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Abstract: The comparative and evolutionary analysis of molecular data has 
allowed researchers to tackle biological questions that have long remained 
unresolved. The evolution of DNA and amino acid sequences can now be 
modeled accurately enough that the information conveyed can be used to 
reconstruct the past. The methods to infer phylogeny (the pattern of historical 
relationships among lineages of organisms and/or sequences) range from the 
simplest, based on parsimony, to more sophisticated and highly parametric ones 
based on likelihood and Bayesian approaches. In general, molecular systematics 
provides a powerful statistical framework for hypothesis testing and the 
estimation of evolutionary processes, including the estimation of divergence 
times among taxa. The field of molecular systematics has experienced  
a revolution in recent years, and, although there are still methodological 
problems and pitfalls, it has become an essential tool for the study of 
evolutionary patterns and processes at different levels of biological organization. 
This review aims to present a brief synthesis of the approaches and 
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methodologies that are most widely used in the field of molecular systematics 
today, as well as indications of future trends and state-of-the-art approaches. 
 
Key words: Molecular systematics, Phylogenetic inference, Molecular 
evolution, Phylogeny, Evolutionary analysis, Evolutionary hypothesis, 
Divergence time. 
 
INTRODUCTION 
 
In recent years, the outstanding advancement of molecular biology and 
bioinformatics has supplied researchers with powerful tools for tackling long-
unresolved problems in all areas of biology. Molecular systematics can be 
defined as the use of the information contained in molecular data to reconstruct 
phylogenetic relationships. A phylogeny, or evolutionary tree, is the pattern of 
historical relationships among groups (lineages) of elements (e.g. organisms, 
sequences) [1]. Understanding this pattern of relationships is essential in 
comparative studies because there are statistical dependencies among elements 
sharing common ancestry. Phylogenetic analyses used to be restricted to studies 
of organism evolution, but today, they are a standard tool in broader fields of 
research, whether related to genomics, protein engineering, conservation 
biology, or pest control in agriculture. For example, phylogenies were used to 
study the timing and ancestry of the main pandemic strain of the human 
immunodeficiency virus (HIV) [2], and more recently to investigate the origins and 
evolutionary genomics of the 2009 swine-origin H1N1 influenza A outbreak [3]. 
Of the various techniques that can be used for molecular systematics [reviewed 
in 4 and 5], the analysis of DNA and/or protein sequence variation has become 
the standard, and has been used in the vast majority of recent phylogenetic 
studies. Using DNA and amino acid sequences in molecular systematics has 
several advantages over traditional morphological approaches [6]: the 
universality of the character types and states (yielding a more objective selection 
and definition of homology, i.e. a similarity in character states due to their 
inheritance from a common ancestor); the high number of characters available 
for analyses (yielding data with a better statistical performance); the high degree 
of variation in the substitution rates among genes and gene regions (providing 
different levels of variability for specific questions); our increasingly 
comprehensive knowledge of the molecular basis underlying sequence evolution 
and function (allowing the construction of more sophisticated models of the 
evolutionary process); and the relatively easy collection of the data from 
different taxa (even from very small tissue samples and by researchers that do 
not necessarily have taxon-specific expertise). In the last few years, a great 
amount of sequence data has been generated for higher taxa, and this has 
definitely boosted the possibilities for comparative and phylogenetic studies. 
However, phylogenetic inference from molecular data is not free from 
methodological problems and pitfalls [6-8]. For example, molecular sequence 
data has a relatively low character state space (four states in the case of DNA,  
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20 in the case of amino acids), which may entail a high probability of homoplasy 
(similarity in character states for reasons other than common ancestry, such as 
convergence, parallelism, and reversal) due to the saturation of the substitution 
process (e.g. two sequences might have the same character state at a given 
position just by chance and not due to common ancestry) [1]. In practice, this 
problem is particularly important for some methods of phylogenetic inference, 
such as parsimony. Furthermore, gene phylogenies do not necessarily match 
those of the organisms due to several evolutionary processes such as horizontal 
gene transfer, gene duplication and loss, and deep coalescence [9]. Homologous 
genes that were separated by a speciation event (when a species diverges into 
two separate species) are termed orthologous, whereas homologous genes that 
were separated by a gene duplication event and occupy two different positions in 
the same genome are termed paralogous. One might expect a total match 
between the gene tree and species tree if the genes used to reconstruct the 
phylogeny are orthologous, but in practice, different sets of orthologous genes 
may yield different phylogenies [10] because of analytical limitations [11-13] 
and differences in the phylogenetic signal:noise ratio due to the unequal action 
of natural selection or genetic drift [14]. In some cases, molecular data is 
irretrievable, such as in ancient fossil taxa, although some data has been 
obtained for ‘recently’ extinct organisms [15] and in other exceptional cases 
[16]. Another important problem of molecular data is that it cannot as yet be 
used on its own to describe new species; however, see [17-19]. 
Molecular and morphological data is useful and necessary in systematics. These 
two types of data constitute independent and complementary sources of 
information for cross-validating hypotheses about evolutionary patterns and 
processes at different levels of biological organization. 
 
MODELLING SEQUENCE EVOLUTION 
 
A model of sequence evolution provides a statistical description of the process 
of character state change, i.e. the process of nucleotide or amino acid 
substitution. In general, nucleotide and amino acid substitution is viewed as  
a Markov process: a mathematical model of infrequent changes of discrete states 
over time, in which future events occur by chance and depend only on the 
current state, and not on the history of how the state was reached [20-22]. This 
Markov model also assumes that substitution rates do not change over time 
(time-homogeneous), and that relative frequencies of each character state are in 
equilibrium (stationary) [23]. The mathematical expression of a substitution 
model is a table of rates (substitutions per site per unit of evolutionary distance) 
at which each character state (either of the nucleotide or amino acid) is replaced 
by each alternative state [20]. As models become more sophisticated, these 
instantaneous rate matrices grow in complexity, and other parameters can be 
incorporated [24]. For example, frequency parameters inform about the relative 
abundance of each character state (each nucleotide in the case of DNA or each 
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amino acid in the case of protein sequences). Furthermore, substitution rates 
usually vary across the sites of the DNA or amino acid sequence due to unequal 
selective pressure, biochemical factors, and/or genetic code constraints [25, 26]. 
This variation is modelled using among-site rate variation parameters. One of 
these parameters leaves a proportion of sites incapable of undergoing 
substitutions (the ‘proportion of invariable sites’, I), with the remaining positions 
varying at the same rate [27, 28]. The other parameter uses a gamma distribution 
(Γ) for modelling rate heterogeneity across sequence sites [29]. The gamma 
distribution has a shape parameter α, and its mean and variance are 1 and 1/α, 
respectively. As α increases, the rate distribution tends to an equal-rates model. 
The gamma is a continuous distribution, but it is usually implemented in  
a discrete manner using several categories (commonly four or eight) of equal 
probability to approximate it [30]. 
In the last four decades, many models of increasing complexity have been 
described, both for nucleotide and amino acid sequences [31]. In general, models 
of sequence evolution are built following two main approaches [21], either using 
properties calculated through the comparison of large numbers of observed 
sequences (empirically), or on the basis of the chemical or biological properties 
of DNA or amino acids (parametrically). Empirical models result in fixed 
parameter values that are estimated only once and then assumed to be applicable 
to all datasets. The modelling of amino acid replacement, such as mtREV [32] 
and JTT [33], has concentrated on this empirical approach. By contrast, 
parametric models allow the parameter models to be derived from the dataset in 
each particular analysis. The modelling of nucleotide replacement, such as HKY 
[28] and GTR [34], has concentrated on this parametric approach. More complex 
models of sequence evolution have also been described, such as codon-based 
models that take the genetic code into account when calculating the probability 
of a change at a site across a branch [35], models attempting to accommodate 
structural elements of the analyzed molecules [36], or models allowing site-
specific rate variation across lineages [37, 38]. 
A proper characterization of the process of sequence evolution is essential in 
molecular phylogenetic inference [39], as phylogenetic methods tend to be less 
accurate or inconsistent (i.e. they may yield spurious phylogenetic relationships) 
when an incorrect model of sequence evolution is assumed [40, 41]. In general, 
model selection strategies attempt to find the appropriate level of complexity on 
the basis of the available data [42]. Increasing model complexity improves the fit 
to the data, but also increases the error in the estimated parameters [43, 44]. 
Therefore, the use of overparametrized models should be avoided in order to 
keep estimates as precise as possible. In recent years, several statistical methods 
(based on hypothesis testing) have been developed for selecting best-fit models 
of sequence evolution for a given dataset [23, 43]. These methods use likelihood 
ratio tests (see below) usually in a hierarchical manner (hLRT) or information 
criteria such as the AIC [45] or the BIC [46] to contrast the fit to the data of 
different alternative models. Although both likelihood ratio tests and information 



CELLULAR & MOLECULAR BIOLOGY LETTERS 
 

315 
 

criteria are in wide use, recent studies suggest that the latter are more adequate 
because they are able to simultaneously compare multiple nested or non-nested 
models (hLRT can only compare nested models, and the order of tests can 
influence which model is ultimately chosen), and permit the assessment of 
model selection uncertainty [47]. 
 
ASSEMBLING A SEQUENCE DATA MATRIX 
 
Given a particular group of organisms, the process of phylogenetic estimation 
(Fig. 1) starts with the collection of homologous sequence data. This sequence 
data can be obtained anew (using molecular biology techniques), but some can 
be retrieved from the many gene databases available, such as GenBank [48]. 
Typically, a few outgroup sequences are included to root the tree, indicating 
which nodes in the tree are the oldest, and providing clues about ancestral 
sequence states or ancestral descendent relationships [49]. In general, outgroups 
are added as a single sister clade (preferably the closest) to the ingroup. The 
choice of outgroup can strongly affect the chances of obtaining the correct tree, 
because both topology and unequal rates of molecular evolution between the 
ingroup and the outgroup affect the ability of tree-building algorithms to find the 
correct tree [50]. 
The next step is to align the sequences, because as they diverge from each other, 
length mutations (insertions and deletions, collectively referred to as indels) 
accumulate [1], and gaps need to be inserted into sequences to increase their 
similarity. The alignment is an arrangement of the sequences into a matrix so 
that the character states at each given position (column of the matrix) are related 
to each other by descent from a common ancestral residue, i.e. there is positional 
homology. The character states can be either nucleotides or amino acids. The 
alignment step is critical as the rest of the phylogenetic inference process relies 
on it [51-53], and many algorithms have been developed for multiple-sequence 
alignment [54, 55]. In most cases, these algorithms attempt to minimise the total 
cost of all the possible changes (the combination of length and substitution 
mutations) in pairwise sequence comparisons [56]. They usually work in  
a progressive manner (a set of N sequences are aligned by performing N-1 
pairwise alignments of pairs of sequences or pairs of intermediate alignments 
[57]) guided by a phylogenetic tree connecting the sequences (progressive tree 
alignment). The main problem of multiple alignments is that the costs are 
difficult to define and interpret biologically [58]. Ambiguously aligned positions 
are usually excluded from the dataset before analysis. 
The accuracy of multiple-sequence alignment tools has greatly improved in 
recent years [54]. Future improvements will likely be related to the incorporation 
of additional biological information in the alignment algorithm, such as the 
secondary structure in the case of rRNA sequences [59, 60], the combination of 
sequence alignment algorithms with the statistical methods applied to the 
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analysis of genomic data [61], and the simultaneous co-estimation of sequence 
alignments and phylogenetic trees in a probabilistic framework [62, 63]. 
 

 
 
Fig. 1. A flowchart of the process of phylogenetic estimation. Some steps have been 
omitted or condensed for simplicity. 
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In addition to the sequence data, a model of sequence evolution must be chosen, 
as the methods used in molecular phylogenetics are based on a series of 
assumptions about how the substitution process works (see above). These 
assumptions can be implicit, as in parsimony methods, or explicit, as in 
likelihood-based methods [43]. 
 
METHODS OF PHYLOGENETIC INFERENCE 
 
Of the various methods developed to reconstruct phylogenetic relationships [see 
reviews in 20, 21, 31 and 42], there are four that have dominated molecular 
systematic studies: maximum parsimony, neighbour-joining, maximum 
likelihood, and Bayesian inference. 
 
Maximum parsimony 
Maximum parsimony is one of the earliest inference methods [64, 65] that arose 
from Hennig’s phylogenetic systematics [66]. Unlike distance methods, it 
directly uses character states, and is based on an optimality criterion, which is  
a rule to decide which of the alternative trees is the best: it selects the tree or 
trees requiring the fewest character state changes, thus attempting to minimize 
homoplasy. The length of an unrooted tree can be directly calculated using 
Fitch’s algorithm [64], which moves along the tree assigning one or more states 
to each of the internal nodes. In this method, the tree space (the theoretically 
possible tree topologies for a given number of taxa) is usually searched using 
heuristic searches or, when the number of sequences is small (<12), exact 
searches [31]. Exact searches are those that evaluate all possible trees 
(exhaustive searches) or parts thereof (in a way that ensures that the optimal tree 
will not be missed from the evaluation, such as ‘branch and bound’ searches), 
and thus guarantee that the tree found is optimal. Heuristic searches are those 
that do not evaluate all the possible trees and cannot guarantee that the tree 
found is the optimal one. To maximize the chances of success, several 
independent searches are performed starting from different regions of the tree 
space, giving a good, albeit not definitive indication that the optimal tree has 
been found if all the searches find the same tree. 
The advantage of maximum parsimony is that it is fast enough for the analysis of 
large datasets containing many sequences, and it is robust if the branches of the 
tree are short, whether this is because the sequences are closely related or 
because the taxon sampling is dense. However, maximum parsimony can 
perform poorly, and even be seriously misleading, if there is substantial variation 
in the rates of evolution among the taxa. In this case, the taxa with the fastest 
substitution rates appear in the tree as long branches, and tend to artefactually 
group together. This phenomenon is called long-branch attraction (LBA) [67], 
and parsimony is particularly affected by it [20, 68]. Unweighted parsimony 
lacks an explicit model of sequence evolution [69], so it is difficult for this 
method to deal with a high degree of homoplasy (i.e. parallel, convergent, 
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reversed, or superimposed changes) when markedly divergent sequences are 
analysed. In such a case, parsimony analyses can be weighted through the use of 
step matrices to incorporate prior assumptions about the costs of character state 
change (e.g. transitions and transversions) [20]. 
 
Neighbour-joining and minimum evolution 
These are pairwise distance methods [70, 71] based on the assumption that 
dissimilarity between two sequences is directly related to their phylogenetic 
relationship. Such dissimilarity arises from the number of changes that have 
occurred along the branches, i.e. the evolutionary distance. Distance methods 
comprise both clustering methods such as neighbour-joining, and optimality 
methods such as minimum evolution. Clustering methods were originally 
developed to detect similarities rather than to estimate evolutionary relationships 
[72]. In neighbour-joining [73], the DNA or amino acid sequences are first 
converted into a distance matrix that is then used to reconstruct a phylogenetic 
tree. Optimality methods calculate the score of a tree based on the squared 
deviation of the pairwise observed distances between each pair of taxa, 
estimated from the data matrix, and the distance separating those taxa on the tree 
[71]. In minimum evolution [74], the optimality criterion is the sum of branch 
lengths optimized according to the least-squares criterion above (the minimum 
evolution score). 
The main advantage of distance methods is that they are relatively rapid 
compared to all the other methods available, and they perform well when the 
divergence between the sequences is low. The disadvantages of distance 
methods include the loss of information when the sequences are converted to 
distances, and the difficulty in obtaining reliable estimates of pairwise distances 
for highly divergent sequences. Both neighbour-joining and minimum evolution 
can incorporate models of evolution to correct pairwise genetic distances for 
multiple substitutions at the same site [75]. 
 
Maximum likelihood 
This method is one of the standard tools of statistics [76], and was first applied 
to phylogenetics several decades ago [22, 77, 78]. In the context of molecular 
systematics, the likelihood of a phylogenetic tree is the probability of observing 
the data (the set of sequences being analyzed) given the tree and the model of 
evolution. This is also an optimality method: the best tree is the one that renders 
the observed sequences most likely to have evolved under the assumed 
evolutionary model. The likelihood of a site is the probability of the observed 
states at that site given all the possible combinations of states at the internal 
nodes of the tree (ancestral states). The likelihood of a tree is the product of the 
likelihoods for each site of the alignment. Because likelihood values are often 
very small, they are usually expressed as log likelihoods, ln L (which are 
computationally easier to handle). 
As with parsimony, the tree space is usually explored using heuristic searches. 
The great advantage of maximum likelihood is that it allows the inference of 
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phylogenetic trees using complex models of sequence evolution, including the 
ability to estimate model parameters, thus allowing simultaneous inference of 
patterns and processes of molecular evolution, and provides a powerful 
statistical framework for hypotheses testing (see below). The models of 
sequence evolution can be implemented for the whole sequence dataset [79], and 
for different partitions (subsets treated independently) of it, such as the different 
codon positions of a protein-coding gene [80-82]. The strong statistical 
foundations of likelihood-based methods probably make them the most robust 
way for estimating molecular phylogenies and understanding sequence evolution 
[21]. However, there are also criticisms of this method related to the fact that the 
result may be especially dependent on the correctness of the employed model of 
sequence evolution [21, 42; but see also 83]. Another criticism is that maximum 
likelihood can be prohibitively slow and computationally demanding, 
particularly when there is a large number of sequences (terminal taxa) to be 
analyzed. However, the exponential increase in computer power and the 
development of faster algorithms [81, 84] have largely solved this problem. 
 
Bayesian inference 
This is the most recently developed of all the phylogenetic inference methods 
[85-87]. The field of Bayesian statistics is closely allied with maximum 
likelihood: the optimal hypothesis is the one that maximizes the posterior 
probability. According to Bayes’ theorem, the posterior probability for  
a hypothesis is proportional to the likelihood multiplied by the prior probability 
of that hypothesis. Like maximum likelihood, Bayesian analysis allows complex 
models of sequence evolution, generally the same ones used in maximum 
likelihood, to be implemented for the whole sequence dataset, and for different 
partitions of it. This method involves specifying a model and a prior distribution 
(the probability distribution of parameter values before observing the data) and 
then integrating the product of these quantities over all possible parameter values 
to determine the posterior probability for each tree. However, the likelihood 
functions for phylogenetic models are currently too complex to integrate 
analytically, so Bayesian approaches rely on Markov chain Monte Carlo 
(MCMC) procedures [88-90]. This algorithm works by taking sample trees from 
the distribution of posterior probabilities. Unlike maximum likelihood, which 
searches for a single most likely tree, Bayesian MCMC searches for the ‘best set 
of trees’ in the landscape of possible trees. The initial state of the chain is a tree 
with a combination of branch lengths and parameters of the substitution model. 
Given this initial state, a probability can be calculated from each site along the 
alignment. A new state of the chain is then proposed, changing a parameter of 
the model, moving a branch and/or varying a branch length to create a modified 
tree, and the ratio of likelihoods of the states is calculated. If that ratio is higher 
than a number randomly drawn between 0 and 1, the new state is accepted. 
Otherwise, it remains the same. In general, if the new tree is more likely than the 
preceding tree (given the data and substitution model), it is more likely to be 
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accepted. These steps constitute an MCMC generation. Sequential values (new 
states) are simulated from the chain until it converges (i.e. the simulated 
variables stay on values with high probability in the stationary chain), and then 
the states (tree and model parameters) are sampled at intervals from the chain, 
thus constituting independent samples from the stationary distribution. As the 
number of generations increases, the process does an approximation of the 
landscape of possible states (tree and parameters); the longer the MCMC runs, 
the closer the approximation becomes. Current Bayesian phylogenetic 
procedures use a variant of MCMC called Metropolis-coupled MCMC, which is 
less prone to entrapment in local optima. This MCMC variant involves running 
several independent chains simultaneously (typically four). Each generation, 
every chain proposes and accepts/rejects moves independently, and a swap of 
the states is attempted between two randomly chosen chains. States are only 
sampled from one of the chains, designated as the ‘cold’ chain (the rest are 
‘heated’ chains). If the cold chain gets stuck in local optima (a low probability 
hill in the posterior density landscape), it has a chance to escape by swapping 
with another chain that may be on a higher hill. 
Bayesian inference has the advantage of a strong connection with the likelihood 
framework and its powerful statistical foundations. Moreover, as a result of the 
MCMC process, there is a posterior probability associated to each node on the 
inferred Bayesian tree (the fraction of times a clade occurs among the sampled 
trees) that can be used as a measure of support for that node. The disadvantages 
of Bayesian methods stem from the fact that prior distributions for parameters 
must be specified, and that it can be difficult to determine if the MCMC 
approximation has run for a sufficient number of cycles, meaning that the chains 
have converged [42], and thus if the tree space has been adequately searched. 
Long Bayesian runs (millions of generations, and starting from different initial 
states) are typically required to reach convergence and ensure an adequate search 
of the tree space [91]. There is a myth that the Bayesian MCMC is faster and 
computationally less demanding than maximum likelihood using equally (or 
even more) complex models of sequence evolution. However, each procedure is 
trying to do rather different things: the Bayesian approach explores the entire 
posterior distribution of the tree and all the parameters, while maximum 
likelihood just searches for a single tree and set of parameters that maximise the 
likelihood. The amount of computation in each case can vary greatly. 
 
STATISTICAL SUPPORT OF PHYLOGENETIC TREES 
 
Other than Bayesian inference, which yields a tree with support values for each 
node, measured as posterior probabilities, the methods of phylogenetic 
reconstruction produce only point estimates of the phylogeny. However, an 
important issue is to know how strongly the data supports each of the 
relationships depicted in the tree. Several methods for assessing confidence exist 
[92], but this issue has traditionally been tackled by bootstrapping, which was 
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first applied to phylogenetics by Felsenstein [93]. This is a statistical resampling 
technique by which distributions that are difficult to calculate exactly can be 
estimated by the repeated creation and analysis of artificial datasets. To assess 
node support in phylogenetics, non-parametric bootstrapping is used: new 
datasets are created by sampling randomly and with replacement from the 
original data (these new bootstrap datasets are of the same size as the original);  
a desired quantity of bootstrap datasets is computed (typically between 500 and 
2000 [94, 95]); and the resulting distribution is used to estimate the variation that 
would be expected if the same number of new independent datasets had been 
collected. The exact interpretation of the statistical significance of bootstrap 
proportions is elusive, but several authors [95, 96] have proposed that they are 
conservative measures of support, so a value of 70% or greater might indicate 
substantial confidence for a group. In Bayesian inference, some criticisms are 
related to the putative overconfidence of posterior probability measures of node 
support [97], and the general recommendation is that posterior probabilities 
should only be considered reliable (strong support) if greater than 0.95 [98-100]. 
In general, these misleadingly high posteriors are associated with arbitrary 
resolutions of hard polytomies [101], inappropriate prior choice, and failure to 
allow convergence [91]. 
 
HYPOTHESIS TESTING IN PHYLOGENETICS 
 
One of the most appealing topics in molecular systematics is the availability of 
methods for the statistical testing of competing phylogenetic hypotheses. These 
methods are available almost exclusively within the likelihood framework, 
although some tests have also been developed for other frameworks, such as 
parsimony [102]. They allow assessment of which model provides the best fit for 
a given dataset, and the degree of confidence we have in any given topology 
being the true topology. 
One of the methods to compare two competing hypothesis is the likelihood ratio 
test (LRT) [22, 44, 103], which has been extensively used for selecting 
competing best-fit models of sequence evolution for a given dataset, and for 
testing deviations from clock-like evolution (the global molecular clock 
hypothesis). Competing hypotheses are compared using a statistic, 2δ (calculated 
as the ratio of the likelihood scores of the alternative hypothesis to the null 
hypothesis), which measures how much better an explanation of the data the 
alternative hypothesis gives. In order to perform a significance test, the 
distribution of 2δ values expected under the simpler hypothesis is required. If the 
two competing hypotheses are nested (i.e. the null hypothesis is a special case of 
the alternative hypothesis), then the 2δ distribution is asymptotically distributed 
as χ2 with the number of degrees of freedom equal to the difference in the 
number of parameters between the two models. 
When the hypotheses being compared are not nested, the χ2 approximation may 
perform poorly. In this case, the null distribution of the LRT statistic can be 
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approximated by parametric bootstrapping [104-106]. Unlike the non-parametric 
bootstrap (where datasets are generated by resampling from the original data), 
the parametric bootstrap uses Monte Carlo simulation to generate the data. 
Replicate datasets of the same size as the original (usually 200-1000) are 
simulated according to the null hypothesis being tested. For each replicate 
dataset, the likelihoods according to both the null and alternative hypotheses are 
estimated, and the LRT statistic is calculated. These simulated 2δ values form 
the null distribution of the LRT statistic, allowing implementation of a significance 
test. The main disadvantage of parametric bootstrapping is that it is 
computationally demanding, and even unfeasible when large datasets are 
considered. 
Apart from parametric bootstrapping, there are several non-parametric 
likelihood-based tests. These tests intend to determine whether the difference in 
fit of two or more alternative tree topologies (always non-nested hypotheses) to 
the data is significantly greater than expected under the null hypothesis of 
random sampling error. Of the various methods of this kind, the most widely 
used are the Kishino-Hasegawa [107], the Shimodaira-Hasegawa [108], and the 
approximately unbiased [109] tests. They all are based on the estimation of LRT 
statistics, and use different non-parametric bootstrapping procedures to assess 
their variance and obtain an estimation of their distribution, thus permitting 
significance tests. The Kishino-Hasegawa test is valid in the case that the 
competing hypotheses, each consisting of specific tree topologies, are chosen  
a priori, so that they are not derived from the same data, but this constraint is 
usually overlooked [92]. The Shimodaira-Hasegawa test can be used to evaluate 
multiple trees chosen a posteriori, allowing a proper multiple comparison even 
with topologies derived from the same data, but it requires the inclusion of all 
‘reasonable’ trees to be valid because different sets of alternative hypotheses can 
vary the results [110]. However, it is unclear how the set of reasonable trees can 
be selected. The approximately unbiased test uses a multiscale bootstrap 
approach to control for Type 1 errors, while reducing the overly conservative 
tree selection biases of other non-parametric tests, such as the Shimodaira-
Hasegawa test, often accused of being very conservative [92]. However, 
information about the actual power and appropriateness of this test in empirical 
cases is still limited. Several concerns exist regarding robustness to deviations 
from some of its basic assumptions (such as the breakdown of the asymptotic 
theory [109]), model misspecification [111], and heterogeneity in the rates of 
sequence evolution (such as the effect of unequal evolutionary rates among taxa 
[112]). Interestingly, several studies [109, 113] have indicated a good correlation 
between results from the approximately unbiased and Kishino-Hasegawa tests. 
Empirical comparisons of non-parametric and parametric bootstrapping tests 
appear to indicate that the former tend to be conservative (i.e. unwilling to reject 
topologies as untrue) because of multiple comparisons and deviations from some 
of their basic assumptions, and that the latter tend to be liberal (i.e. willing to 
reject topologies as untrue) because of the use of oversimplified models of 
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sequence evolution to construct the null distribution [92, 110, 114]. There is no 
easy way to overcome this conflict, but the trend is to perform both parametric 
and non-parametric tests, and use the resulting significances to assign 
‘credibility ranks’ for each alternative phylogenetic hypothesis, depending on 
the concordance or disparity of the two types of test. 
 
ESTIMATION OF DIVERGENCE TIMES 
 
A key feature of molecular phylogenies is that not only can relationships be 
reconstructed, but divergence events can also be dated using various models of 
the expected rate of accumulation of substitutions in the sequences over time. 
The idea of dating evolutionary divergences using calibrated sequence distances 
was first proposed by Zuckerkandl and Pauling [115], who postulated that the 
amount of difference between the DNA molecules of two species is a function of 
the time since their evolutionary separation. This was termed a ‘molecular clock’ 
and was shown by comparing amino acid substitution rates with ages estimated 
from fossils. The central assumption of the molecular clock is that all branches 
of a phylogenetic tree evolve at the same global substitution rate, i.e. there is rate 
constancy. A clock-like tree is ultrametric (i.e. the total distance between the 
root and every tip is constant), so nodal depths can be easily dated if the 
divergence time for at least one node is known (calibration point). The global 
rate of substitution can be calculated and, based on it, divergence times for all 
nodes are estimated by linear regression of the molecular distances [116, 117]. If 
several calibration points are used, then a regression line is built, the slope of 
which is an estimate of the global substitution rate, and the divergence times for 
the unknown nodes are interpolated (or extrapolated). The molecular clock 
hypothesis is in perfect agreement with the neutral theory of evolution that 
postulates that the majority of substitutions in genes are the result of the random 
fixation of selectively neutral mutations [118, 119]. 
Molecular clocks constructed in this way (conventional) suffer from several 
limitations that lead to overestimation biases [120, 121]. There is increasing 
evidence that the assumption of rate constancy is often violated, and that DNA 
and amino acid sequences of even closely related species can evolve at different 
rates [122, 123]. The reasons given for these deviations from the clock-like 
model of sequence evolution are related to generation time [124], metabolic rate 
[125], mutation rate [126], and the effect of effective population size on the rate 
of fixation of mutations [124]. In practice, clock-like behaviour of the data can 
be tested using several methods, the LRT statistic (see above) being the most 
widely used. If the null hypothesis of a constant rate is rejected, methods that try 
to model rate changes over the tree, so-called ‘relaxed clock methods’, are 
necessary. There are many such methods that use different approaches to either 
correct or incorporate rate heterogeneity in the dating process on the basis of 
specific rate change models (for a list see [127]). The biological factors affecting 
the violation of the mutation rate constancy (see above) are modelled in  
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a function describing the behaviour of rates throughout the tree; this function can 
be an algorithm to minimize the rate changes between adjacent branches, or an 
explicit model of rate variation in which substitution rates can change along 
branches [128]. Many of these methods are based on the idea of rate 
autocorrelation: the assumption that evolutionary rates among closely related 
lineages are similar. Simulations indicate that rate autocorrelation methods are 
less prone to overestimation than conventional molecular clocks [129]. The most 
widely-used relaxed clock methods are: penalized likelihood [130, 131], 
Bayesian rate autocorrelation dating [132-134], and Bayesian uncorrelated 
relaxed clock [135, 136]. 
Penalized likelihood is a semi-parametric technique that attempts to 
simultaneously estimate unknown divergence times and smooth the rapidity of 
change along lineages. To smooth rate variation, a nonparametric function is 
used that penalizes rates that change too fast from branch to neighbouring 
branch, thus reflecting an idea of autocorrelation of rates. Because the penalty 
function includes unknown times, an optimality criterion based on this penalty 
permits an estimation of the divergence times [131]. The use of a likelihood 
framework permits the specification of the relative contribution of the rate 
smoothing and the data-fitting parts of the estimation procedure. The optimal 
level of smoothing can be estimated by running a cross-validation procedure 
[130]. Penalized likelihood provides confidence intervals on the estimated 
parameters by calculating an age distribution based on chronograms generated 
from bootstrapped datasets, and allows multiple calibration constraints to permit 
scaling of rates and times to real units [137]. 
The Bayesian dating methods use a fully probabilistic and high parametric 
model to describe the change in evolutionary rate over time, and use MCMC 
approximation to derive the posterior distribution of rates and times from a prior 
distribution. In Bayesian rate autocorrelation dating, rates are drawn from a log 
normal distribution and assigned to different branches in the tree, and  
a parameter called the Brownian motion constant describes the amount of 
autocorrelation [132-134]. In order to scale rates and times, the prospective age 
of the root node must be specified a priori. This method provides Bayesian 
credibility intervals for estimated divergence times and substitution rates, and 
allows multiple calibration constraints on nodes, specified as prior age intervals. 
Other approaches of the Bayesian autocorrelated model have also been described 
[138]. In contrast to penalized likelihood, the Bayesian rate autocorrelation 
dating method is able to account for multiple genes/loci, or dataset partitions in 
general, with different evolutionary behaviours. This simultaneous analysis of 
multiple genes may yield more accurate estimates of divergence times [134]. 
More recently, the Bayesian uncorrelated relaxed clock method has been 
developed [135, 136]. This method, which is also highly parametric, assumes no 
a priori correlation of the rates on adjacent branches of the phylogenetic tree, 
but uses a model in which the rate on each branch is drawn independently and 
identically from an underlying rate distribution. Although computationally 
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demanding, this uncorrelated dating method is able to co-estimate phylogeny 
and divergence times, and it allows the implementation of several models of rate 
change for the analysis depending on the user’s assumptions about how rates 
change over time. 
Even when using similar input topologies and calibration constraints, the results 
of the penalized likelihood and Bayesian dating methods may look quite 
different, and this is related to their different assumptions about rate change, 
their different implementations of models of sequence evolution, branch length 
estimation, the use of prior information, and the different ways in which 
confidence intervals are calculated [130, 132, 134, 135]. An important issue in 
molecular dating is the choice of appropriate calibrations [139-142]. In a conventional 
molecular clock, they were merely points used for linear interpolation, but the 
relaxed clock methods have introduced more sophisticated approaches of 
incorporating calibrations (see [143] for a recent comparison of the various 
calibration techniques): minimum and/or maximum hard bounds on the age of 
internal nodes (implemented in penalized likelihood and Bayesian rate 
autocorrelation dating), soft bounds [144], and prior age distributions for 
selected nodes in the tree (implemented in the Bayesian uncorrelated relaxed 
clock method). In recent years, Bayesian methods, particularly the Bayesian 
uncorrelated relaxed clock method, have been attracting more attention because 
of their relative novelty compared to penalized likelihood, and because their 
highly parametric framework, albeit not necessarily more parametric than 
maximum likelihood methods, is often interpreted as a grade of sophistication 
that permits the extraction of more information about the evolutionary processes 
that generated the observed variation. 
 
MOLECULAR MARKERS 
 
Of the various molecular techniques that have been employed in phylogenetic 
studies [4, 5, 145], the analysis of DNA and/or amino acid sequences has 
become the most widely used by far nowadays, particularly since the advent of 
the PCR [146]. It is now possible and relatively easy to determine the precise 
nucleotide sequence of specific genes or sets of genes for entire groups of 
organisms, and to use that information to investigate their phylogenetic 
relationships and molecular evolution. However, the choice of specific genes 
and taxa that are most appropriate for the phylogenetic question at hand is  
a crucial step, as the results of the study are largely dependent on the choice  
[12, 147, 148]. There is an ongoing debate on whether it is better to add more 
genes or more taxa to increase phylogenetic accuracy and robustness [149, 150]. 
It is generally accepted that dense taxon sampling improves overall phylogenetic 
accuracy [12, 151-156]. By contrast, some studies [148, 157, 158] have 
indicated that dense character (e.g. gene, nucleotide) sampling increases 
phylogenetic robustness. 
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In general, the use of ‘favourite’ genes or genomic regions in phylogenetic 
studies is more commonly related to the technical ease with which their 
sequences can be determined, and their ‘success’ in previous similar-level 
studies (see [147] for a review). Over the years, ribosomal genes (particularly 
mitochondrial ones) have been used in animal phylogenetic studies at various 
taxonomic levels. Also, some mitochondrial protein-coding genes, such as cob 
and cox1, have become particularly popular. The growth in popularity of all of 
these genes was often due to the early availability of ‘universal’ PCR primers for 
them [159, 160], but in most cases, only short partial fragments of 300-600 base 
pairs (bp) of these genes are sequenced. Most of the ‘favourite’ genes are 
encoded by mitochondrial DNA, because some of its features (lack of introns, 
maternal inheritance, practical absence of recombination, and haploidy) have 
made it particularly suitable for estimating animal molecular phylogenies  
[145, 161]. Several studies have demonstrated the need to establish high-level 
phylogenetic inferences based on rather large sequence datasets in order to 
achieve statistical confidence [11, 162, 163], and in recent years, there has been 
a growing trend to sequence large genomic regions (or even complete genomes) 
to tackle phylogenetic problems [10, 164, 165]. In addition, recent studies have 
also indicated that some orthologous nuclear protein-coding genes, such as rag1 
and actB, may outperform mitochondrial sequences in reconstructing ancient 
phylogenetic relationships [166, 167]. 
 
MOLECULAR SYSTEMATICS FOR THE FUTURE 
 
In the coming years, an enormous amount of sequence information, including 
that of entire genomes [168], will probably become available for a vast array of 
taxa, particularly with the advent of research initiatives aiming to assemble  
a single, inclusive tree of all life on Earth, such as the ‘Assembling the Tree of 
Life’ program [169]. Therefore, the new challenges to the field of molecular 
systematics will be mainly related to the handling of very large datasets, and the 
integration of different levels of genomic information [10, 164, 165, 170, 171]. 
Several online tools are already available, such as the PhyLoTA browser [172], 
intended to systematize GenBank information for large-scale molecular 
phylogenetics analysis. Models of sequence evolution will soon become more 
realistic and probabilistic algorithms, particularly Bayesian ones [173], will 
become more sophisticated, while computing times will be reduced with 
developments in supercomputing and parallel processing technologies (such as 
the ‘Cyberinfrastructure for Phylogenetic Research’ project [174]), and the 
general improvements in processor and other hardware technology. Also, the use 
of techniques from information theory [175-177] will allow the design of more 
efficient phylogenetic studies. These techniques can provide quantitative 
comparisons of the phylogenetic information content of different datasets 
(genes, data partitions) across a tree or part thereof, which can then be used to 
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identify the most informative marker(s) for a particular phylogenetic question, 
and to predict the impact of additional data in the form of new chararcters and/or taxa. 
The simultaneous analysis of vast amounts of molecular data together with 
morphological, ecological, and behavioural traits, and even characteristics from 
extinct taxa, is becoming feasible, particularly using Bayesian approaches or 
parsimony-based methods intended to deal with the potential mismatch between 
gene trees and species trees (due to e.g. hybridization, horizontal gene transfer, 
or paralogy) [178, 179]. This has been called the ‘supermatrix’ or ‘total 
evidence’ approach (Fig. 2) [180]. Despite its potential, it still has to deal with 
the problem of extensive missing data in the concatenated super-matrices and its 
elusive effect for phylogenetic reconstruction algorithms [150, 181-183].  
A parsimony-based variant of the supermatrix approach is the ‘direct-
optimization’ method [184, 185], which involves the simultaneous alignment 
and analysis of sequence characters from multiple genes that can be analysed 
with other non-sequence data. A sound criticism of this approach is that primary 
homology is compromised because the alignments are influenced by congruence 
with other data [186]. 
 

 
 
Fig. 2. Schematics of the supermatrix (left) and supertree (right) approaches. 
 
An alternative approach for building large phylogenies is combining 
phylogenetic trees with overlapping taxon sets to yield another larger, more 
inclusive phylogenetic tree, the so-called ‘supertree’ approach (Fig. 2) [187, 
188]. This supertree approach requires less computing times for the assembly of 
large phylogenies (of course, the time required to reconstruct each of the 
individual trees is not taken into account) and allows the combination of 
estimates from incompatible data types. Some important criticisms of this 
approach are the loss of essential information in the tree construction, as it is not 
directly based on the primary character data [189], and the substantial effect of 
the balance and shape of the input trees in resolving conflicts in the current 
methods [190]. However, the supertree and supermatrix approaches have 
complementary natures that will play an important role in the reconstruction of 
large phylogenies, or even a whole Tree of Life, as part of a ‘divide-and-
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conquer’ strategy [191, 192] to explore the huge tree space derived from the 
analysis of thousands or even millions of taxa. Other approaches that are 
essentially variants of the supermatrix approach are also being developed  
[193, 194], but only time will tell if they become essential tools for the new era 
of molecular systematics. 
 
PHYLOGENETIC SOFTWARE 
 
The number of computer programs available for phylogenetic analysis has 
greatly increased in recent years, but the reader can find an excellent, 
comprehensive, well-organized, and up-to-date compilation of most (if not all) 
of the available programs at Joseph Felsenstein’s website [195]. Tab. 1 shows  
a selection of these programs, implementing most of the methods described in 
this review. 
 
Tab. 1. An overview of the commonly used programs implementing most of the methods 
described in this review. 
 

Program Method Reference 

CLUSTALW Multiple sequence alignment [196] 
MAFFT Multiple sequence alignment [197, 198] 
T-COFFEE Multiple sequence alignment [199] 
GBLOCKS Selection of conserved blocks from multiple alignments [200] 
MODELTEST Substitution model selection (DNA) [201, 202] 
PROTTEST Substitution model selection (proteins) [203] 
PAUP* Phylogenetic inference (MP, ME, NJ, ML) [79] 
PHYLIP Phylogenetic inference (MP, ME, NJ, ML) [204] 
MEGA Phylogenetic inference (MP, ME, NJ) [205] 
RAxML Phylogenetic inference (fast ML) [81] 
GARLI Phylogenetic inference (fast ML) [206] 
PHYML Phylogenetic inference (fast ML) [84] 
MRBAYES Phylogenetic inference (BI) [207, 208] 
CONSEL Tree comparison tests [209] 
MACCLADE Character evolution (MP) / Sequence alignment editor [210] 
MESQUITE Character evolution (MP, ML) [211] 
PAML Phylogenetic analysis (ML) [82, 212] 
P4 Phylogenetic analysis (ML, BI) [213] 
R8S Penalized likelihood dating [137] 
MULTIDIVTIME Bayesian relaxed-clock dating [214] 
BEAST Bayesian inference and relaxed-clock dating [136] 
TREEVIEW Tree visualization and editing [215] 
FIGTREE Tree visualization and editing [216] 
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