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Abstract

Osteoporosis, or bone loss, is a progressive, systemic skeletal disease that affects
millions of people worldwide. Osteoporosis is generally age related, and it is
underdiagnosed because it remains asymptomatic for several years until the
development of fractures that confine daily life activities, particularly in elderly
people. Most patients with osteoporotic fractures become bedridden and are in a
life-threatening state. The consequences of fracture can be devastating, leading to
substantial morbidity and mortality of the patients. The normal physiologic process
of bone remodeling involves a balance between bone resorption and bone
formation during early adulthood. In osteoporosis, this process becomes imbalanced,
resulting in gradual losses of bone mass and density due to enhanced bone
resorption and/or inadequate bone formation. Several growth factors underlying
age-related osteoporosis and their signaling pathways have been identified, such
as osteoprotegerin (OPG)/receptor activator of nuclear factor B (RANK)/RANK ligand
(RANKL), bone morphogenetic protein (BMP), wingless-type MMTV integration site
family (Wnt) proteins and signaling through parathyroid hormone receptors. In
addition, the pathogenesis of osteoporosis has been connected to genetics. The
current treatment of osteoporosis predominantly consists of antiresorptive and
anabolic agents; however, the serious adverse effects of using these drugs are of
concern. Cell-based replacement therapy via the use of mesenchymal stem cells
(MSCs) may become one of the strategies for osteoporosis treatment in the future.
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Background
Osteoporosis, a bone disease involving the appearance of porous bone, is characterized

by low bone mass and microarchitectural deterioration of bone tissues, leading to

reduced bone strength and a consequent increase in fracture risk [1, 2]. Osteoporosis

is increasingly recognized as a major public health concern that affects more than 200

million people worldwide and causes more than 8.9 million fractures, and mainly hip

fractures, per year [3]. The incidence of osteoporosis has dramatically risen because

the life expectancy of the population has been increasing in every geographic region

[4]. The consequences of osteoporosis are significant, as is the financial burden,

estimated at approximately US $17 billion for more than 2 million fractures in the US

[5]. The prevention of this disease and its associated fractures is considered essential

to health maintenance, quality of life, and independence in the elderly population.
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According to the World Health Organization (WHO) criteria, osteoporosis is de-

fined as having a bone mineral density (BMD) value that is 2.5 standard deviations or

more (T-score ≤ -2.5) below the average value for young healthy women, as measured

by dual-energy x-ray absorptiometry (DXA), which is the most validated technique

(i.e., the gold standard) [1, 2]. A low BMD not only is a major risk factor for fractures

but also is an independent risk factor for death [6]. BMD testing of the hip and spine

is required for a densitometric diagnosis of osteoporosis. Measurements of bone

strength other than bone density at these sites may predict fracture risk but cannot be

used to diagnose osteoporosis [7]. BMD remains the best tool to assess fracture risk,

but it cannot predict the fracture risk in certain cases, particularly in type 2 diabetes

patients, who usually have a higher BMD and an increased fracture risk [8]. The

majority of osteoporotic fractures occur in individuals with a BMD level within the

osteopenic range (-2.5 < T-score < -1) or even with normal BMD levels [9]. The

Fracture Risk Assessment (FRAX) tool integrates BMD and clinical risk factors such

as age, gender, the history of fracture, the parental history of hip fracture, current

smoking, excessive alcohol intake, rheumatoid arthritis, glucocorticoid use, and other

causes of secondary osteoporosis. FRAX has been shown to be a more applicable

prediction tool to estimate the risk and probability of fracture in an individual over

the next 10 years. FRAX can also provide general clinical guidance for treatment

decisions [10].

Over the past few decades, there have been great advances in understanding of the

physiologic process of bone remodeling, together with associated pathologic conditions.

The underlying pathogenesis of osteoporosis involves an imbalance of bone homeostasis

that results from many causes, such as hormone deficiency, genetic disorders, use of

certain medications, and medical conditions. Osteoporosis is characterized by low

bone mass and density, which lead to an increased fracture risk. The aims of

treatment for osteoporosis are to reduce bone loss and maintain bone density,

especially in patients who have fractures or a high risk of fractures. Many therapeutic

drugs for treating osteoporosis are available in the market, most of which have relied

on bone resorption inhibition, such as bisphosphonate, and several drugs are being

developed for treatment in the future. However, controversies have confounded the

treatment of osteoporosis. Thus, new treatments based on the promotion of bone

regeneration or alternative cell-based therapy for osteoporosis patients are expected

to be investigated. Stem cells are expected to have great therapeutic potential, particularly

in regenerative medicine. Specifically, stem cells could be a promising cell source for

cell-based therapy for osteoporosis. In the present review, the current understanding

of mesenchymal stem cells (MSCs) and their roles in osteoporosis, the genetics and

transcriptional regulation involved in the pathogenesis of osteoporosis, the signaling

pathways associated with osteoporosis and trends in using stem cells as cell-based

therapy for osteoporosis is summarized.
Pathogenesis

Imbalance of bone homeostasis

Bone formation generally comprises three basic steps: synthesis of extracellular protein

matrix (osteoid) by osteoblasts; matrix mineralization by coating the protein matrix
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with a layer of mineral, and predominantly calcium phosphate in the form of crystals of

hydroxyapatite; and bone remodeling, which is a process that occurs throughout

human life. Bone remodeling is essential to maintain the integrity of the skeleton and

serves as storage for mineral homeostasis [11]. Via an interactive process called

coupling, this process is balanced by the functions of bone-resorbing osteoclasts and

bone-forming osteoblasts in early adulthood. When the bone loses its mineral content

and density and develops osteopenia, this culminates in osteoporosis, which is associated

with a risk of bone fractures [11, 12].

Osteoporosis is normally related to increasing age, consistent with the fact that most

of the older population is affected by this condition. It has been shown that genetics

could be another explanation for the pathogenesis of osteoporosis. The results of

laboratory studies have indicated that osteoporosis is caused by an imbalance of the

coupling interactive process, with increased bone resorption relative to bone formation.

In this regard, the imbalance is a consequence of changes at the cellular level, by which

osteoclast development is enhanced but osteoblast differentiation is insufficient because

of impaired activity and enhanced apoptosis [13, 14].
Underlying transcriptional regulation and genetics

Although MSCs have the ability to undergo multipotent differentiation, cell fate

determination and differentiation toward either osteoblasts or adipocytes are well

regulated by lineage-specific transcription factors such as runt-related transcription

factor 2 (Runx2) and osterix (Osx) for osteoblasts and peroxisome proliferator-

activated receptor gamma (PPARγ) for adipocytes, suggesting an inverse correlation

between osteogenesis and adipogenesis [15–19]. During these processes, intrinsic

(genetic) and/or environmental (local and/or systemic) conditions interplay to specify

cell fate toward one of the possible lineages. Several lines of evidence have demonstrated

that osteoporotic MSCs have defects in intrinsic signals that cause functional

alterations, leading to poor osteogenic differentiation capacity and favoring increased

adipogenesis [13, 20]. A recent study of microarray analyses demonstrated that MSCs

from elderly patients with primary osteoporosis have a distinct transcriptome

compared with control MSCs and elderly donor non-osteoporotic MSCs, as shown by

enhanced mRNA expression of osteoporosis-associated genes (RUNX2, lipoprotein

receptor-related protein 5; LRP5, collagen type 1 alpha1; COL1A1), genes involved in

osteoclastogenesis (CSF1, PTH1R), and genes coding for inhibitors of wingless-type

MMTV integration site family (Wnt) and bone morphogenetic protein (BMP) signaling,

indicating intrinsic deficiencies in self-renewal and differentiation potential in osteoporotic

MSCs [21]. Interestingly, transcriptional alterations may reflect epigenetic changes as part

of the process of age-related osteoporosis [21].

Nevertheless, the regulatory mechanisms underlying the pathogenesis of osteoporosis

have been linked to genetics. Several approaches, including linkage analysis in families,

animal studies, candidate gene association studies, and genome-wide association studies

(GWAS), have been used to identify the genes responsible for osteoporosis [22].

Linkage analysis is the classical approach that is used to study BMD variation [23, 24].

Linkage studies in animals such as mice, rats and primates provide another way to

identify genes that regulate bone density and other phenotypes relevant to osteoporosis.
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The Alox15 gene has been found to regulate bone density in mice, and this finding was

confirmed in Alox15-knockout mice showing increased BMD [25]. Candidate gene

association studies have been widely used in the field of osteoporosis, analyzing

polymorphic variants in candidate genes and relating them to the carriage of a specific

allele or haplotype. Candidate genes such as sclerostin (SOST), COL1A1, ESR1, LRP5,

TGF-β1 and VDR have been extensively investigated on a large scale [26–40]. Due to

advances in genotyping technologies, GWAS have been applied to study osteoporosis,

and large numbers of single-nucleotide polymorphisms (SNPs) have been identified. A

GWAS by Richards et al. reported the identification of SNPs that are significantly

associated with decreased BMD and increased risks of osteoporotic fractures and

osteoporosis when they are located near the TNFRSF11B (osteoprotegerin or OPG) and

LRP5 genes [41]. Another study, by Styrkarsdottir et al., used an extended GWAS to

identify four new genome-wide significant loci; this loci were near the SOST gene at

17q21, the MARK3 gene at 14q32, the SP7 gene at 12q13 and the TNFRSF11A (receptor

activator of nuclear factor kB or RANK) gene at 18q21 and were associated with the

heritability of BMD [42]. However, genetic studies of osteoporosis-susceptibility genes

need to be further explored.
Signaling pathways associated with osteoporosis

Over several decades, signaling pathways in bone homeostasis have been extensively

studied. Dysregulation of these signaling pathways is associated with bone diseases,

including osteoporosis. Major signaling pathways that govern the bone regenerative

process are OPG/RANK/RANK ligand (RANKL), Wnt, and BMP signaling.

Bone homeostasis is maintained by the balanced function of osteoblasts and osteoclasts.

The key regulators involved in this balancing process, equilibrating between bone

formation and bone resorption, have been extensively explored. The OPG/RANK/

RANKL system is one of the most important signaling pathways in bone metabolism

(Fig. 1). Dysregulation of the OPG/RANK/RANKL system has been reported in osteo-

porosis. OPG, recently designated as TNFRSF11B and serving as a member of the

tumor necrosis factor (TNF) receptor family, was first identified as a crucial compo-

nent that is secreted by osteoblasts; bone marrow stromal cells [43]; and other cells,

such as regulatory T (T reg) cells [44]. OPG protects the skeleton from excessive

bone resorption by acting as a soluble decoy receptor that can bind to RANKL [45].

The binding of OPG and RANKL subsequently prevents RANKL from binding to its

receptor, RANK [43]. The overexpression of the gene encoding OPG results in the

development of high bone mass and reduced osteoclast numbers and activity [46].

OPG-deficient mice demonstrate osteoporosis, with an excessive number of osteo-

clasts [47, 48]. RANKL functions as an osteoclast-activating factor secreted by

activated T cells and represents a potent molecule that binds to RANK, which is

expressed on osteoclast precursors, known as preosteoclasts [49]. RANKL-RANK

binding drives osteoclast differentiation and maturation. The activation of RANK

through the binding of RANKL induces the activation of transcription factors such as

c-fos, NFAT, and nuclear factor kappa B (NF-kB) in preosteoclasts and initiates

several downstream signaling pathways, and especially the NF-kB pathway [50, 51].

RANKL-deficient mice exhibit osteopetrotic bones, or thickened bones, due to a



Fig. 1 Bone homeostasis regulation by OPG/RANK/RANKL system. RANKL which secreted by activated T
cells functions as an osteoclast-activating factor by binding to its receptor, RANK, which is expressed on
preosteoclasts. RANKL-RANK binding induces the activation of several transcription factors in preosteoclasts
and initiates several downstream signaling pathways that drive osteoclast differentiation and maturation.
OPG which secreted by osteoblasts, bone marrow stromal cells, and T reg cells acts as a soluble receptor
that can bind to RANKL and subsequently prevents RANKL-RANK binding. Under physiologic conditions,
OPG/RANKL is in equilibrium and preserves bone homeostasis. Under osteoporotic conditions, RANKL is
upregulated, which is associated with downregulation of OPG. Several proinflammatory cytokines are
secreted from T helper cells (Th1/Th2/Th17) stimulating and upregulating RANKL expression and mediating
osteoclast formation and activity, which are linked to increased bone resorption
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defect in osteoclast development [52]. Moreover, RANKL relies on the presence of

macrophage colony-stimulating factor (M-CSF), which is a cofactor for RANKL/

RANK-mediated osteoclastogenesis [53]. However, experimental data revealed that

RANKL alone could stimulate bone resorption in mice lacking M-CSF [54]. In con-

trast, M-CSF alone is insufficient to activate osteoclasts [55]. Therefore, RANKL plays

a crucial role in osteoclastogenesis, and this phenomenon is required for bone resorp-

tion. Under physiologic conditions, OPG/RANKL is in equilibrium and preserves

bone homeostasis. The OPG/RANKL ratio is an important factor to use to determine

bone mass and skeletal integrity [56, 57]. Under osteoporotic conditions, RANKL is

upregulated, which is associated with downregulation of OPG [58]. Moreover, several
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cytokines are elevated, and particularly TNF-α, IL-1, IL-4 and IL-6, in osteoporosis

[59]. These proinflammatory cytokines modulate the RANKL/RANK ratio by stimulating

and upregulating RANKL expression on T cells. Interestingly, this emerging role of the

OPG/RANK/RANKL system not only is relevant to bone biology but also has been

discovered beyond the immunological system. The cross-regulation between bone and

immune cells is considered as a bone immunological niche [60]. Considering bone

resorption, data in the literature have revealed that impairment of T cell subpopulations

and their proinflammatory cytokine patterns are implicated in the pathogenesis of

osteoporosis. At the bone tissue level, Th1 and Th2 cells play a role through their secreted

cytokines, including RANKL, mediating osteoclast formation and activity, which are

linked to bone resorption [61]. Furthermore, Th17 cells, a distinct lineage of

proinflammatory T helper cells, were more recently identified as a potent T cell sub-

population that has a role in bone destruction [62]. Th17 cells have been found to

increase in number in many bone diseases, and particularly osteoporosis [63]. Th17

cells produce IL-17, which functions in mediating osteoclast differentiation [63, 64].

It has been shown that Th17 cells also produce RANKL, directly contributing to

bone loss [62]. Additionally, the Th17 population in the bone marrow and peripheral

blood is large in estrogen-deficient osteoporosis [65]. Collectively, Th1/Th2/Th17

cells and their cytokines might play a key role as potent pro-osteoclastogenic media-

tors underlying the pathogenesis of osteoporotic development.

Wnts are secreted glycoproteins that, when bound to their cognate receptors, can

stimulate intracellular signaling cascades that play important roles in cell developmen-

tal processes, including osteogenesis [66, 67]. The binding of Wnt ligand to Frizzled

receptor and the LRP6 coreceptors to form a complex stimulates the canonical Wnt/β-

catenin pathway, whereas binding to the ROR2/RYK coreceptors stimulates non-

canonical Wnt signaling [68]. In fact, signaling induced by Wnt/β-catenin is well

established and generally plays a role in osteoblastogenesis by promoting the commit-

ment and differentiation of MSCs toward the osteoblast lineage, which in turn

suppresses adipogenesis through the inhibition of PPARγ-induced genes [66, 69]. Wnt/

β-catenin signaling plays a role in osteoblast maturation and indirectly reduces osteo-

clastogenesis by stimulating the secretion of OPG, a natural inhibitor of RANKL [70,

71]. Considering the components of Wnt signaling, humans and mice with altered ex-

pression of LRP5 and Wnt10b have alterations in bone mass [72, 73]. Loss-of-function

LRP5 mutation causes abnormality in bone formation [72]. A genetic study found that

WNT10B polymorphisms have an impact on low bone mass and osteoporosis risk [74].

As previously stated, Wnt10b seems to be the most positive modulator of bone regen-

eration and homeostasis. Supporting these findings, a decreased number and decreased

function of osteoblasts have been found in Wnt10b-/- knockout mice, coupled with a

30 % reduction in bone volume and BMD [75, 76]. Stevens et al. have found that

heterozygous Wnt10b+/- mice showed a significant reduction in trabecular bone at

6 months of age, and both the number of bone marrow-derived MSCs and osteoblast

differentiation were affected [76]. In another study, signaling through Wnt2, Wnt3 or

Wnt3a induced proliferation and maintained the self-renewal of MSCs, whereas Wnt5a,

Wnt5b or Wnt11 supported osteogenesis [77, 78]. β-catenin deficiency arrests osteo-

blast development at an early stage in mesenchymal osteoblastic precursors and impairs

the maturation and mineralization of committed osteoblasts [67, 79]. Rodríguez et al.
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reported that osteoporotic MSCs had a diminished proliferation rate as well as de-

creased mRNA expression of Wnt signaling and the downstream components GSK-3β,

LRP6 and OSX [28, 80]. In addition, dickkopf-1 (DKK-1) and SOST are endogenous in-

hibitors of the canonical Wnt/β-catenin pathway that is specific to bone [70, 81]. Genes

coding for these inhibitors show enhanced expression in osteoporotic MSCs in humans

[35]. Clinically, the serum DKK-1 level has been found to be significantly higher in

patients with low BMD and postmenopausal osteoporosis [82]. Several findings have

revealed crosstalk between Wnt signaling and other signaling factors, such as BMPs. In

particular, BMP-2 has a synergistic effect with Wnt ligands and β-catenin, inducing

bone formation through Wnt/β-catenin signaling and downstream T cell factor/lymphoid

enhancer factor (TCF/LEF) transcriptional activity [83, 84].

In addition to Wnt signaling, the BMPs, belonging to the transforming growth factor

beta (TGF-β) superfamily, are responsible for numerous cell regulatory processes,

including osteogenic differentiation and regulation of bone formation [85]. Upon

binding of BMP ligand, signal transduction is initiated through the interaction between

two serine-threonine kinase cell surface receptors (BMP receptors (BMPRs)). In par-

ticular, BMPR-IA and BMPR-IB are involved in MSC differentiation [86]. BMP-2,

BMP-4, BMP-7, BMP-9, and BMP-13 are commonly studied in the context of MSC

differentiation-related osteoblastogenesis and bone formation [87, 88]. Notably, BMP-2

promotes Runx2 expression in mesenchymal osteoprogenitors and also promotes Osx

and distal-less homeobox 5 (Dlx5) expression in osteoblasts [89–93]. BMP-3 is an ex-

ception because it inhibits osteogenesis [94]. BMPs function as both autocrine and

paracrine factors, and their synthesis is induced by BMPs themselves via local feedback

mechanisms. Evidence has shown that MSCs from osteoporosis patients are impaired

in function and this alteration is associated with BMP signaling [95, 96]. However,

BMP antagonists have been described, including noggin (NOG) and gremlin (GREM).

Overexpression of NOG, as shown in transgenic mouse studies, results in decreased

BMD because of increased inhibition of bone formation [97, 98]. SNPs in the NOG

gene are associated with osteoporosis-related phenotypes in humans [99]. GREM is

detectable in the skeleton, and its overexpression causes osteopenia and fractures [100].

Genetic variants of GREM2 are associated with BMD, and GREM2 is considered a

susceptibility gene for osteoporosis [101].
Osteoporosis treatments

Current options for the treatment of osteoporosis are predominantly drug-based agents

that either inhibit bone resorption or directly stimulate bone generation to increase

bone mass. Non-pharmacological treatments via calcium and vitamin D consumption

have been given to patients who have a high risk of osteoporosis related to insufficient

calcium and vitamin D intake and postmenopause [102, 103]. Pharmacological treat-

ments are given to patients who are diagnosed with osteoporosis who have already had

a fracture or who have a high risk of osteoporotic fracture or re-fracture. Bisphospho-

nates, which are synthetic compounds that decrease bone resorption by promoting

osteoclast apoptosis [104, 105], are the most common medications prescribed as first-

line drugs for osteoporosis treatment. Several bisphosphonates have been approved as

drugs for the treatment of osteoporosis, including alendronate [106], ibandronate [107],
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risedronate [108], and zoledronate [109]. However, serious side effects, such as osteo-

necrosis of the jaw and atypical femoral fractures, have been described in patients

under long-term bisphosphonate treatment [110, 111]. Although serious adverse events

are rare for current antiresorptive compounds and do not represent a major concern,

the development of drugs with higher efficacy in improvement of bone quality and pre-

vention of fractures is still necessary. Other antiresorptive drugs that can serve as alter-

natives for osteoporosis treatment include denosumab, a RANKL inhibitor that blocks

the main pathway involved in osteoclast formation and activation [112], and calcitonin,

a naturally occurring peptide [113]. Hormone therapy, such as therapy with estrogen

[114] and with selective estrogen receptor modulators (SERMs) acting as estrogen ago-

nists, such as raloxifene [115], has been used in postmenopausal women to slow the

bone breakdown process, maintain bone density, and reduce fracture risk. However,

long-term side effects, and particularly the development of breast cancer, and risks of

cardiovascular events and thromboembolism limit the use of estrogen and SERMs as

treatment strategies for osteoporosis [116, 117].

In contrast with antiresorptive drugs, anabolic drugs that can increase bone forma-

tion, rather than preventing bone loss, are of interest to rebuild bone, increase bone

strength, and reduce the risk of fractures in osteoporosis patients. To date, approved

anabolic drugs have been limited to parathyroid hormone (PTH) and its analog, teri-

paratide (recombinant human PTH(1–34)), which are considered as treatments for pa-

tients with severe osteoporosis. Nevertheless, it was reported that administering a high

dose of teriparatide for a long period increased the incidence of osteosarcoma in an

animal study [118]. Although evidence of osteosarcoma has not been reported in pa-

tients taking teriparatide, treatment with teriparatide is not allowed beyond 2 years ac-

cording to the FDA. One therapeutic drug, strontium ranelate, which is thought to

have dual actions on bone metabolism, both increasing bone formation and decreasing

bone resorption, represents as a potential agent for the treatment of postmenopausal

osteoporosis to reduce the risk of vertebral and hip fractures [119]. Considering the

costs and disadvantages of prolonged treatment with drugs and hormones in osteopor-

osis patients, cell therapy may be a good alternative candidate therapeutic strategy to

treat osteoporosis in the future.
Stem cell-based therapy for osteoporosis

Cell therapy has attracted considerable clinical attention for the treatment of various

diseases for many decades. Stem cells are believed to be an ideal source of cells for cell

replacement therapy for bone diseases due to their properties of self-renewal and plasti-

city, which can repair or regenerate damaged tissues. Candidate stem cell types include

embryonic stem (ES) cells, induced pluripotent stem (iPS) cells and somatic stem cells

such as MSCs. The use of ES and iPS cells is limited due to ethical issues and virus-

based derivation methods [120]. It seems likely that the use of MSCs overcomes such

limitations and is more practical in other disease models. In recent years, MSCs have

become dramatically interesting for the treatment of osteoporosis. MSCs have the abil-

ity to self-renew and to grow into specific tissues, such as cartilage, bone, and adipose

tissue. Human MSCs are defined by their phenotypic expression of CD105, CD73 and

CD90; their absence of expression of hematopoietic markers such as CD45, CD34, and
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CD14; and their ability to differentiate into osteogenic, adipogenic and chondrogenic

lineages under permissive conditions [121]. It has been reported that MSCs can avoid

allogeneic rejection by being hypoimmunogenic, modulating the T cell phenotype, and

creating an immunosuppressive locus [122]. Moreover, MSC-derived osteogenic cells

show immunoprivileged and immunomodulatory properties similar to those of their

parental MSCs [123]. With regard to the pathogenesis of osteoporosis, resulting in

bone mass reduction, transplantation of MSCs might promote new bone formation and

strengthen the bone, contributing to improvement of bone quality and prevention of

fractures. After transplantation, MSCs contribute to bone formation by two possible

mechanisms of action: (1) MSCs’ homing to a damaged site or pathologic area and then

differentiating into bone-forming cells to repair the degenerated tissue and (2) MSCs’

acting in a paracrine manner by secreting certain growth factors that modify the envir-

onment and recruit resident cells to repair the degenerated tissue [124, 125].
Sources of mesenchymal stem cells: advantages and disadvantages

Bone marrow-derived MSCs

Bone marrow is the most commonly used tissue source of adult MSCs. Bone

marrow-derived MSCs (BM-MSCs) have been extensively studied in bone regeneration

and repair due to their high efficiency in osteogenic differentiation. Studies in animal

models have revealed that both allogeneic and autologous BM-MSC transplantation is

applicable in the treatment of osteoporosis. Ichioka et al. demonstrated that normal

allogeneic BM-MSCs could increase trabecular bone and attenuate the loss of BMD

after being directly injected into the bone marrow cavity of an irradiated P6 substrain

of senescence-accelerated mice (SAMP6), an osteoporotic mouse model that exhibits

age-dependent inhibition of osteoblastogenesis and osteoclastogenesis along with en-

hanced adipogenesis [126]. A similar result was also observed in an ovariectomy

(OVX)-induced rat model of osteoporosis after receipt of allogeneic BM-MSCs isolated

from healthy rats [127]. Autologous BM-MSC transplantation was reported to improve

bone formation and to strengthen osteoporotic bone in an OVX-induced rabbit model

of osteoporosis [128] as well as in goats with long-term estrogen deficiency, mimicking

the postmenopausal osteoporosis that occurs in humans [129]. However, use of au-

tologous BM-MSCs for osteoporosis treatment in elderly patients is limited due to

the age-related decline in the overall BM-MSC number [130]. Recently, use of autolo-

gous BM-MSCs for the treatment of osteoporosis has been performed in clinical trial

study. Autologous BM-MSCs were collected 30 days before infusion, and the cells

were cultured under GMP conditions to establish the dose range. In this study, the

cells were subjected to the process of fucosylation before intravenous infusion into

osteoporosis patients. However, this study is still in the process of recruiting partici-

pants and is thus not yet completed (ClinicalTrials.gov Identifier: NCT02566655).
Adipose tissue-derived MSCs

Adipose tissue provides an attractive source of MSCs that has become increasingly popu-

lar in many stem cell applications. Adipose tissue-derived MSCs (AD-MSCs) are isolated

from white adipose tissues via a minimally invasive approach and can be expanded and

differentiated into classical mesenchymal lineages involved in adipogenesis, osteogenesis,
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and chondrogenesis [131, 132]. AD-MSCs are more easily isolated and more abundant

and produce higher yields in terms of cell number compared with BM-MSCs [133].

However, the yield of AD-MSCs and their proliferative and differentiation capacities vary

depending on the tissue harvesting site [134] and the age of the donor [135]. For applica-

tion in cell therapy for osteoporosis, AD-MSCs were reported to function as an effective

autologous cell-based approach for the treatment of osteoporosis. SAMP6 osteoporosis

mice showed significant improvement in several trabecular bone parameters after a single

intratibial transplantation of isogenic AD-MSCs [136]. A preclinical study of the in vivo

function of human AD-MSCs by Cho et al. revealed that human AD-MSCs could prevent

OVX-induced bone loss in nude mice over 8 weeks, even though there was no evidence

of long-term engraftment of infused human AD-MSCs in the bone of recipient mice

[137]. The effect of human AD-MSC therapy likely occurs in a paracrine manner by the

secretion of various bone-related growth factors, e.g., hepatocyte growth factor, BMP-2,

and RANKL, and extracellular matrix (ECM) proteins, e.g., fibronectin, which might

promote osteogenic differentiation, bone remodeling and repair in the recipients [124].

Moreover, Xinhai et al. demonstrated that autologous AD-MSCs enhanced bone regener-

ation in OVX-induced rabbit models of osteoporosis due to not only their own osteogenic

differentiation but also their promotion of osteogenesis and inhibition of adipogenesis by

osteoporotic BM-MSCs through activation of BMP-2 and the BMPR-IB signaling pathway

[125]. Recently, a clinical trial has studied the use of human AD-MSCs for the treatment

of proximal humeral fractures in individuals over 50 years old, representing a model

for fractures of osteoporotic bone. In this study, AD-MSCs were wrapped around

hydroxyapatite microgranules embedded in a fibrin gel to allow cellularized composite

graft augmentation. Clinical/radiological follow-up was performed after 6, 9 and

12 months, and functional assessment was performed after 6 weeks and 6 and

12 months using the Quick DASH score and the Constant score. Unfortunately, the

study was terminated, and no results are available (ClinicalTrials.gov Identifier:

NCT01532076).
Perinatal-derived MSCs

Although BM- and AD-MSCs are effective sources, the therapeutic potential of these

adult MSCs can be affected by the donor’s lifestyle and age. Perinatal tissues are alter-

native sources of MSCs that have attracted growing interest in bone regenerative

medicine [138]. Not only are these cells younger than adult MSCs, but perinatal-

derived MSCs also have the major advantage of an easy and noninvasive harvesting

procedure without any risk to the donor. A comparative study of MSCs isolated from

different perinatal tissue sites, including the umbilical cord, umbilical cord blood

(UCB), amnion, and chorion, revealed that these tissues exhibit similar characteristics to

BM-MSCs, including similar phenotypic features, growth properties, differentiation cap-

acities, secretory protein profiles, and low immunogenic properties [138]. However, these

stem cell sources are still limited by their low capacity to differentiate compared with

BM- and AD-MSCs, and they have not been clearly examined in preclinical studies.

Placenta-derived MSCs

The placenta is an easily accessible source of perinatal MSCs that provides a high yield

of MSCs. Placenta-derived MSCs (PL-MSCs) express common markers of MSCs and
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exhibit adipogenic, osteogenic, and neurogenic differentiation capacities [139].

Sanvoranart et al. demonstrated that PL-MSCs responded to bortezomib, a chemo-

therapeutic agent that improves osteolytic lesions in multiple myeloma, via enhance-

ment of osteogenic differentiation, similarly to BM-MSCs [140]. This finding suggests

the potential therapeutic application of PL-MSCs in osteopenia and osteoporosis

patients.

Umbilical cord-derived MSCs

The umbilical cord contains various cell types, including vessels, connective tissues,

and Wharton’s jelly. After isolation, these heterogeneous cells are observed to possess

differential vimentin and cytokeratin expression in culture, but not variable capacities

to differentiate into chondrogenic, adipogenic, and osteogenic lineages [141]. In vivo

bone formation by umbilical cord-derived MSCs (UC-MSCs) was demonstrated by

Diao et al., who loaded human UC-MSCs into scaffolds, implanted the scaffolds into

BALB/c nude mice subcutaneously and found that the human UC-MSCs could effi-

ciently form bone after implantation for 12 weeks [142].

Wharton’s jelly-derived MSCs

Wharton’s jelly is the mucoid connective tissue that surrounds the umbilical cord vein

and that functions in the protection of the vasculature from pressure. Fibroblast-like cells

were first isolated from Wharton’s jelly by McElreavey et al. in 1991 [143]. These

fibroblast-like cells were characterized as MSCs due to their expression of MSC pheno-

typic markers and their capacities to differentiate into osteogenic, adipogenic, and chon-

drogenic lineages [144]. A comparative study of human derived-MSCs demonstrated that

Wharton’s jelly-derived MSCs (WJ-MSCs) exhibited the strongest inhibitory effects on T

cell proliferation and the weakest expression of immune-related genes, such as genes en-

coding major histocompatibility complex (MHC) II and human leukocyte antigen (HLA),

compared with BM-, AD-, and PL-MSCs [145]. These immunomodulatory and immuno-

suppressive properties of WJ-MSCs make them more applicable for clinical use as cell

therapy. A study in canines by Kang et al. revealed that canine WJ-MSCs were capable of

forming new bone in recipients with bone defects after orthotopic implantation with beta

tricalcium phosphate (β-TCP) for 20 weeks. The capacity of WJ-MSCs to undergo osteo-

genic differentiation in vitro and new bone formation in vivo was similar to that of other

MSCs isolated from canine bone marrow, adipose tissue, and UCB [146]. Hence, WJ-

MSCs can potentially be used in clinical bone engineering for further treatment of bone

defect diseases.
Trends in stem cell therapy for osteoporosis

The main hurdles for stem cell-based therapy for osteoporosis are long-term engraft-

ment and the uncertainty of stem cell fate after transplantation. Certain reports have

revealed that long-term engraftment of MSCs appears to be low and that the function

of MSCs might be mediated through a paracrine mechanism, rather than through

sustained engraftment in injured tissues [137, 147, 148]. Senescence of MSCs has been

investigated as one of the key factors affecting the growth of MSCs in vitro, possibly

hampering the cells’ long-term survival after transplantation [149]. Many ongoing stud-

ies are aiming to develop high-quality in vitro MSC cultures to increase the survival

and engraftment rates. These developing methodologies include modification of MSCs
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by certain factors and improvement of in vitro MSC culture systems and differentiation

procedures. The adjustment of culture conditions before transplantation, such as

hypoxic preconditioning of MSC cultures in vitro, has been performed to increase the

proliferation rate and to enhance the differentiation potential as well as to induce

mobilization and homing of MSCs following transplantation [150, 151]. Genetically

modified MSCs have been developed to ensure their homing, differentiation capacity,

survival, and long-term engraftment at the injury sites of recipients. Immortalization of

MSCs by knockdown of p53, a cell cycle regulator, in combination with overexpression

of human telomerase reverse transcriptase (hTERT), the catalytic component of tel-

omerase that leads to telomere elongation, could promote proliferation and increase

the lifespan of MSCs while retaining the cells’ differentiation properties [152]. A

combination of cell and gene therapy by overexpression of certain growth factors in

MSCs has been promoted as being advantageous for MSC-based therapy [153, 154].

For example, the ectopic expression of basic fibroblast growth factor (bFGF) and

platelet-derived growth factor B (PDGF-B) enhanced the in vitro proliferation and

osteogenesis of BM-MSCs while inhibiting their adipogenesis [154]. MSCs are also an

attractive cellular vehicle for the in vivo delivery of therapeutic genes, such as the genes

encoding BMP-2 and RANK-Fc (a soluble inhibitor of RANKL), which could increase

bone formation in osteoporosis animal models [155, 156]. Upon transplantation

in vivo, the expressed transgene exerted its effect on both the host mesenchymal tissue

(paracrine effect) and the transplanted MSCs (autocrine effect), contributing to the in-

duction of bone formation in the recipients. These strategies of MSC modification are

advantageous for the treatment of osteoporosis, which is characterized by increased

bone resorption, and the therapies aim to maintain bone density and reduce the risk of

fractures. To achieve effective MSC-based therapy for osteoporosis, the poor bone mar-

row homing and engraftment of MSCs after their systemic transplantation have to be

improved. One emerging approach to overcome these limitations involves the overex-

pression of molecules involved in the bone homing of transplanted MSCs. Ectopic

expression of α4 integrin on MSCs greatly increased bone marrow homing after sys-

temic injection through the tail vein in immunocompetent mice. α4 integrin forms a

heterodimer with endogenous β1 integrin and functions as a cell adhesion molecule,

interacting with ECM proteins such as fibronectin and vascular cell adhesion protein

1 (VCAM-1) and thereby mediates the bone marrow homing and engraftment of

MSCs [157]. Another study demonstrated that genetic modification of MSCs with

CXCR4, the receptor for stromal-derived factor 1 (SDF-1), which mediates the bone

marrow homing and engraftment of hematopoietic stem cells (HSCs), could also

increase the bone marrow homing of MSCs and restore bone formation in mice with

glucocorticoid-induced osteoporosis [158]. The development of in vitro differentiation

procedures is quite important for MSCs used as cell therapy, especially for the treat-

ment of localized osteoporosis and healing fractures resulting from osteoporosis.

Technology consisting of three-dimensional (3D) in vitro culture models using

biomaterial scaffolds has been developed, with the aim of mimicking the in vivo

microenvironment to induce efficient tissue formation in vitro [159]. The biomaterial

scaffolds must be slowly biodegradable and can act as a biocompatible matrix to

support cell growth. In a recent preclinical study, Müller et al. demonstrated the

combination of osteoconductive biomaterials with genetically modified human BM-MSCs
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in a bone defect rat model. The BM-MSCs were transduced with BMP-2 and loaded into

β-TCP scaffolds before implantation into recipient rats. The researchers showed that

when combined with BMP-2-transduced BM-MSCs, the scaffolds provided better results

than scaffolds with recombinant BMP-2-treated BM-MSCs did [160]. This combination

may represent a promising strategy for healing large-area bone defects in osteoporosis.

Alternative approaches involving improvement of native BM-MSCs or the local

biologic environment at defect sites are of interest and are under investigation. Using a

biomaterial scaffold combined with gene delivery for BMP-7 and PDGF-B expression

has been shown to enhance the recruitment of BM-MSCs to defect sites and to pro-

mote their differentiation into osteoblasts, resulting in increased new bone formation

in segmental femoral defects in ovariectomized rats [161]. α5β1 integrin, which medi-

ates osteoblast differentiation in adult human MSCs through ECM-integrin interaction,

is considered to be a target for promoting the osteogenic differentiation of BM-MSCs.

The use of agonists that target α5β1 integrin can promote MSC recruitment and

differentiation into osteoblasts and can also increase the survival of mature osteoblasts,

leading to increased bone formation and repair in vivo [162]. Small molecules and

microRNAs (miRNAs) are topics of interest in this area and may be applicable for

osteoporosis treatment. Many miRNAs have been found to regulate the osteogenic dif-

ferentiation of MSCs by various mechanisms [163]. Several miRNAs, e.g., miR-27a,

miR-346, and miR-1423p, have been demonstrated to directly target inhibitors of the

Wnt/β-catenin pathway, such as glycogen synthase kinase 3 beta (GSK3-β), SFRP1, and

APC [164–166], resulting in modulation of the Wnt/β-catenin pathway and promotion

of osteogenic differentiation of MSCs. Certain miRNAs, e.g., miR-20a, promote osteo-

genic differentiation by downregulating genes involved in adipogenic lineages, such as

the gene encoding PPARγ [167]. By contrast, certain miRNAs negatively regulate osteo-

genic differentiation by targeting osteogenic genes, e.g., RUNX2, OSX, and SATB2. In-

hibition strategy using an antagomir sequence against these miRNAs might attenuate

the expression of the osteogenic genes and subsequently induce osteogenic differenti-

ation [168–170]. The discovery of small molecules that target MSCs for fate determin-

ation by using high-throughput screening (HTS) techniques provides an advantage in

drug development for osteoporosis treatment [171]. Small molecules may directly

stimulate signaling pathways or target genes involved in osteogenic differentiation of

MSCs [172–174]. For example, simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A

(HMG-CoA) reductase inhibitor, could promote osteogenic differentiation by activating

the BMP-2 pathway in an ovariectomized rat model, leading to increasing BMD and

bone volume [173, 175]. Given this finding together with their other advantages, i.e.,

their small size, high stability, non-immunogenicity, and, most of all, cell permeability,

small molecules have undoubted potential for treating osteoporosis.

Conclusion
Osteoporosis is a systemic bone disorder defined by low BMD occurring due to an

imbalance of osteoclastic and/or osteoblastic activities. The current therapeutics for

osteoporosis are based on medicine for the prevention of further bone loss. The serious

side effects caused by prolonged treatment have led to a need for an alternative

approach for the life-long treatment of osteoporosis. Cell therapy appears to fulfill this

demand, and MSCs provide a promising source of cells for clinical application in the
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treatment of osteoporosis. MSCs have been widely used for osteoporosis research as

well as in other bone diseases due to not only their intrinsic ability to differentiate into

osteoblasts but also their availability and ease of isolation, with high cell yields, from

various tissues. Moreover, the immunoprivileged and immunosuppressive properties of

MSCs make them more applicable in allogeneic cell replacement therapy. To date, over

400 clinical trials of MSC therapies have been registered with ClinicalTrials.gov (http://

www.clinicaltrials.gov/); these trials have involved many diseases and conditions, such

as bone disorders (osteoarthritis, osteogenesis imperfecta, osteoporosis, and rheumatoid

arthritis), diabetes mellitus, graft-versus-host disease, and spinal cord injury. However,

many questions remain unanswered, and many features have to be validated, such as

the long-term engraftment and senescence of MSCs and suitable sources of MSCs for

transplantation. In conclusion, much more work is needed to clarify the clinical appli-

cations of MSCs; however, the evidence certainly indicates that MSCs will play an im-

portant role in cell therapy for osteoporosis in the near future.
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