression of MS. 
Concurrently, a downregulation of caspase-8 levels and caspase-8-dependent apoptotic 
signaling in the MS cortex inhibits apoptosis. This suggests that neuronal death in the 
MS cortex occurs through necroptosis rather than apoptosis, with the downregulation 
of caspase-8 possibly being a key reason for the shift from apoptotic to necroptotic cell 
death [112]. Ofengaim et al. also found a close association between caspase-8 deficiency, 
activation of necroptotic cell death, and MS. They observed defects in caspase-8 
activation within MS cortical lesions, along with oligodendrocytes expressing RIPK1, 
RIPK3, and MLKL, indicating the activation of necroptosis. Given the critical role of 
caspase-8 in inhibiting necroptosis, these findings suggest that caspase-8 deficiency 
and the resultant disinhibition of necroptosis could contribute to MS progression 
[113]. Similarly, research has identified reduced expression levels of caspase-8 in MS 
patients with detectable gadolinium-enhancing lesions [114, 115]. Studies by Kim et al. 
also highlighted the negative regulatory role of caspase-8 in autoimmune diseases like 
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MS within infiltrating macrophages. Caspase-8 can inhibit the production of IL-1β 
during the inflammatory demyelination process and autoinflammatory responses, with 
its deficiency commonly accompanied by inflammatory activation and inflammasome 
activation [111]. This suggests that elevated levels of caspase-8 might represent a 
potential strategy for suppressing autoimmune diseases, whereas reduced levels of 
caspase-8, leading to dysregulated inflammatory responses, could exacerbate the 
disease. However, contrary to oligodendrocytes, active caspase-8 level is significantly 
increased in microglia of the brain tissue of MS patients, contributing to the activation 
of noncanonical inflammasomes and the production of inflammatory cytokines/
chemokines, thereby aggravating the disease [113, 116]. Driven by inflammatory 
responses, activated microglia release pro-inflammatory mediators, further exacerbating 
the progression of MS. This reveals the cell-specific and diverse functionality of 
caspase-8 across different cell types, highlighting its varying roles in apoptosis, 
necroptosis, pyroptosis, and inflammasome activation. These findings underscore the 
need for further investigation into the differential mechanisms of caspase-8 activation. 
It is conceivable that caspase-8, with its multifaceted roles in MS, could emerge as a 
significant target in the therapeutic intervention of MS progression.

IBD represents a chronic state of inflammation within the gastrointestinal tract, 
primarily comprising ulcerative colitis (UC) and Crohn’s Disease (CD). Numerous 
studies suggest that immune dysregulation towards the gut microbiota causes the 
immune system to mistakenly target the normal tissues of intestine, resulting in chronic 
inflammation and tissue damage [117–119]. While the exact etiology of IBD is not 
fully understood, it is often considered an autoimmune condition. Caspase-8 plays 
a significant role in cell death and inflammasome activation, among others, thereby 
influencing the progression of IBD from various aspects. Additionally, caspase-8 is 
involved in the homeostasis of intestinal immunity and inflammation. For instance, 
genetic caspase-8 deficiencies in patients have been associated with intestinal 
inflammation and immune dysregulation, accompanied by gastrointestinal symptoms 
such as diarrhea and perianal diseases [120]. Research by Robin et al. discovered that the 
regulating intestinal epithelial cell (IEC) death is crucial for maintaining the homeostasis 
of intestinal inflammation, and its imbalance could be one of the mechanisms 
underlying the development of IBD. Z-DNA binding protein 1 (ZBP1) and TNFR1 
drive the inflammatory response in IECs with FADD deficiency through inducing 
MLKL-mediated necroptosis and caspase-8–GSDMD-mediated pyroptosis, whereas 
FADD and caspase-8 are able to regulate the intestinal inflammation and homeostasis 
through these pathways [121]. Furthermore, ZBP1 also plays a role in the intestinal 
inflammation of humans with caspase-8 mutations, potentially progressing to a severe 
form of IBD. Studies have shown that a deficiency in caspase-8 can elevate the activity of 
inflammasomes through the upregulation of RIP3, underscoring the close relationship 
between necroptosis and inflammatory tissue damage in IBD, with caspase-8 deficiency 
being a primary reason for the disinhibition of necroptosis [122]. In a case report by 
Kanderova et al., an early-onset IBD linked to caspase-8 mutation was discovered, and 
the direct reasons behind the clinical phenotype caused by the caspase-8 mutation 
were explored [123]. These studies suggest that reduced levels or defects in caspase-8 
could provoke IBD. However, some studies present an entirely contrasting viewpoint. A 
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study by Chen et al., which consolidated proteomics data and conducted a prospective 
Mendelian randomization (MR) analysis, found a causal relationship between elevated 
levels of caspase-8 and an increased risk of UC [124]. Additionally, a cross-sectional 
study by Moraes et  al. indicated that elevated levels of caspase-8 might promote UC 
progression through interactions with inflammatory factors [125]. Research by Becker 
et al. showed an increase in caspase-8 expression in the colonic mucosa of rats induced 
with UC by acetic acid (AA), suggesting that caspase-8 plays a role in controlling the 
necrosis of Paneth cells related to mucosal inflammation and the potential death of 
IECs in patients with CD [11]. Therefore, targeting caspase-8 or its regulators could 
be a potential avenue for preventing IBD. However, despite extensive studies on the 
involvement of caspase-8 in cell death, research into its non-cell death functions, such as 
pro-inflammatory actions, remains relatively underexplored. Given the complex role of 
caspase-8 in the pathogenesis of IBD, further in-depth research is warranted.

ALPS represents a rare genetic disorder characterized by an autoimmune response 
due to excessive lymphocyte proliferation. A systematic review on ALPS revealed that 
approximately 85% of ALPS and ALPS-like cases are associated with mutations in the 
FAS gene, suggesting that mutations in the FAS gene could be a principal etiological 
factor [126]. Numerous studies have also indicated that lymphocyte apoptosis 
dysregulation mediated by FAS is a contributing factor to the disease [127–131]. 
However, some ALPS or ALPS-like patients exhibit normal FAS gene expression and 
sequencing, with apoptosis dysregulation occurring downstream of FAS, such as 
in patients with caspase-8 deficiency. Caspase-8, a pivotal apoptotic protease, plays 
an essential role in the FAS-mediated apoptosis pathway. The first discovery of two 
siblings with homozygous caspase-8 mutations was made in 2002, characterized by 
lymphadenopathy and defective lymphocyte apoptosis [12]. In the research conducted 
by Julie et  al., two patients from the same extended family as the aforementioned 
individuals, bearing identical mutations, were identified. These patients presented 
symptoms akin to those with FAS mutation-associated ALPS, but with more pronounced 
immunodeficiency symptoms [132, 133]. Studies have suggested that caspase-8-
associated apoptosis and necroptotic death collectively influence the progression of 
ALPS. The impairment of FADD–caspase-8-induced apoptosis, resulting from ablation 
of RIPK3 or MLKL, has been identified as a causative factor for ALPS [14]. Although 
it is certain that the disorder is closely linked to disruptions in FAS and caspase-8-
related apoptotic pathways, the rarity of the disease and the limited number of cases 
have impeded in-depth research into the association between caspase-8 expression, 
deficiency, and ALPS.

Furthermore, numerous autoimmune disorders have been confirmed to be closely 
associated with caspase-8. Research has indicated that caspase-8 may play a role in 
the pathological progression of rheumatoid arthritis (RA), functioning within synovial 
antigen-presenting cells, and modulating the response to inflammatory stimuli through 
the inhibition of necroptotic death, thereby maintaining homeostasis within the joint 
[134]. The study by Zheng et al. also discovered that caspase-8, by regulating ferroptosis 
and pyroptosis, participates in the RA process and serves as a crucial biomarker for 
both ferroptosis and pyroptosis in RA, suggesting that targeting caspase-8 could be a 
potential therapeutic strategy for RA [135]. Moreover, in autoimmune hepatitis (AIH), 
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excessive activation of apoptosis, especially caspase-8-mediated apoptosis, is the 
primary mechanism of cell death. This suggests that intervening caspase-8-mediated 
extrinsic apoptosis pathway could be a viable approach to protect liver cells in AIH 
[136]. Additionally, autoantibodies extracted from the serum of patients with Sjögren’s 
Syndrome (SS) can trigger a caspase-8 dependent apoptosis pathway, thereby mediating 
the death of A-253 human salivary gland cell lines, indicating an indispensable role 
of caspase-8 in the pathogenesis of SS [137]. In conclusion, caspase-8 is implicated in 
the pathological processes of various autoimmune diseases, offering new targets and 
perspectives for treatment. However, it is essential to note that the role of caspase-8 
in these diseases may be complex, requiring further research to elucidate the specific 
mechanisms.

Caspase‑8 and neurodegenerative diseases

NDDs represent a diverse group of neurological disorders that are often age-associated 
and characterized by pathological alterations including apoptosis, necroptosis, oxytosis, 
and ferroptosis among others [138]. These conditions lead to progressive loss of neurons 
within the CNS or the peripheral nervous system (PNS), culminating in the collapse of 
neural networks and neuronal damage, ultimately resulting in impairments in memory, 
cognition, behavior, sensory, and/or motor functions [139, 140]. NDDs are marked by 
the gradual decline of neurological functions, presenting a significant challenge for 
caregiving and treatment while causing considerable suffering on affected individuals. 
Recent research has underscored the pivotal role of caspase-8 as a key regulator for 
apoptosis, pyroptosis, and necroptosis, and its unique contribution to the pathogenesis 
of NDDs such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and MS. Our 
previous discussions have delved into the potential mechanisms and roles of caspase-8 
in MS. Herein, we focus on the other two most prevalent NDDs, AD and PD.

Globally, approximately 44 million individuals are affected by AD, which is 
characterized by cerebral atrophy and potential neuronal loss, with dementia being 
the most common manifestation, leading to progressive memory loss and cognitive 
impairments [141–146]. As the disease progresses, patients often require continuous 
care and assistance, imposing a significant burden on families and society [147]. 
Amyloid-beta (Aβ) and tau protein, particularly its hyperphosphorylated form (ptau), are 
critical in disease development. The accumulation of extracellular plaques formed by Aβ 
and neurofibrillary tangles (NFTs) within neurons are key neuropathological hallmarks 
of AD [141, 146, 148]. Recent studies suggest the caspase family may be involved in the 
formation of plaques and NFTs, with caspases capable of cleaving tau, thereby initiating 
or exacerbating the formation of tau tangles [149]. Caspase-8 has been identified as 
playing a significant role in the progression of AD, acting upon amyloid precursor protein 
induced by Aβ1–40 to instigate apoptosis [150]. Research indicates that caspase-8 
can cleave amyloid precursor protein (APP) during apoptosis, leading to an increased 
Aβ formation and thus contributing to the onset of AD [151]. Furthermore, caspase-8 
has been found to promote neuronal apoptosis and AD-related motor dysfunction, 
suggesting that inhibiting caspase-8 could be a promising avenue for slowing AD 
progression [152]. Additionally, brain immune cells such as astrocytes and microglia, 
which are involved in AD progression, release pro-inflammatory cytokines including 
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IL-1β, TNF-α, and IL-6, thus promoting tau hyperphosphorylation. The activation of the 
immune system can induce cell death through various mechanisms including pyroptosis, 
apoptosis, and necroptosis, potentially leading to the release of pro-inflammatory 
cytokines and the occurrence of chronic neuroinflammation, exacerbating the severity 
of AD [147]. Caccamo et al. observed a significant presence of necroptosis in the brains 
of individuals posthumously diagnosed with AD, and in AD mouse models, inhibiting 
necroptosis was found to reduce cell death [153]. Furthermore, inflammasomes and 
their mediated processes of inflammation and pyroptosis also constitute pathological 
factors in NDDs including AD, where inflammasomes such as NLRP1, NLRP3, and 
AIM2 play a pivotal role in the proliferation of Aβ pathology [154]. Caspase-8 emerges 
as a critical regulator of these cell death processes and neuroinflammatory mediators, 
playing a significant role in the onset and progression of AD. However, its function 
within the pathogenesis of AD remains underexplored. Recent research has shown 
that in AD mouse models, the caspase-8/RIPK3 axis is essential for promoting Aβ 
deposition and gliosis, which are indispensable for the progression of AD. Additionally, 
it was confirmed that the combined deficiency of caspase-8 and RIPK3 could limit the 
activation of the NLRP3 inflammasome and the secretion of IL-1β, thereby curbing the 
pathological progression of AD. Consequently, caspase-8, as a crucial regulator driving 
the expression of inflammasome genes and the release of IL-1β in response to Aβ, is 
vital to the development and progression of AD [155]. Despite these insights, the role 
of caspase-8 in AD is still in its early stages of exploration. This suggests that caspase-8 
might also control other aspects of AD progression, with its regulatory impact on AD 
pathology harboring much undiscovered potential. Targeting caspase-8 could represent 
a novel strategy for limiting AD and neuroinflammation, making its specific role in AD 
an uncharted territory ripe for exploration.

PD, alongside AD, ranks among the most prevalent NDDs in the elderly, marked by 
the progressive loss of dopaminergic neurons in the substantia nigra, accompanied 
by neurodegeneration within the substantia nigra pars compacta [156–158]. Similar 
to other NDDs, the etiology of PD is highly complex, likely involving oxidative 
stress, neuroinflammation, mitochondrial dysfunction, and neuronal death, with its 
fundamental cause remaining elusive [156]. The involvement of caspase-8 in PD is 
multifaceted, potentially influencing the progression of disease through its regulation 
of apoptosis, necroptosis, and inflammatory responses, making it a valuable target for 
PD treatment research. Apoptosis is considered the principal mechanism of neuronal 
death in most NDDs, including PD. This apoptotic process has been extensively 
documented in PD patients and various experimental models, such as MPTP mouse 
models, with apoptosis capable of being reversed through caspase inhibition [159]. In 
patients with PD, apoptotic-like changes in the affected cells of substantia nigra are 
significantly more prominent than in healthy controls, suggesting that apoptosis may 
play an essential role in the pathological progression of PD [160–162]. Caspase-8, as 
one of the initiators of apoptosis, promotes cell death by cleaving various substrates 
and may significantly contribute to the chronic inflammation observed in PD, which 
can persist for decades [159]. Beyond apoptotic factors, necroptosis has also been 
implicated in the pathogenesis of PD. Clinical studies have reported a marked increase 
in degenerative changes in dopaminergic neurons within the substantia nigra of PD 
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patients, with a significant elevation in necroptosis markers RIPK1, RIPK3, and MLKL 
compared with control groups [163]. The absence of RIPK3 has been shown to protect 
against neurodegeneration in dopaminergic neurons, supporting the hypothesis 
that necroptosis may be one of the causes for neuronal cell death in PD [156]. The 
heterodimer of procaspase-8 and  cFLIPL exhibits proteolytic activity, mediating 
the cleavage of RIPK1 and inhibiting necroptosis without inducing apoptosis under 
physiological conditions. Hence, activated caspase-8 plays a pivotal role in suppressing 
RIPK1-mediated necroptosis [60, 159]. Furthermore, compelling evidence suggests that 
inflammatory factors significantly influence cell death in PD progression [164–166]. 
Pro-inflammatory microglial activation may be a critical element in the progression of 
chronic neuroinflammation associated with PD. The resulting inflammatory mediators 
can persist longer than normal, potentially leading to caspase-dependent neuron death 
(including caspase-8/3/7 pathways), regulating microglial activation and associated 
neurotoxicity [167, 168]. In MPTP mouse models of PD, researchers found that the 
activation of pro-inflammatory microglia could disrupt the dopaminergic system of the 
nigrostriatal pathway, and the absence of caspase-8 could block microglial activation 
in the MPTP model of PD, suggesting that caspase-8 may play a pro-inflammatory 
role in the pathology of PD [167]. Additionally, research has discovered that caspase-8 
can regulate in early-onset familial PD with autosomal recessive mutations in the 
F-box only protein 7 gene (Fbxo7). Caspase-8 can interact with FBXO7, triggering 
its activation and leading to the degradation of the cell-protective factor FOXO4, a 
process that could weaken neuronal protection and accelerate cell death [169]. These 
findings indicate that caspase-8 may play an essential role in neuronal death and holds 
a crucial position in the etiology of PD, potentially serving as a promising therapeutic 
target. However, most research to date has primarily been conducted on experimental 
models, and the regulatory role of caspase-8 in PD through various pathways is complex, 
making ti difficult to consolidate into a single model. Consequently, a unified consensus 
on the therapeutic effects of caspase-8 has yet to be established. This area of research 
remains in its preliminary phases, calling for further in-depth studies into the molecular 
mechanisms involved.

Caspase‑8 and sepsis

Sepsis, characterized by a dysregulated host response to infection and complex organ 
dysfunction, is a prevalent complication among critically ill patients. It is associated 
with a high morbidity rate and can cause lethal damage to various organs [170–172]. 
Presently, sepsis is a leading cause of mortality worldwide in noncardiac intensive care 
units, with death rates soaring between 20 and 25% [173]. Prior research has highlighted 
the intricate pathophysiology of sepsis and the lack of effective treatment modalities, 
underscoring the importance of identifying novel therapeutic targets for its management 
[174]. The mechanism of sepsis involves an imbalance in the host’s innate and adaptive 
immune responses. In the early stages, this imbalance is often accompanied by an 
overactive immune system and inflammatory response, alongside immunosuppression. 
Numerous immune cells are activated, regulating immune and inflammatory processes 
and accelerating the progression of sepsis [175]. At the cellular level, various forms of cell 
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death, including apoptosis, necroptosis, necrosis, autophagy, and ferroptosis, contribute 
to the advancement of sepsis [175, 176].

Caspase-8 is implicated in numerous aspects of the septic pathology and emerges as 
a potential therapeutic target. Studies have shown significant differences in caspase-8 
levels between sepsis survivors and nonsurvivors, with elevated blood caspase-8 levels 
in nonsurvivors correlating with higher mortality rates [177]. Moreover, the caspase-8-
mediated apoptotic pathway may play a pivotal role in the progression of sepsis. Within 
renal endothelial cells, tumor necrosis factor TNF-α receptor 1 induces apoptosis 
through a caspase-8-dependent extrinsic apoptotic pathway, potentially exacerbating 
sepsis-induced acute kidney injury (SI-AKI) [178–181]. Annexin A1 (ANXA1) has 
been shown to mitigate inflammation and apoptosis in  vitro and in  vivo through an 
Fpr2 receptor-dependent pathway, thereby alleviating sepsis-induced SI-AKI [182]. 
Nevertheless, not all pro-apoptotic processes contribute to the progression of sepsis. 
Studies indicate a positive correlation between the severity of sepsis and the levels of anti-
apoptotic activity in neutrophils; when apoptosis in neutrophils is significantly inhibited, 
the delayed apoptosis may lead to an intensified inflammatory response and multiple 
organ dysfunction in septic patients, indicating that the level of neutrophil apoptosis 
may serve as an assessment indicator for the severity of sepsis [176, 183–185]. In this 
context, dysregulation of caspase-8 phosphorylation or inhibition of its catalytic activity 
can contribute to the survival of sepsis-induced neutrophils by inhibiting apoptotic 
pathways [186, 187]. For instance, the adenosine 2A receptor (A2AR) can inhibit 
neutrophil apoptosis by blocking the signaling pathways of caspase-8, caspase-3, and 
polyadenosine diphosphate ribose polymerase (PARP) by suppressing autophagy [188]. 
Thus, caspase-8 mediated inhibition of apoptosis may represent a potential strategy 
for treating and assessing the level of sepsis. In addition to the apoptosis, pyroptosis 
has been demonstrated to contribute to the regulation of sepsis. Although pyroptosis 
was initially perceived as detrimental to the host, moderate levels of pyroptosis can 
serve as a mechanism for pathogen elimination, thereby facilitating self-protection. 
Specifically, in the context of caspase-8-mediated pyroptosis, caspase-8 is capable of 
cleaving gasdermin D (GSDMD) and gasdermin E (GSDME), resulting in the formation 
of “gasdermin pores” in the cell membrane. These pores mediate pyroptosis and 
subsequently trigger inflammatory responses [75, 76, 102, 189]. Research demonstrates 
that activated GSDMD, by forming “gasdermin channels” in the bacterial cell membrane, 
can kill Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes, thereby 
offering some protection against sepsis [190]. Pyroptosis appears to have a dual role 
in the pathogenesis of sepsis: a moderated level of pyroptosis could offer protective 
effects, whereas excessive pyroptosis might trigger severe inflammatory responses, 
accelerating the progression of sepsis [102, 189–191]. In recent years, necroptosis has 
also been identified as playing a pivotal role in the pathophysiology of sepsis. However, 
whether cells undergo apoptosis or necroptosis may depend on the activity of caspase-8. 
Although the precise molecular mechanisms remain unclear, this suggests that caspase-8 
activity might influence sepsis progression by regulating necroptosis. Necroptosis has 
been confirmed to participate in the processes of sepsis and its complications, where 
inhibiting necroptosis could alleviate lung [192], kidney [193], and liver [194] damage 
caused by sepsis. Studies have shown that the absence of RIPK3 can confer protective 
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effects in sepsis models, and inhibiting RIPK3 or RIPK1 can also reduce organ 
dysfunction and inflammatory responses in septic mice, highlighting the potential of 
RIPK kinase inhibitors in sepsis-related treatments [192, 195–197]. Further research has 
discovered that protein tyrosine phosphatase nonreceptor type 6 (PTPN6) can target the 
RIPK1–RIPK3–MLKL pathway and the caspase-8-mediated apoptosis pathway, thereby 
inhibiting platelet apoptosis and necroptosis during sepsis and preserving platelets 
from death, which helps maintain vascular integrity during sepsis [198]. Additionally, 
RIPK3-mediated necroptosis and GSDMD-induced pyroptosis have been proven to act 
synergistically during sepsis, intensifying inflammatory signaling pathways and tissue 
damage, thus exacerbating the progression of sepsis [199].

It can be concluded that multiple cell death pathways are involved in the progression 
of sepsis, highlighting the complex role of caspase-8 in sepsis. The overlapping roles 
of pyroptosis, apoptosis, and necroptosis in cell death make it challenging to fully 
distinguish between these processes [200]. For instance, while neutrophil apoptosis is 
inhibited during sepsis, caspase-8 activity is likely suppressed as well, but the specific 
role and molecular mechanism of neutrophil necroptosis remain unclear [187]. The 
concept of PANoptosis may provide further insight into these overlapping phenomena, 
as it suggests that the mechanisms of pyroptosis, apoptosis, and necroptosis are 
interconnected. This underscores that the role of caspase-8 in sepsis extends beyond a 
single cell death process or signaling pathway. Given its potent regulatory role in the cell 
death, a deeper investigation into caspase-8 is highly warranted, as many of its functions 
are still undiscovered.

Caspase‑8 and cancer

Caspase-8 functions as a critical regulator of cellular fate, with its importance in human 
development and homeostasis well established. Due to this pivotal role, caspase-8 has 
garnered considerable attention from researchers, especially regarding its function. 
Cancer, characterized by uncontrolled cell proliferation and disrupted cell cycle 
regulation, involves complex etiology, high genetic susceptibility, and challenging 
treatment resistance, making its therapy a formidable global medical challenge. 
Consequently, researchers continue to explore molecular pathways that could inhibit 
cancer progression [9, 201]. For a long time, it was believed that diminished expression/
activity of caspase-8 facilitated apoptosis evasion, thereby reinforcing cellular resistance 
to radiotherapy and chemotherapy in most cancers. However, recent studies suggest 
that this may only characterize a minority of cancer types, with caspase-8 activity not 
universally diminished; in fact, it remains unchanged or even elevated in certain cancers, 
providing a proliferative advantage through its nonapoptotic functions [6, 202].

In cancers with reduced caspase-8 expression, such as hepatocellular carcinoma [203–
205], breast cancer [206, 207], and Ewing’s sarcoma [208, 209], the downregulation of 
caspase-8 activity occurs through genetic alterations (such as somatic, missense, and 
frameshift mutations, allelic losses or deletions) and post-translational modifications 
(PTMs, such as phosphorylation [210], ubiquitination [211], and nitrosylation [212]). 
This modulation mediates apoptosis suppression, allowing tumor cells to evade cell 
death. Additionally, PTMs of caspase-8 can promote cancer progression by enhancing 
cellular motility, migration, inflammation, angiogenesis, and resistance to genotoxic 
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stresses [202, 213–216]. In summary, the oncogenic potential stemming from the 
diminished expression and activity of caspase-8 is substantial and aligns with its classical 
apoptotic functions.

In cases where caspase-8 expression remains relatively stable, such as in head and neck 
squamous carcinoma [217, 218], esophageal cancer [219, 220], and rhabdomyosarcoma 
[221, 222], caspase-8 activity may be compromised, often resulting in inhibited 
apoptosis. The underlying mechanisms may include dysfunctional procaspase-8 [223, 
224], activation of anti-apoptotic NF-kB by caspase-8 mutants [217], and suppression 
by overexpression of Bcl and IAP family proteins [225, 226]. Moreover, tumor cells 
might also acquire enhanced migratory and invasive capabilities due to altered caspase-8 
function [218, 227]. These processes collectively underscore that the most discernible 
impact of reducing caspase-8 expression or activity is the ability of cancer cells to evade 
caspase-8-mediated apoptosis. Simultaneously, the reduction in tumor cell death and 
the rapid cell proliferation are associated with an increased propensity for metastasis [6, 
228].

Beyond the previously mentioned scenarios of diminished caspase-8 expression, 
the overexpression of caspase-8 in tumor cells—such as in colorectal cancer [229, 
230], cervical cancer [231, 232], and renal cell carcinoma [233, 234]—also furnishes 
many tumor cells with a growth advantage. The most probable mechanism behind this 
phenomenon is the nonapoptotic functions of caspase-8 in the progression of these 
cancers. For instance, in glioblastoma multiforme (GBM), caspase-8 is co-opted by 
tumor cells and, paradoxically, exerts a pro-tumorigenic role. During this process, both 
the expression of caspase-8 and the activity of Src tyrosine kinase—which facilitates 
the phosphorylation of caspase-8 on tyrosine 380—are aberrantly activated. Although 
Src-mediated phosphorylation can inhibit caspase-8 activity, Contadini et  al. [216] 
uncovered that Src-dependent phosphorylation of caspase-8 is a prerequisite for the 
activation of NF-κB, and can sustain and promote inflammation, angiogenesis, and 
resistance to radiotherapy [216, 235]. Additionally, throughout tumor development, the 
capacity of caspase-8 to promote cell motility [236], angiogenesis [235], and tumorigenic 
transformation [210] may provide substantial support for the initial tumor growth. 
However, as the cancer becomes more established, these functions might become 
redundant, and with the progression of malignancy, caspase-8 could be downregulated 
and play a role in promoting metastasis. This suggests that tumor cells might regulate 
the expression of caspase-8 by sensing changes in their growth microenvironment to 
control cell fate [6, 228, 237]. Mandal et al. [6] provided a comprehensive review of the 
variations of caspase-8 in different cancer types and the potential effects. Furthermore, 
they also discussed the genetic alterations in caspase-8 across various cancer types, such 
as promoter methylation, frameshift mutations, and missense mutations.

Past studies primarily focused on the apoptotic function of caspase-8; however, its 
nonapoptotic roles in tumors have recently emerged as a key area of research. Beyond 
its role in PCD, caspase-8 also participates in processes such as cytoskeletal remodeling, 
cell adhesion, and cell migration. Caspase-8 can act as part of various biological sensing 
complexes, exerting either pro-migratory or pro-death functions depending on the 
cellular microenvironment [214]. This nonapoptotic functionality does not rely on the 
enzymatic activity of caspase-8 but on its capacity to serve as a scaffold or adapter within 
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specific protein complexes. Through this scaffolding function, caspase-8 facilitates 
cytoskeletal reorganization [238], focal adhesion turnover, and integrin recycling, 
thereby sustaining the migratory ability of apoptosis-resistant tumor cells both in vitro 
and in  vivo [237, 239]. Moreover, the role of caspase-8 in inflammatory and immune 
system functions cannot be overlooked. It was initially discovered that caspase-8 could 
activate NF-κB independently of its catalytic activity [240]. Upon inflammatory stimuli, 
caspase-8 can promote NF-κB activation and cytokine release, likely achieved through its 
scaffolding functions [241–243]. However, the mechanisms by which caspase-8 regulates 
NF-κB are complex and may involve various molecules including but not limited 
to cFLIP and RIPK1, which also impact the modulation of NF-κB [14]. In addition, 
the regulatory effect of caspase-8 on various inflammasomes and pro-inflammatory 
cytokines also confers a pro-inflammatory role within the tumor microenvironment 
(TME) [216]. Understandably, given the variable expression of caspase-8 across 
different tumor types, its pro-inflammatory functions may also vary [202]. Caspase-8 is 
also a central protein in numerous signaling pathways, playing a significant role in the 
formation and maintenance of the TME. Beyond its substantial role in primary tumor 
cells, caspase-8 also exerts a pivotal influence within the TME by modulating immune 
responses, B-lymphocyte and T-lymphocyte activation, macrophage differentiation 
and polarization [244]. As outlined above, a growing body of evidence underscores the 
nonapoptotic roles of caspase-8 in cancer, with continuous discoveries highlighting 
its functions. These roles include but are not limited to acting as an enhancer of cell 
movement and migration [210, 214, 237], a promoter of tumorigenesis [235], a regulator 
of the cell cycle [202], a stabilizer of immune cell homeostasis and cytokine production 
[244], a scaffolding for specific protein complexes, and a promoter of inflammatory 
responses and angiogenesis to sustain the tumor growth environment [216].

Apoptosis is the primary signaling pathway through which tumor cells undergo cell 
death in the presence of effective drugs. However, tumor cells can evade death signals 
and counteract the effects of chemotherapeutic agents by manipulating the apoptotic 
process, thereby achieving a form of “immortality” [245]. Resistance mechanisms in 
tumor cells are facilitated by the downregulation of caspase-8 activity, with potential 
strategies including the reduced expression of procaspase-8, overexpression of inhibitors 
such as FLIP, and isolation by Bcl-2 (a protein localized in the mitochondrial membrane 
that inhibits cytochrome c release and downregulates apoptosis) [245–247]. For 
instance, in neuroblastoma (NB), caspase-8 is inactivated in about one-third of cases, 
and tissues with high malignancy and MYCN amplification often lack caspase-8 mRNA 
expression (248). Targeting caspase-8 could also be crucial for reducing the formation 
of metastatic lesions in neuroblastoma [249]. Moreover, primitive neuroectodermal 
brain tumor cells can also develop resistance to TRAIL-induced apoptosis through the 
loss of caspase-8 expression [250]. Similarly, overexpression of caspase inhibitors like 
cFLIP can downregulate apoptosis, as previously mentioned by blocking procaspase-8 
from entering the DISC complex, inhibiting the activation of caspase-8. FLIP has been 
reported to inhibit apoptosis in various solid tumors, including melanoma and advanced 
Kaposi’s sarcoma [245, 251–254]. Given the downregulation of caspase-8 in certain 
tumors, inducing caspase-8 expression in tumors that still retain it could therapeutically 
enhance the apoptotic sensitivity of tumor cells and suppress cancer growth [245]. 
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Consequently, as caspase-8 is central to drug-induced apoptosis, it is a critical factor in 
tumor chemoresistance and may serve as a promising target in cancer therapy.

As delineated above, caspase-8 exhibits a pronounced dichotomy in its role within 
cancer therapies, with both its oncogenic and tumor-suppressive functions being 
substantiated or reported. In recent years, as research into cell death mechanisms has 
deepened, the apoptotic function of caspase-8 remains the most classical; however, its 
association with pyroptosis and necroptosis has also been affirmed to play roles in tumor 
progression. Studies have indicated that PD-L1 can transform TNFα-induced apoptosis 
into pyroptosis, mediating an atypical pathway of pyroptotic cancer cell death through 
the caspase-8/GSDMC pathway, resulting in tumor cell death [255]. Furthermore, 
research has discovered that caspase-8-mediated pyroptosis has implications for 
respiratory diseases, such as lung cancer, and may serve as a therapeutic target for related 
diseases [98]. Necroptosis has also been proven to proceed in a caspase-independent 
manner as a form of “cellular suicide” under the presence of caspase inhibitors, thereby 
limiting tumor growth, which suggests that apoptosis is not always the preferred mode 
of tumor cell death [9]. However, in many instances, distinguishing between pyroptosis, 
apoptosis, and necroptosis is challenging. PANoptosis, a more encompassing form of 
cell death, offers a better explanation of mechanisms in certain cancer progressions. In 
PANoptosis, a substantial release of inflammatory factors contributes to the formation of 
an inflammatory microenvironment. By affecting the dynamic equilibrium between cell 
death and regeneration, inflammation, and immune responses, PANoptosis can facilitate 
the transformation of normal cells into cancerous ones [256]. PANoptosis opens new 
avenues for the treatment of infectious, spontaneous diseases, and cancer, emphasizing 
the cross-talk between different cell death pathways, which plays a crucial role in tumor 
development. As a key protein intertwining pyroptosis, apoptosis, and necroptosis, 
caspase-8-mediated PANoptosis has significant implications in the mechanisms and 
progression of breast cancer, hepatocellular carcinoma, nasopharyngeal carcinoma, 
among others. This provides a robust foundation for cancer therapy. We anticipate 
that caspase-8 and its associated PANoptosis will be future research focus in the field 
of cancer treatment [9]. The relationship between caspase-8, certain diseases, and the 
associated cell death pathways as detailed in Table 1.

Regulation of caspase‑8

Caspase-8 functions as a molecular toggle that determines cellular fate, with its 
regulation potentially impacting the pathogenesis of numerous diseases [29, 257]. 
Epigenetic modifications, which involve alterations in gene expression without changes 
to the DNA sequence itself [258], have been demonstrated to play a significant role. 
Studies in a mouse model of hepatocellular carcinoma have shown that genomic deletions 
at the caspase-8 locus do not silence caspase-8. Instead, significant hypermethylation 
of cytosine phosphate guanine (CpG) sites within the promoter sequence can lead 
to a deficiency in caspase-8 messenger RNA expression. This is attributed to the 
inactivation of a crucial promoter element spanning approximately 30 base pairs, which 
includes an SP1 binding motif colocated with CpG sites [259]. Moreover, Teng et al. has 
revealed that the methylation status of the caspase-8 gene promoter is associated with 
mRNA levels of caspase-8, kinase activity, and the anti-apoptotic and drug resistance 
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Table 1 Caspase-8 in diseases and associated cell death pathways

Disease name The role of caspase‑8 in 
diseases

Cell death pathway 
involved

References

Multiple sclerosis Caspase-8 exhibits a 
complex role in MS, 
with its downregulation 
promoting necroptotic cell 
death in cortical neurons 
and oligodendrocytes, 
while its upregulation 
in microglia contributes 
to inflammation 
through noncanonical 
inflammasome activation, 
highlighting the need for 
further exploration of its 
differential effects across 
cell types

Apoptosis, necroptosis, 
pyroptosis, and 
inflammasome activation

[111–116]

Inflammatory bowel 
disease

Caspase-8 plays a dual 
role in IBD, with both 
its deficiency and 
overexpression linked to 
the disease’s progression, 
highlighting its complex 
involvement in intestinal 
inflammation and 
homeostasis

Apoptosis, necroptosis, 
pyroptosis, and 
inflammasome activation

[11, 120–125]

Autoimmune 
lymphoproliferative 
syndrome

Caspase-8, a crucial 
mediator of apoptosis 
in the FAS pathway, is 
implicated in ALPS through 
its deficiency, which 
leads to dysregulated 
lymphocyte apoptosis and 
contributes to the disease’s 
progression, alongside 
potential involvement in 
necroptotic cell death

Apoptosis and necroptosis [12, 14, 126–133]

Rheumatoid arthritis Caspase-8 plays a 
multifaceted role in RA by 
modulating inflammatory 
responses to maintain joint 
homeostasis, serving as 
a pivotal biomarker and 
mediator for ferroptosis and 
pyroptosis, and enabling 
the resveratrol-induced 
apoptosis of fibroblast-like 
synoviocytes

Necroptosis, ferroptosis, 
pyroptosis, and apoptosis

[134, 135, 319]

Autoimmune hepatitis In AIH, caspase-8 is the 
primary mediator of cell 
death through excessive 
activation of apoptosis, 
indicating that targeting 
the caspase-8-mediated 
extrinsic apoptosis pathway 
could be a potential 
therapeutic strategy to 
protect liver cells,

Apoptosis [136]
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Table 1 (continued)

Disease name The role of caspase‑8 in 
diseases

Cell death pathway 
involved

References

Sjögren’s syndrome In SS, caspase-8 is a pivotal 
mediator of cell death, both 
through autoantibody-
triggered caspase-8 
dependent apoptosis and 
via lysosome-dependent 
cell death caused by 
impaired autophagic 
caspase-8 degradation due 
to LAMP3 overexpression, 
underscoring apoptosis 
and lysosome-dependent 
pathways as critical 
mechanisms in the 
disease’s pathogenesis 
and potential therapeutic 
targets

Apoptosis [137, 320]

Alzheimer’s disease Caspase-8 plays a central 
role in AD by mediating 
neuronal apoptosis 
and contributing to the 
formation of amyloid 
plaques and neurofibrillary 
tangles, with its inhibition 
offering a potential strategy 
to slow AD progression

Apoptosis, necroptosis, 
pyroptosis, and 
inflammasome activation

[141, 146–155]

Parkinson’s disease Caspase-8 plays a critical 
role in PD by regulating 
apoptosis, necroptosis, 
and inflammatory 
responses, contributing 
to the progressive loss of 
dopaminergic neurons 
and neurodegeneration, 
making it a potential 
therapeutic target for PD 
treatment

Apoptosis, necroptosis, and 
inflammatory responses

[60, 159–169]

Sepsis Caspase-8 plays a critical 
role in sepsis by influencing 
cell death pathways, with 
elevated levels linked 
to mortality, and its 
modulation could serve 
as a potential therapeutic 
strategy for managing 
sepsis and its associated 
organ dysfunction

Apoptosis, necroptosis, 
pyroptosis, and 
inflammasome activation

[60, 176–188]

Hepatocellular carcinoma Caspase-8, a pivotal 
regulator in both apoptosis 
and necroptosis pathways, 
is intricately involved in 
the modulation of HCC cell 
death, suggesting that the 
manipulation of caspase-8 
activity could be a strategic 
approach for selectively 
targeting HCC cells 
through distinct cell death 
mechanisms

Apoptosis and necroptosis [203–205, 321–324]
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Table 1 (continued)

Disease name The role of caspase‑8 in 
diseases

Cell death pathway 
involved

References

Breast cancer Caspase-8 plays a 
pivotal role in breast 
cancer by mediating 
both extrinsic apoptosis 
and a noncanonical 
pyroptosis pathway, 
where it cleaves GSDMC 
to induce pyroptosis and 
tumor necrosis upon 
TNFα stimulation, and 
collaborates with PARP 
inhibitors to sensitize 
tumor cells to pyroptosis, 
thereby enhancing cancer 
cell death and immune 
response, highlighting 
its critical involvement 
in multiple cell death 
mechanisms in breast 
cancer

Apoptosis, necroptosis, and 
pyroptosis

[206, 207, 255, 325, 326]

Ewing’s sarcoma Caspase-8 is a crucial 
mediator in the apoptotic 
pathways of Ewing’s 
sarcoma, as it regulates cell 
survival and proliferation 
through both extrinsic (Fas 
and caspase-8) and intrinsic 
(caspase-9, Bad, Bcl-2, and 
XIAP) pathways, and serves 
as a predictive biomarker 
for sensitivity to death 
receptor targeted agents 
like conatumumab, as well 
as playing a significant role 
in tumor cell death induced 
by TRAIL-expressing 
mesenchymal stem cells

Apoptosis [208, 209, 327, 328]

Squamous carcinoma Caspase-8 plays a pivotal 
role in the induction of 
apoptosis in squamous 
carcinoma cells, particularly 
in oral squamous cell 
carcinoma (OSCC), where 
it is activated by CLEFMA 
treatment and arsenic 
compounds, leading to 
both extrinsic and intrinsic 
apoptotic pathways, as 
evidenced by increased 
cleavage of poly ADP-ribose 
polymerase and activation 
of caspase-8, -9, and -3, 
ultimately contributing to 
the suppression of tumor 
growth

Apoptosis [217, 218, 329, 330]
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Table 1 (continued)

Disease name The role of caspase‑8 in 
diseases

Cell death pathway 
involved

References

Non-small cell lung 
carcinoma (NSCLC)

Caspase-8 plays a critical 
role in non-small cell lung 
carcinoma (NSCLC) by 
regulating interleukin-8 
production, being 
targeted for activation 
by HDAC inhibitors to 
induce apoptosis, and its 
overexpression along with 
FLIP correlates with poor 
prognosis; it is integral to 
both extrinsic and intrinsic 
apoptotic pathways in 
NSCLC

Apoptosis [331–333]

Esophageal cancer Caspase-8 plays a 
significant role in 
esophageal cancer by 
being involved in the 
induction of pyroptosis 
through the PKM2/
caspase-8/caspase-3/
GSDME axis following 
photodynamic therapy, 
while also being bypassed 
in TRAIL-induced apoptosis 
resistance mechanisms 
involving TRADD and 
c-FLIP, highlighting its 
involvement in both 
pyroptosis and apoptosis 
pathways in this cancer 
type

Apoptosis and pyroptosis [219, 220, 334–336]

Colorectal cancer Caspase-8 is a key mediator 
in colorectal cancer, as it is 
involved in the induction 
of apoptosis through the 
upregulation by sanshools 
and the sensitization effect 
of EGCG in combination 
with TRAIL, while also 
participating in the NAIP-
NLRC4 inflammasome-
mediated pyroptosis and 
inflammation

Apoptosis and pyroptosis [229, 230, 337–340]

Renal cell carcinoma Caspase-8 plays a critical 
role in renal cell carcinoma 
by mediating both 
apoptosis and pyroptosis, 
as evidenced by its 
activation in response 
to STING depletion, its 
involvement in TRAIL-
induced apoptosis when 
combined with resveratrol, 
and its inhibition by 
miR-381-3p, which also 
suppresses necroptosis. 
Additionally, PP5 inhibition 
leads to the activation of 
caspase-8 in the extrinsic 
apoptotic pathway, 
suggesting its potential as a 
therapeutic target in RCC 

Apoptosis and pyroptosis [233, 234, 341–344]
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capabilities of tumor cells in human malignant gliomas. This relationship suggests that 
caspase-8 methylation status could serve as a potential early diagnostic marker for these 
tumors [260]. These findings suggest that DNA methylation can influence the regulation 
of caspase-8 and may represent a critical target for future therapeutic strategies.

It is noteworthy that PTMs constitute an essential mechanism in the regulation 
of caspase-8. The types of PTMs affecting caspase-8 include phosphorylation [239], 
ubiquitination [261], and S-nitrosylation [262], among others. Caspase-8 can determine 
cell fate either by proteolytic cleavage of target proteins or by recruiting them into 
multi-protein complexes, with proteolysis being a strictly regulated irreversible 
process. Consequently, reversible processes such as phosphorylation become critical 
pathways in modulating caspase-8 activity [263–265]. The apoptotic capacity of 
caspase-8 can be modulated by phosphorylation of specific residues on the protein, 

Table 1 (continued)

Disease name The role of caspase‑8 in 
diseases

Cell death pathway 
involved

References

Rhabdomyosarcoma In rhabdomyosarcoma, 
caspase-8 plays a pivotal 
role in TRAIL-induced 
apoptosis, as its expression 
and catalytic activity 
are both necessary and 
sufficient for sensitivity 
to the DR5 antibody 
drozitumab. This sensitivity 
leads to the assembly 
of the death-inducing 
signaling complex and 
subsequent activation of 
the apoptotic pathway, 
resulting in cell death

Apoptosis [221, 222, 327, 345, 346]

Ovarian cancer Caspase-8 is a pivotal 
protease in ovarian cancer 
that orchestrates a delicate 
balance between apoptotic 
and nonapoptotic 
functions, such as cell cycle 
regulation, invasiveness, 
metastatic behavior, 
immune homeostasis, 
and cytokine production, 
with its dysregulation 
leading to increased 
tumor aggressiveness and 
immune resistance

Apoptosis [244, 347, 348]

Nasopharyngeal carcinoma Caspase-8 plays a 
crucial role in the anti-
nasopharyngeal carcinoma 
action of calycosin, as 
it is identified as a core 
target in the network 
pharmacology analysis 
and validated in human 
and preclinical studies, 
with its activation leading 
to increased apoptosis in 
nasopharyngeal carcinoma 
cells

Apoptosis [349–351]
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such as tyrosine residues 397, 380, and 465, and serine residues 387 and 305 [266–
268]. The phosphorylation of caspase-8 on tyrosine residues, unique among caspases 
[186], can alter its catalytic activity either by changing substrate recognition or by 
disrupting the active site [239]. During the formation of the DISC, Polo-like kinase 3 
(Plk3) can phosphorylate the threonine residue T273 on its substrate, procaspase-8, 
thereby exerting a pro-apoptotic effect [266]. Phosphorylation at Tyr-310 facilitates 
dephosphorylation of caspase-8 by tyrosine phosphatase-1 (SHP-1), thereby promoting 
apoptosis. Conversely, phosphorylation of tyrosine residues Tyr-397 and Tyr-465 by 
the nonreceptor tyrosine kinase Lyn can inhibit caspase-8 cleavage and activation, 
thereby inhibiting the apoptotic process [186]. Regulation of caspase-8 also involves 
the maturation of its precursor, with some studies indicating that phosphorylation 
of procaspase-8 by Src kinase reduces its maturation rates [269, 270]. Further, serine 
phosphorylation is implicated in the regulation of caspase-8, with its serine residues 
being phosphorylated by ERK1/2 and CDK1 to prevent apoptosis [266–268, 271].

Beyond the extensively studied phosphorylation, ubiquitination emerges as a key 
mechanism in regulating caspase-8 activity. Ubiquitination, another form of PTM, 
involves the covalent attachment of ubiquitin (Ub) to target proteins [261]. This 
regulatory process plays a pivotal role in modulating apoptosis and necroptosis 
pathways, potentially offering new therapeutic avenues for treating cancer [272] 
and neurological disorders [273, 274]. Caspase-8 has been identified as a target for 
ubiquitination by the linear ubiquitin chain assembly complex (LUBAC) following 
TRAIL stimulation, consequently resulting in its inhibition [275]. Moreover, as 
previously mentioned, FLIP plays an indispensable role in regulating caspase-8.  FLIPL/S 
can form heterodimers with procaspase-8, where both are traditionally thought to 
inhibit caspase-8 activation. However, depending on its relative levels,  FLIPL may exhibit 
catalytic activity (albeit spatially constrained [275]) within procaspase-8 heterodimers 
and can facilitate caspase-8 activation [8, 275–280]. Like caspase-8, the expression of 
FLIP is also stringently regulated by ubiquitination [281–283]. In addition, within the 
cell death pathways regulated by caspase-8, other components such as FADD [284], 
RIPK1 [285–287], RIPK3 [288–293], and MLKL [293, 294] are also subject to regulation 
by ubiquitination, suggesting that ubiquitination could be a vital method in controlling 
caspase-8 expression and its mediated cell death pathways. Beyond phosphorylation and 
ubiquitination, nitric oxide (NO) has been shown to protect hepatocytes from TNF-α/
ActD-induced apoptosis by interrupting the mitochondrial apoptosis signaling through 
S-nitrosylation of caspase-8 [262]. These studies suggest that the PTMs associated with 
caspase-8 are more complex than previously thought, providing greater opportunities to 
investigate and address unknown medical challenges by targeting caspase-8, the switch 
determining cellular fate. The related modifications and regulation types of caspase-8 
are shown in Table 2.

Dual roles of caspase‑8 inhibition and activation in disease treatment

Caspase-8 has emerged as a critical target for the therapeutic intervention in various 
diseases associated with cell death. Numerous molecules regulating caspase-8 have 
been developed or investigated. In recent years, caspase-8 inhibitors have gained 
significant attention for their ability to control caspase-8 mediated cell death or other 
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physiological functions. Caspase-8 inhibitors can be broadly categorized into broad-
spectrum caspase inhibitors and caspase-8-specific inhibitors. The broad-spectrum 
caspase inhibitors include zVAD-fmk [295–297], qVD-OPh (QVD) [295, 298], 
VX-166 [299], and cytokine response modifier A (CrmA, a viral inhibitor capable 
of suppressing both caspase-1 and caspase-8) [300]. On the other hand, caspase-8-
specific inhibitors primarily consist of zIETD-fmk [297, 301, 302], Ac-IETD-CHO 
[303, 304], and several potential zinc compounds, including ZINC19370490 [305] 
and ZINC38200481 [151]. Studies have revealed that inhibiting caspase-8 with zVAD-
fmk or zIETD-fmk can induce necroptotic death in activated microglia, thereby 
protecting neurons in the brain from inflammatory damage [301]. This suggests that 
caspase-8 inhibitors may serve as potential targets for treating neurological diseases. 
Furthermore, the application of caspase-8 inhibitors has also been discovered 
in research related to sepsis treatment. Researchers found that the caspase-8-
specific inhibitor, zIETD-fmk, could partially reduce the activation of monocytes 
during sepsis, while caspase-8 inhibition could also induce necroptotic death in 
activated monocytes [302]. Moreover, Hotchkiss and colleagues have confirmed that 
intraperitoneal injection of the caspase inhibitor QVD can enhance the survival rate 
of mice with septic shock while reducing levels of pro-inflammatory cytokines [306]. 
Similarly, Weber et al. discovered that the caspase inhibitor VX-166 produced effects 
comparable to QVD, exerting positive action in both endotoxin shock and cecal 
ligation and puncture models of sepsis, while lowering levels of pro-inflammatory 
cytokines [299]. These studies suggest that caspase-8 inhibitors may represent an 

Table 2 Caspase-8 related modifications and regulatory types

Modification type Specific site Functional impact Associated 
conditions or 
processes

References

Methylation CpG sites in promoter Suppresses mRNA 
expression

Hepatocellular 
carcinoma, malignant 
gliomas

[259, 260]

Phosphorylation Tyrosine residues: Y397, 
Y380, Y465; serine 
residues: S387, S305

Modulates apoptotic 
capacity

Apoptosis regulation [239, 266–268]

Threonine residue: T273 
(by Plk3)

Pro-apoptotic effect DISC formation, 
apoptosis

[266]

Tyrosine residues: Y397, 
Y465 (by Lyn)

Inhibits caspase-8 
cleavage and activation

Apoptosis inhibition [185]

Tyrosine residues: Y397, 
Y465, Y380 (by Src 
kinase)

Reduces procaspase-8 
maturation rates

Precursor maturation [259, 260]

Serine residues: S387, 
S305 (by ERK1/2 CDK1, 
Plk1)

Prevents apoptosis Apoptosis inhibition [266–268, 271]

Dephosphorylation Tyrosine residue: Y310 
(by SHP-1)

Promotes apoptosis Apoptosis regulation [239]

Ubiquitination Not specified Modulates activity, 
inhibits caspase-8

Apoptosis, necroptosis, 
cancer,
neurological disorders

[261, 272–275]

S-nitrosylation Not specified Protects against 
TNF-a/ActD-induced 
apoptosis

Hepatocyte protection, 
apoptosis
inhibition

[262]
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alternative strategy for treating sepsis, offering an important approach to combating 
the severe inflammatory responses associated with sepsis. Additionally, in the field 
of tumor therapy, zVAD-fmk, zIETD-fmk, and CrmA have been found to block 
TNFR2-mediated apoptosis in rat/mouse T-cell hybridoma PC60 cells, potentially 
offering a novel avenue for cancer treatment [297]. Given the potential therapeutic 
role of caspase-8 in inflammatory diseases, developing targeted caspase-8 inhibitory 
drugs is deemed necessary. Currently, specific inhibitors of caspase-8 are scarce. 
Thus, to expand the repertoire of caspase-8 inhibitors, scholars have employed 
specific algorithms to search for potential caspase-8 inhibitors within zinc compound 
libraries. Ahmad et al. [305] screened the zinc database and identified ZINC19370490 
and ZINC04534268 as candidate compounds, while Jamal et  al. [151] also screened 
five zinc compounds, including ZINC38200481. Although the effects of these 
compounds have yet to be validated, such research provides new insights into the 
discovery of caspase-8 inhibitors.

Relative to caspase-8 inhibitors, direct agonists targeting caspase-8 are exceedingly 
rare, likely due to the critical role of caspases in cellular apoptosis. Consequently, most 
interventions focus on inhibiting, rather than enhancing, the activity of caspase-8. 
Molecules that positively regulate caspase-8 are primarily utilized in cancer research, 
owing to the beneficial effects of caspase-8-mediated cell death in eliminating tumor 
cells. Second mitochondria-derived activator of caspase (Smac) mimetics are capable 
of initiating apoptosis via caspase-8 activation, thereby exhibiting antineoplastic 
properties [307, 308]. For instance, Servida et al. revealed that Smac mimetics impeded 
the function of inhibitor of apoptosis proteins (IAPs) in hematologic malignancies, 
consequently leading to the apoptotic death of neoplastic cells. Furthermore, these 
mimetics have been observed to work synergistically with cytarabine, etoposide, and 
notably with TRAIL in combinatory treatments, indicating that Smac mimetics may 
usher in a new era of anticancer therapeutics with considerable potential [307]. In 
addition, both bortezomib (PS-341) and the immunomodulatory agent lenalidomide 
have been demonstrated to activate caspase-8, thereby inducing apoptosis in myeloma 
cells. This approach offers a promising strategy for curtailing myeloma cell proliferation 
and enhancing apoptotic processes [309, 310]. Previous discussion on the pivotal role of 
caspase-8 activation in chemotherapeutic regimens for cancer treatment underscores the 
strategic importance of targeting caspase-8 to overcome the evasion of tumor cell death. 
Chemotherapeutic agents such as paclitaxel [311, 312], doxorubicin [313], and etoposide 
[313, 314] have been demonstrated to enhance caspase-8 activity and its consequent 
apoptosis, signifying a advancement for oncology treatments. For example, paclitaxel 
has been proven to potentiate caspase-8-mediated apoptosis through its interactions 
with microtubule-associated death effector domains [311], while doxorubicin and 
etoposide have been shown to significantly sensitize small cell lung cancer (SCLC) cells 
expressing caspase-8 to TRAIL-induced apoptosis [313]. These findings underscore the 
extensive prospects for targeted research on caspase-8 in the advancement of cancer 
therapy. Nonetheless, despite strides in foundational research, the intricate molecular 
mechanisms are yet to be fully elucidated, and the clinical application of related 
pharmaceuticals remains a challenge. An analysis of factors related to caspase-8 activity 
is delineated in Table 3.
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Conclusions
Within the domain of biological research, caspase-8 stands out as a molecule of 
significant interest. As a member of the cysteine–aspartic acid protease family, caspase-8 
has traditionally been recognized for its pivotal role in orchestrating cellular apoptosis. 
Recent investigations, however, have expanded our understanding, revealing caspase-
8’s critical involvement in not only apoptosis but also in its intricate connections with 

Table 3 Caspase-8 related influencing factors

Negative effect on caspase‑8 Mechanism References

zVAD-fmk zVAD-fmk is a pan-caspase inhibitor used to block apoptosis [295–297]

QVD QVD operates as a robust, irreversible inhibitor of broad-
spectrum caspases, effectively thwarting apoptosis across 
diverse cell lines

[295, 298]

VX-166 VX-166 is a caspase inhibitor that inhibits the activity of 
caspase, to a certain extent playing the same role as QVD

[299]

CrmA CrmA, a viral serpentine protein, inhibits certain cysteine 
proteases, such as caspase-1 and caspase-8

[300]

zIETD-fmk zIETD-fmk is a selective caspase-8 inhibitor, commonly used in 
research to block the enzyme’s activity

[297, 301, 302]

Ac-IETD-CHO Ac-IETD-CHO is a selective caspase-8 inhibitor that can be used 
to selectively inhibit caspase-8

[303, 304]

ZINC19370490 ZINC19370490 refers to a specific chemical compound listed in 
the ZINC database. It may be a potent caspase-8 inhibitor, but 
it is not yet proven

[305]

ZINC04534268 ZINC04534268 refers to a specific chemical compound listed in 
the ZINC database. It may be a potent caspase-8 inhibitor, but 
it is not yet proven

[305]

ZINC38200481 ZINC38200481 refers to a specific chemical compound listed in 
the ZINC database. It may be a potent caspase-8 inhibitor, but 
it is not yet proven

[151]

ZINC01576107 ZINC01576107 refers to a specific chemical compound listed in 
the ZINC database. It may be a potent caspase-8 inhibitor, but 
it is not yet proven

[151]

ZINC02384806 ZINC02384806 refers to a specific chemical compound listed in 
the ZINC database. It may be a potent caspase-8 inhibitor, but 
it is not yet proven

[151]

ZINC38570006 ZINC38570006 refers to a specific chemical compound listed in 
the ZINC database. It may be a potent caspase-8 inhibitor, but 
it is not yet proven

[151]

ZINC38569951 ZINC38569951 refers to a specific chemical compound listed in 
the ZINC database. It may be a potent caspase-8 inhibitor, but 
it is not yet proven

[151]

Positive effect on caspase-8

(Smac) mimetics (Smac) mimetics refer to small-molecule inhibitors that mimic 
the action of the second mitochondria-derived activator of 
caspases (Smac), targeting proteins that inhibit apoptosis, 
thereby promoting the activation of caspase-8 and subsequent 
induction of apoptosis

[307, 308]

PS-341 PS-341 can activate caspase-8 and promote apoptosis [309, 310]

Lenalidomide Lenalidomide can activate caspase-8 and promote apoptosis [309, 310]

Paclitaxel Paclitaxel can facilitate the activation of caspase-8 and thereby 
inducing apoptosis mediated by this enzyme

[311, 312]

Doxorubicin Doxorubicin can facilitate the activation of caspase-8 and 
thereby inducing apoptosis mediated by this enzyme

[313]

Etoposide Etoposide can facilitate the activation of caspase-8 and thereby 
inducing apoptosis mediated by this enzyme

[313, 314]
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pyroptosis and necroptosis, alongside its contributions to the activation and modulation 
of inflammasomes and inflammatory cytokines. Cell death is crucial in maintaining 
the balance of biological systems, with caspase-8 serving as a crucial modulator 
that significantly influences cellular destiny. Given its intricate role in cell death, we 
underscore the concept of PANoptosis, a form of cell death that integrates pyroptosis, 
apoptosis, and necroptosis, to better elucidate the often-ambiguous phenomena of 
cellular mortality in disease progression. The activity and expression levels of caspase-8 
are intimately associated with the onset and progression of various diseases, rendering it 
a potential molecular target.

A vast array of studies has delineated a strong link between the aberrant expression 
or functional anomalies of caspase-8 and the emergence and progression of various 
inflammatory diseases, including immune system disorders, NDDs, sepsis, and cancer. 
Hence, a profound comprehension of the association between caspase-8 dysregulation 
and these diseases holds significant implications for their diagnosis, prevention, and 
therapeutic intervention. This review aims to summarize the research progression on 
caspase-8 across several pivotal diseases, accentuating three distinct characteristics 
of caspase-8 in the context of disease pathogenesis and therapeutics: firstly, the broad 
spectrum of caspase-8’s influence spans across apoptosis, pyroptosis, and necroptosis, 
implicating it in diverse cell death signaling cascades and in the pathophysiology of 
numerous ailments. Secondly, the underlying mechanisms are complex, as the distinctive 
contributions of caspase-8 to cell death are challenging to discern, given the potential 
overlap of pyroptosis, apoptosis, and necroptosis in the cell death process. Concurrently, 
the regulation of caspase-8 involves an extensive array of upstream and downstream 
molecules, with the precise molecular mechanisms yet to be fully elucidated. Thirdly, 
the outlook for future research is promising; the identification and development of 
novel therapeutic drugs targeting caspase-8 represent a promising direction. Interfering 
with the caspase-8 pathway could facilitate targeted treatments and management of 
specific diseases, expanding the therapeutic repertoire for clinical application. Moreover, 
further exploration into the roles and regulatory mechanisms of caspase-8 in cell death 
and diseases is necessary, aiming to clarify its differential functions across various cell 
types and organ systems, and to expedite the development of drugs targeting caspase-8, 
thereby achieving precise modulation of cell death pathways. While current research on 
the relationship between caspase-8 and cell death is predominantly experimental, the 
initiation of clinical studies and trials represents an uncharted territory that warrants 
exploration. Given the constraints of space and the specific focus of this article, our 
discussion primarily centers on caspase-8. Nevertheless, it is important to acknowledge 
that other members of the caspase family also hold significant potential as therapeutic 
targets. For example, caspase-10 plays a critical role in mediating various cell death 
pathways, including apoptosis, pyroptosis, and necroptosis [315, 316]. Research 
indicates that in human macrophages, caspase-10 exhibits greater proteolytic activity 
than caspase-8 during RIPK1 cleavage and shows an enhanced capacity to form 
complexes with RIPK1 and FADD [315]. Furthermore, variations in caspase-10 activity 
may be implicated in the onset and progression of various diseases. For instance, 
inadequate caspase-10 activity may result in the failure to eliminate malignant cells, 
thereby facilitating cancer progression [317, 318]. Despite its potential, research on 
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caspase-10 remains relatively underdeveloped. We advocate for increased focus on the 
caspase family, given their extensive involvement in various cell death processes. A 
comprehensive understanding of cell death is essential to elucidating the pathogenesis 
and progression of numerous diseases, and the application of this knowledge to develop 
therapeutic interventions remains our ultimate objective.
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