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Abstract: The establishment of technologies for high-throughput DNA 
sequencing (genomics), gene expression (transcriptomics), metabolite and ion 
analysis (metabolomics/ionomics) and protein analysis (proteomics) carries with 
it the challenge of processing and interpreting the accumulating data sets. 
Publicly accessible databases and newly development and adapted bioinformatic 
tools are employed to mine this data in order to filter relevant correlations and 
create models describing physiological states. These data allow the 
reconstruction of networks of interactions of the various cellular components as 
enzyme activities and complexes, gene expression, metabolite pools or pathway 
flux modes. Especially when merging information from transcriptomics, 
metabolomics and proteomics into consistent models, it will be possible to 
describe and predict the behaviour of biological systems, for example with 
respect to endogenous or environmental changes. However, to capture the 
interactions of network elements requires measurements under a variety of 
conditions to generate or refine existing models. The ultimate goal of systems 
biology is to understand the molecular principles governing plant responses and 
consistently explain plant physiology. 
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INTRODUCTION 
 
Plant growth is affected by biotic and abiotic environmental factors, which 
induce biochemical and physiological responses to engender adaptive processes 
or ensure plant survival. The employment of high-throughput analytical 
technologies enables a systems-level understanding of the different functional 
components of plant cells and of entire plants by predicting their properties from 
the numerical data that arises from the interaction analyses of many system 
elements. Systems biology, as a holistic approach, will generate knowledge of 
cellular dynamics and function, create a detailed model of cell regulation, 
visualise the connections between individual pathways or metabolic networks, 
and  provide  system-level  knowledge of  the  network  of  metabolic  pathways,  
 

 
Fig. 1. A sketch of the impact of postgenomic technologies for the analysis of biological 
systems and plant breeding.  
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transport functions and signal transduction cascades that are essential for plant 
development and physiological function [for review 1, 2, for review 3]. Thus far, 
much of biology has been descriptive and empirical rather than focused on 
creating quantitative simulation models. To reach systems-level knowledge, 
mathematical and computational methods for modelling and simulating complex 
biological systems have to be adopted from other sciences or newly created. The 
ideal goal would be detailed, accurate and quantitative predictions of the 
behaviour of biological systems, including predictions of the effects of systems 
modifications, i.e. simulations. By conceiving the network architecture and thus 
the interrelation and regulation of its components, it can be envisioned that it 
will be possible to comprehend the whole system. This will allow valid 
predictions and ingenious manipulations (Fig. 1). 
At the analytical level, systems biology relies on the comprehensive profiling of 
large numbers of gene expression products. These approaches are commonly 
referred to as transcriptomics [4, 5], proteomics [6-8], and metabolomics [5, 9-
12]. The use of these technologies to obtain comprehensive data sets increased 
rapidly in recent years, especially with respect to the mechanisms underlying 
plant growth and plant responses to perturbations. The new high-throughput 
tools of genomics have provided the potential to systematically analyse 
perturbed biological systems and monitor their responses. 
The challenge of systems-based approaches lies now in extracting information 
from multivariate experiments and in building models that incorporate all of the 
data. With the development of computational-based statistical methods, it is now 
possible to extract the maximum amount of information from experiments 
involving genome-scale data. In systems biology, bioinformatic tools are not 
only required to analyze the genomic data but, most importantly, to determine 
the experimental parameters needed for model building. Testing the derived 
models in vivo with mutants completes the circle. Thus, by combining new tools 
in genomic biology and bioinformatics, systems biology paves the way to  
a comprehension of complex biological systems. 
In this review a specific example will be employed to illustrate the use of 
genomic tools to yield a systems biology description. The response of 
Arabidopsis thaliana to sulfur starvation was used as an example model for  
a systems-level analysis of plant nutrient physiology. 
 
TRANSCRIPTOMICS 
 
Genomics tools such as DNA microarrays (DNA chips) have enabled the 
simultaneous measurement of gene expression changes in response to an 
experimental treatment (i.e. system perturbation) or developmental changes 
(endogenous programmes). For Arabidopsis thaliana, there have been reports on 
more than a dozen studies that used chip technology to describe the 
transcriptome of exogenously perturbed systems or ontogenetic programmes. 
Examples include analyses of the circadian rhythm [13], hormone action [14-
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16], the stress response [17-20], the cell cycle [21], developmental programs 
[21-25], responses to pathogens [26, 27] and toxic compounds like cesium [28, 
29], plants with altered metabolisms [30], and plants under different nutrient 
regimes such as alterations in the levels of nitrogen [31-34], phosphate [34], iron 
[35-37], potassium [34, 38], and sulfur [37, 39-41]. Recent efforts have been 
made to collect data to establish databases of transcript profiles for Arabidopsis 
and also for other plant species, and these are stored and publicly available at, 
for example, the Nottingham Arabidopsis Stock Centre: 
http://nasc.nott.ac.uk/home.html; EBI: http://www.ebi.ac.uk/home.html and 
SMD: http://genome-www5.stanford.edu. The speed of data accumulation has 
shifted the emphasis of research from conducting array experiments to a need for 
interpretation of the data. The analysis of the expressional behaviour of genes 
that encode enzymes of known metabolic pathways has distinct advantages that 
facilitate the interpretation of microarray data (Fig. 2). The function of many of 
the enzymes and genes of the primary metabolism are known for plants or can 
be deduced from knowledge of the primary metabolism of other organisms. 
Array data can thus be associated with specific processes. As several of the 
genes  encoding  metabolic  enzymes  can  be  assumed  to  be co-regulated [13],  

 
Fig. 2. Assignment to functional categories of the transcriptome response of sulfur-
starved A. thaliana plants. Within one functional category, the number of induced and 
repressed genes was determined by array hybridisations. The main assignment to the 
functional categories is according to the MIPS Arabidopsis data base. The graph 
indicates the relative response development to sulfur starvation over time in the 
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respective functional classes. The categories display distinct response developments 
indicating specific regulatory programmes.  
cluster and correlation analyses of expression profiles can thus serve to identify 
cliques of similarly regulated genes. These patterns can then be used to 
tentatively assign genes with unknown functions to specific metabolic responses. 
Further, detailed information on the analysis of macroarrays can be found in 
Maathius and Amtmann [42]. 
One example is the study of gene expression during adaptation to changing 
sulfur availability. Mineral deficiencies (e.g. depleted S) result in significant 
reductions in crop productivity. Adaptive responses to S deficiency serve to 
compensate for the lack of this particular nutrient and to specifically increase its 
uptake capacity [41]. As a signal, sulfate ‘re-programmes’ its own metabolism 
and that of other pathways to initiate processes that serve to increase sulfate 
uptake from the soil. DNA microarrays with a cDNA EST collection of 15,442 
clones comprising about 7,200 individual genes spotted on nylon filters have 
been used to identify novel Arabidopsis genes that respond to S-deficient 
conditions. Consistent with previous reports, genes encoding proteins that are 
directly involved in sulfate transport, reduction and assimilation are induced. 
Moreover, novel genes could be identified and sorted into functional categories 
(MIPS Arabidopsis thaliana data base; MATDB). In summary, over several 
experiments approx. 25% of the genes of the Arabidopsis genome show 
significant alterations, 60% up and 40% down; about 35% of those genes are of 
hitherto unknown function. The power of this tool became evident when the 
transcriptome data was overlaid on known metabolic pathways. Relationships 
between the sulfur-serine metabolism and tryptophan-glucosinolate-auxin 
metabolism complex appeared providing a potential link and explanation of one 
of the major phenotypical symptoms: root growth during S-starvation being 
triggered through auxin effects [39, 41, 43]. 
 
METABOLOMICS/IONOMICS 
 
Metabolomics aims to qualitatively and quantitatively determine the levels of 
low molecular weight compounds and to provide the metabolome, a complete 
metabolic profile of the cell. It is thus a manifestation of the endpoint of 
metabolic and physiological processes. Taken alone, measurements of the 
metabolome in different physiological states are likely to be more indicative for 
the purposes of systems biology studies than transcriptome profilings [44, 45]. 
Metabolomic approaches seek to profile metabolites in a nontargeted way, i.e. to 
reliably separate and detect as many metabolites as possible in a single analysis. 
Eventually, combined with information on transcript and protein abundance, this 
would ideally lead to a nearly complete molecular picture of the state of  
a particular biological system at a given time. 
Understanding a significant part of plant biology requires methods allowing the 
sensitive detection, quantification and identification of metabolites. A huge 
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discrepancy can be observed between the number of metabolic genes and the 
number of known reactions catalyzed by these enzymes in Arabidopsis and the 
number of metabolites which are actually detected. A large number of 
metabolites have yet to be identified. The current status of metabolomics has 
been summarised in several reviews [e.g. 44-47]. The enormous potential of 
comprehensive biochemical phenotyping for the functional analysis of biological 
systems is recognised and numerous projects have been initiated. However, 
major technological limitations still need to be overcome. For instance, the 
chemical diversity of the metabolome necessitates the use of different analytical 
techniques to cover the different polarities and molecular sizes found among the 
metabolites occurring in a cell. A robust and reproducible analysis that provides 
qualitative and quantitative data and allows high sample throughput is desired. 
Thus far no complete metabolome has been assembled for any organism, and 
systematic cataloguing of model organisms is highly important. Systematic 
identification of the metabolites occurring in a species is particularly relevant for 
plants, given the wealth of natural products they produce. Thus, similarly to the 
‘Genome Initiative’, a ‘Metabolome Initiative’ would be advantageous. 
Sequence data indicates that Arabidopsis expresses a large number of enzymes 
for which the substrates and products are unknown [48]. Initial efforts have been 
made by the plant metabolomics community to agree on conventions for data 
formats and the description of metabolomics experiments [49, 50]. Furthermore, 
a platform for a mass spectral and retention time index has been established and 
will be expanded on (MSRI; www.csbdb.mpimp-golm.mpg.de/gmd.html) [51]. 
However, for general and broad application, especially of GC technologies, the 
“matrix dependency” of the sample analysis is a real challenge. Compounds in 
different tissues of a given species or when compared between different species 
show slight shifts in their peak positions, thus providing problems for automated 
analysis. Additionally, there are problems with calibration and quantification for 
certain metabolites. 
Profiling schemes for Arabidopsis and other plants have been developed in 
recent years [9, 52-54]. The experimental tools in use are element analysis via 
ICP-AES, ion analysis via HPLC or CE, specific HPLC analyses, as for example 
for amino acids and thiols, and highly random, high throughput approaches 
mainly based on mass spectrometry combined with various prior separation tools 
such as GC-MS, GC-TOF, LC-MS [44, 53-55] or others as NMR techniques 
[56-59]. Furthermore, the coupling of electrospray ionization (ESI) MS with CE 
[60] and hydrophilic interaction chromatography [61] has been successfully 
applied to metabolomics problems. Thus, it seems feasible to qualitatively and 
quantitatively catalogue several hundred to several thousand metabolites in  
a given tissue. Metabolomics has almost reached a resolution where it can serve 
to provide a system-oriented characterisation of gene function and cellular and 
physiological responses, though it still needs further improvement [46].  
A target subsection of metabolomics is ionomics. The ionome is the sum of ions 
and elements which are involved in a broad range of important biological 
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phenomena, including electrophysiology, signalling, enzymology, 
osmoregulation, and transport. Efforts to understand the ionome and how it 
interacts with cellular systems such as the genome, proteome, metabolome, and 
the environment are essential to fully understand how plants integrate the 
organic and inorganic metabolism. The ionome includes also metals, metalloids, 
and nonmetals present in an organism. However, the boundaries between 
ionomics, metabolomics and even proteomics are blurred. Compounds such as 
phosphorus, sulphur, or nitrogen would fall within both the ionome and 
metabolome, and metals such as zinc, copper, manganese, and iron in 
metalloproteins would fall within the proteome, or metalloproteome. Several 
analytical techniques are available using flame atomic absorption spectroscopy, 
inductively coupled plasma spectroscopy (ICP-MS), and inductively coupled 
plasma atomic emission spectroscopy (ICP-AES) to determine the ionome. More 
detailed information about the methods and applications are described in 62, 64 
and 65. 
High-throughput technologies such as gas chromatography-mass spectrometry 
(GC-MS; [53]) made it possible to study the metabolome of S-deficient plants. 
From the total number of detectable metabolites, 315 peak-forming derivatised 
metabolites were detected, among which 110 derivatives of 82 non-redundant 
chemical compounds were identified [66]. While the transcript response 
developed gradually during S-starvation, metabolites quickly reached a new, 
stable homeostatic status, indicating that small alterations at the transcript level 
early in starvation trigger shifts in the metabolite composition. Thus, time-
dependent alterations of transcript and metabolite levels are a result of 
continuous gene action for maintaining viability [41]. As an example, elements 
of the sulfur metabolism of the aspartate family and of linked pathways such as 
glutathione are overlaid to the known biochemical pathways of proteinogenic 
amino acids (Fig. 3). The levels of metabolites directly dependent on the supply 
of reduced sulfur, such as cysteine and glutathione, and, unexpectedly, lysine 
decrease. The levels of others increase: OAS and serine as precursors of cysteine 
and tryptophan. At the same time, metabolites of the aspartate family remain 
unaffected for the most part: aspartate, threonine, isoleucine and even 
methionine. Despite the sulfur starvation, the level of methionine seems to be 
kept constant as an indispensable part of the SAM methylation cycle. We 
showed previously that at least two of the enzymes involved in the SAM 
recycling to methionine are induced under sulfur starvation, 
adenosylhomocysteinase and SAM synthetase [41, 66].  
 
PROTEOMICS 
 
The third signpost of functional genomics approaches is the systematic analysis 
of protein composition and activity to determine the proteome. Together with 
transcriptomics and proteomics, this should provide the tools to describe the 
functionality of the whole system, the organism. In particular, proteome analysis 
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is vital, as in the majority of cases, any observed phenotype is a direct result of 
the action of proteins rather than of the genome sequence. Proteomic methods 
reveal the proteins translated from the mRNA molecules that are the direct result 
of gene expression. Currently, a general weakness in proteomics compared  with  

 
Fig. 3. Metabolic changes overlaid to selected sulfur-induced biosynthetic pathways. The 
biochemical pathway of cysteine and methionine biosynthesis and its recycling was 
adapted to the relative changes of transcripts (black arrows) and metabolites (grey 
arrows) upon sulfur depletion with arrows indicating an increase (up), decrease (down) 
or no change (horizontal). OASTL: O-acetylserine (thiol)lyase; SAT: serine 
acetyltransferase; CgS, cystathionine γ-synthase; CbL, cystathionine β-lyase; MS, 
methionine synthase; SAM, S-adenosyl methionine; SAM-S, S-adenosylmethionine 
synthetase; SMM, S-methyl methionine; HMT, homocysteine S-methyltransferases; 
MMT, methionine S-methyltransferase; SAM-DC, SAM-decarboxylase; SAM-MT, SAM 
methyltransferase. 
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transcriptomic techniques is the low throughput, often limited by the 
cumbersome nature of current two-dimensional gel electrophoresis (2-D) 
techniques and low recoveries from 2-D gels and non-representative results (due 
to the exclusion of several protein types) [67, 68]. Furthermore, despite recent 
improvements, this technology remains poorly suitable to separate highly 
hydrophobic, basic or low-abundant proteins [for review 69]. Thus, subcellular 
membrane proteome, and especially their integral protein moieties, remain 
poorly accessible. A variety of techniques are used for protein identification, the 
most common being matrix-assisted laser desorption/ionization time-of-flight 
mass spectrometry (MALDI-TOF MS). However, the hybrid electrospray 
ionization (ESI) method of quadrupole TOF MS, with its increased mass 
accuracy, is gaining popularity. Recently, in an attempt to increase throughput 
and to resolve proteins not easily analysed by a 2DE approach, so-called multi-
dimensional liquid chromatography (cation exchange followed by reverse-phase 
column separation) coupled to ESI-MS/MS was successfully introduced [70, 
71]. A key challenge of proteomics in comparison to the static sequence-driven 
problems of genomics is that the protein complement is extremely dynamic in 
amount, composition, interaction and activity [72]. However, as the speed of 
experimental proteomic data generation increases, it appears possible to meet 
this challenge, but this needs to be supported with an appropriate advance in the 
bioinformatic tools to handle these data. 
By contrast to DNA and RNA, there are currently no techniques available to 
amplify proteins of low abundance (the equivalent of PCR for DNA) or to 
identify them with very high-dynamic resolution. Moreover, all of the cells that 
compose a plant have the same genome, but each cell type has a different 
composition of proteins. In addition to these cell-to-cell variations in proteome 
expression, we must also consider proteomic variation over time. As a plant cell 
matures or responds to an environmental perturbation, its expressed mRNAs and 
proteome respond through adaptive alterations.  
Further, the functional consequences of the proteome are dependent on the 
determination of whether a protein is present, and in what amount and at what 
activity level. The activity of many proteins is regulated by interactions with 
other proteins that form complexes or catalyze structural modifications. 
Comprehensive proteomics, therefore, requires not only a list of the protein 
functions but also a detailed understanding of protein-protein interactions within 
a cell and protein modifications that regulate function, such as phosphorylation 
and glycosylation. Methods for the global measurements of various protein 
modifications, including mass spectrometry and the use of modification-specific 
antibodies, are only now being developed. By contrast to genomics, in which 
standardized tools and standards for data storage and sharing are available, the 
current methodology for handling large proteomics data sets is less uniform and 
organized.  
To gain a better understanding of the events that occur during sulfate starvation, 
we used a directed proteomics approach to identify proteins that are modulated 
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in amount. This attempt was made using two-dimensional gel electrophoresis 
focusing on proteins that were absent or reduced or increased in level. 
Unexpectedly, only a few protein changes were observed in S-deficient plants 
relative to the controls despite the observed massive changes in transcriptome 
and metabolome and general reduction of total protein content (data not shown). 
These proteins have yet to be identified by mass spectroscopy, but these results 
already give a glimpse of the complexity of responses to be expected. Other 
processes, such as post-translational modifications or protein-protein 
interactions, have more influence on setting a new cellular homeostasis during 
adaptation than expected from transcriptome data. 
 
BIOINFORMATICS OR in silico ANALYSIS 
 
The coherent modelling of living organisms is the ultimate goal of systems 
biology. Modelling should greatly rationalise our attempts to understand plants. 
For example, genes with similar responses at the level of expression over a range 
of conditions are often clustered together to form functional groups. It can be 
assumed that these associated genes are under the control of common 
transcription factors. Recent computer simulations of partial or whole genetic 
networks have demonstrated the complexity of network behaviours and 
emergent properties that were not apparent from the examination of a few 
isolated interactions alone [73]. The modelling of intact higher plants will be 
especially challenging because of the differential responsiveness of various cell 
types to a given perturbation. The collection of the comprehensive data needed 
for modelling might initially be most successful using single-cell 
microorganisms or higher plant cells grown in defined liquid cultures. The 
modelling of Escherichia coli and yeast is already under way [74, 75], and this 
might act as a blueprint for the modelling of other cell types and organisms. To 
model the plant response accurately, a multitude of software programs of the 
sorts widely used by engineers (e.g. parameter optimization, flux balance 
analysis, systems analysis, and computer model simulations) need to be adapted 
for the study of plants. The integration of modelling and experimental work will 
yield many new insights, with greater complexity, and hopefully have a greater 
impact on global problems such as the necessary improvements in plant breeding 
for better yield and pest tolerance.  
A step in this direction was to overlay the transcriptome and metabolome results 
on the known biochemical pathways in a biased, knowledge-driven approach. 
This allows research to be focused on certain pathways and interactions of 
pathways (Fig. 3; [41, 76]), a task that can be achieved, for example, using web 
tools such as AraCyc (http://www.arabidopsis.org/tools/aracyc/) to visualise the 
results on biochemical pathways.  
Bioinformatics tools allow biologists to move beyond cataloguing and simple 
linear interpretations to increase our understanding of how network components 
interact [9, 46, 77-81]. Statistical tools are available or being established to 
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exploit, extract and mine raw data to perform correlation analyses and deduce 
matrices and networks (Fig. 4). Furthermore, as both datasets rely on ratios 
between the experimental and control state, it is possible to fuse metabolome and 
transcriptome databases. Combined analyses have been performed, although for 
the most part on just a few metabolites to transcriptome data or on pairwise 
correlations [82, 83]. MetaGeneAlyse (http://metagenealyse.mpimp-golm.mpg.de) 
[84] and MapMan [85] are analytical tools for analysing the perturbation of a 
system in transcript and metabolic data with distinct statistical methods.  
The reconstruction of a response network is based on similarities in the patterns 
of element behaviour as a measure of their coherence [86]. The network features 
and elements will be deduced from this [80]. It is assumed that such a network 
no longer mirrors biochemical pathways per se (though it might in part) but 
rather describes families of co-behaving (coherent) elements (vertices, nodes) 
and their correlation via connecting lines (edges) [79]. Typically, biological 
networks are expected to show inhomogeneous connectivity patterns distinct 
from a random network [80] with elements of highest connectivity (hubs), while 
other elements remain lowly connected (Fig. 4). These hubs will be points of 
high interest for further investigations and often do not appear among the usually 
selected genes or metabolites with highest ratios for alteration. This will allow 
functional relationships to be deduced from the network. Furthermore, this 
approach can be easily applied to other stresses, e.g. nutrient and environmental, 
challenging the ability of a plant to adapt, or also to investigations of plant 
developmental programmes.  
 

 
 
Fig. 4. Correlation connections for a selected part of the transcriptome for sulfur-starved 
Arabidopsis plants. A profile of the strongest connections contains many transcriptional 
factors (labelled with black circles). 
 
Case studies have been done for sulfur metabolism in Arabidopsis. 
Transcriptome and metabolome data were used in tandem with bioinformatics 
tools to describe in a holistic way the biochemical, molecular and physiological 



CELL. MOL. BIOL. LETT.        Vol. 11. No. 1. 2006 
 

 

48

response of a plant to nutrient starvation [87-89]. In the first attempt, it was 
possible to show that the genes and metabolites involved in glucosinolate 
metabolism were co-ordinately modulated [87]. Thus, by understanding such 
gene-to-metabolite networks, it was possible to identify, for example, the gene 
function of 3 genes encoding sulfotransferases with thus far unknown function; 
they are now known to be involved in glucosinolate biosynthesis [89].  
 
CONCLUSION  
 
For a deeper, even quantitative understanding of biology, the integration of 
mRNA, proteomic and metabolomic data within systems biology studies via the 
use of continuous models is required [90]. This would allow for a substantial 
improvement in the transcriptional and translational data interpretation and for 
progress in identifying regulatory networks. The goal is to achieve a better 
understanding of cellular mechanisms. Transcriptome information cannot be 
used on its own to predict biological dynamics [91]. High-throughput analytical 
procedures provide an ever-expanding amount of data and derived information 
[9, 86]. The amount, the variability of the data, and the incomparability of 
experimental conditions provides a challenge for the analytical procedures and 
the data analysis using bioinformatics [92]. Through this, it is to be expected that 
the body of accumulating information will give rise to a better understanding of 
biological systems as a whole and will allow us to interpret and to forecast the 
responses and manifestations of biological systems [80, 81, 93, 94]. The goal, 
eventually, will be to describe the wiring scheme of metabolic and physiological 
processes in plants [95, 96] or even cross-species [97]. Through this progress, 
the responses of plants to genetic manipulations and environmental perturbations 
will become increasingly predictable. This will make systems biology attractive 
as a tool for the creation of hypotheses. 
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