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Abstract

Background: Human Tenon’s fibroblasts (HTFs) play a crucial role in wound healing.
They cause postoperative scarring of the filtering bleb and are thus responsible for
trabeculectomy failure. This study aimed to find an effective and fast protocol for HTF
isolation from trabeculectomy biopsies. The protocol was compared with the commonly
recommended HTF isolation procedure, which uses Dulbecco’s modified Eagle’s medium
(DMEM). We used Eagle’s minimum essential medium (EMEM) enriched with fibroblast
growth factor (FGF), which selectively promoted the proliferation of HTF cells. A
secondary goal was to compare HTF morphology, metabolism and growth during
parallel cultivation of the isolated cells in FGF-enriched EMEM and DMEM.

Results: Standard procedures for HTF isolation from tissue biopsies require a
20- to 30-day culture of the explants to obtain the first monolayer. Our protocol
yielded the first monolayer after approx. 15 days. More importantly, the majority
of the cells were fibroblasts with only individual epithelium-derived cells present.
Using FGF-enriched EMEM allowed 1.3 × 106 vimentin-positive fibroblasts to be
obtained from a single biopsy within approx. 25 days. Using DMEM resulted in
isolation failure and required exchange to FGF-enriched medium to recover the
fibroblast culture. HTFs maintained in FGF-enriched EMEM also showed faster
proliferation and a different type I collagen production ability compared to HTFs
cultured in DMEM. Thus, FGF-enriched EMEM is recommended for fast
propagation of HTFs unless the aim of the study is to assess the effect of a
tested agent on proliferation ability or type I collagen production.

Conclusions: Our fast protocol for HTF isolation allows easy setup of cell banks by
researchers under laboratory conditions and could be very useful during testing of
novel ophthalmologic anti-fibrotic agents in vitro. Molecular analysis of HTFs isolated
from patients with known treatment histories may provide valuable information on the
effects of some medications taken before glaucoma surgery on the subsequent
wound-healing process and potential for trabeculectomy failure.
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Background
Glaucoma is a group of human ocular disorders characterized by progressive loss of vi-

sion resulting from optic nerve damage, often associated with increased intraocular

pressure (IOP) [1, 2]. The procedures applied to decrease intraocular pressure include

glaucoma medications (e.g., biomatoprost, betaxolol or levobunolol), laser therapy and

trabeculectomy, which is also known as glaucoma filtering surgery [2–4]. Trabecu-

lectomy is generally applied when medical and laser therapy have failed to sufficiently

lower IOP, and in most cases, its failure is due to postoperative scarring of the filtering

bleb [2–4].

Human Tenon’s fibroblasts (HTFs) are the main cells responsible for initiation and

mediation of wound healing and scarring after a trabeculectomy [5]. During wound

healing, activated HTFs adhere to the surgical site and start excessive proliferation and

accumulation of extracellular matrix (ECM) components, leading to fibrotic scar for-

mation [4–6]. Considerable research has focused on finding anti-fibrotic agents that

would inhibit HTF proliferation and ECM production to improve the success of glau-

coma filtering surgery. Agents receiving special attention have included 5-fluorouracil

[7, 8], mitomycin C [7], bevacizumab [3, 9–11], and ranibizumab [4].

Because HTFs play a crucial role during wound healing after a trabeculectomy, there

is a huge need to establish a simple and effective method for HTF isolation that would

allow for novel ophthalmologic drug testing under in vitro conditions. From a scientific

point of view, it is very important to successfully culture HTFs from trabeculectomy

biopsies from patients with known treatment histories.

Before glaucoma filtering surgery, many patients take medications to decrease

IOP. Moreover, anti-fibrotic agents are often administrated intraoperatively to

inhibit HTF proliferation [3]. However, it is commonly observed that despite the

administration of anti-fibrotic agents, postoperative scarring of the filtering bleb

occurs very rapidly. This phenomenon is often associated with long-term therapy

with anti-glaucoma medications [2].

Tissue biopsies taken during a trabeculectomy and further molecular analysis of

HTF culture in vitro combined with the patient treatment history may provide

valuable information regarding the effects of medications taken before the surgery

on wound healing. As trabeculectomy biopsies are usually very small (1–2 mm in

length), HTF isolation is a challenging task. It is very difficult to obtain a sufficient

number of primary HTF cells from a single trabeculectomy specimen for further

in vitro experiments.

The primary aim of this study was to establish a new, simple and effective protocol

for HTF isolation from a single 2–3 mm × 1 mm trabeculectomy biopsy and to

compare it with the standard procedure using basal DMEM, which is widely described

in the available literature as a recommended medium for HTF isolation (Fig. 1). Unlike

most researchers, we propose a simple “outgrowth” method without collagenase diges-

tion, using basal EMEM supplemented with key factors for fibroblast proliferation:

fibroblast growth factor, insulin and vitamin C. It is worth emphasizing that we are the

first to present a fast protocol for HTF isolation from a single trabeculectomy biopsy of

approx. 2–3 mm × 1 mm. The secondary goal was to compare cell morphology, size,

viability, proliferation, and ability to produce type I collagen during parallel cultivation

of isolated HTFs in FGF-enriched EMEM and basal DMEM.



Fig. 1 A graphic representation of the main concept of the research
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Methods
Collection of trabeculectomy specimens

The Tenon’s biopsies were collected from 3 male patients (n = 3) aged 65–75 years who

had newly diagnosed advanced open-angle glaucoma, had no previous medical therapy

for the condition, and were undergoing trabeculectomy. Table 1 shows patient data.

The tissue specimens were taken during the first step of the glaucoma filtering surgery.

After conjunctiva separation, performed with the microscissors on the upper part of

the eye bulb, a small piece of the Tenon’s capsule was harvested from the scleral area

near the corneal limbus at 12 o’clock. The further steps of the surgery were typical for

trabeculectomy [3, 11, 12] and did not influence specimen collection.

The isolated biopsy tissue, approx. 2–3 mm× 1 mm in size, was placed onto a moist

tampon and transferred to a sterile 15 ml centrifuge tube containing 5 ml of 300 U/ml

penicilin, 300 μg/ml streptomycin, and 0.75 μg/ml amphotericin B solution (Sigma-

Aldrich Chemicals) prepared in phosphate buffered saline (PBS; Sigma-Aldrich

Chemicals). Collected specimens were immediately transported to the laboratory

for the isolation.
Isolation and culture of HTFs

The tissue biopsies were washed twice with PBS and cut into 2 pieces using a sterile

scalpel. These were placed in separate wells of a 12-well plate using light pressure and

left to air dry for up to 1 min to attach to the well bottom.

Parallel isolations for each tissue biopsy were set up using 2 different culture media:

1) 800 μl of basal EMEM (ATCC – LGC Standards) supplemented with 5% foetal

bovine serum (FBS, EU Professional grade, Pan-Biotech), 5 μg/ml recombinant

human (rh) insulin, 5 ng/ml rh basic fibroblast growth factor (rh FGF b), 50 μg/ml
Table 1 Data about the patients from whom the specimens were collected

Patient Sex Age Systemic diseases Previous anti-glaucoma therapy

1 male 65 hypertension none

2 male 70 none none

3 male 75 hypertension none
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ascorbic acid (components of Fibroblast Growth Kit, ATCC – LGC Standards),

7 mM L-glutamine (Sigma-Aldrich Chemicals), 100 U/ml penicilin, 100 μg/ml

streptomycin, and 0.25 μg/ml amphotericin B

2) 800 μl of basal DMEM (Sigma-Aldrich Chemicals) supplemented with 10% FBS,

100 U/ml penicilin, 100 μg/ml streptomycin, and 0.25 μg/ml amphotericin B.

The resulting supplemented EMEM is referred to as 5% FGF-EMEM and complete

DMEM is referred to as 10% DMEM throughout this article.

The explants were maintained at 37 °C in a humidified atmosphere of 5% CO2

and 95% air and the culture medium was renewed every 3 days. When the cells

formed a monolayer, trypsinization (1–3 min at 37 °C) using 1 ml of 0.12% tryp-

sin–EDTA solution without phenol red (Sigma-Aldrich Chemicals) was performed

to detach the cells. The detached cells were then resuspended in 10 ml of fresh

culture medium and transferred to 15 ml centrifuge tubes. Cells that were still

attached to the culture dish surface after trypsinization were detached using a cell

scraper and transferred to the same 15 ml centrifuge tubes.

The cells were centrifuged at 125 × g for 5 min, the pellet was resuspended in 5 ml of

fresh culture medium, and the cells were seeded (approx. 2.4–4 × 103 cells per cm2 of

the growth area dependent on the sample) in a 25 cm2 T-flask and cultured at 37 °C in

a humidified atmosphere of 5% CO2 and 95% air (passage 1).
When the cells reached 90% confluence, the second passage by trypsinization using

2 ml of 0.12% trypsin–EDTA solution (approx. 1–2 min at 37 °C were sufficient) was

performed using two 25 cm2 T-flasks (seeding density of 1.2 × 104 cells per cm2 of the

growth area). The cells were also seeded in wells (1 × 104 cells per well) of a 96-well

plate to stain vimentin filaments.

After passage 2, fibroblasts reached confluence within 48 h. During the isolation pro-

cedure, the cell morphology was constantly monitored under an optical microscope

(Olympus CKX31 or Nikon Eclipse TS100) and the obtained images were analyzed

using ImageJ software.
Recommended freezing medium and cryopreservation protocol

Two 25 cm2 T-flasks with confluent HTF culture from a single tissue biopsy were

obtained 48 h after the second passage. The cells were then trypsinized, washed with

fresh medium via centrifugation at 125 × g for 5 min and collected for cryopreservation

using a freezing medium composed of 72% DMEM, 20% FBS and 8% DMSO (Sigma-

Aldrich Chemicals). A Nalgene Cryo 1 °C Freezing Container was used to achieve a

−1 °C per min rate of cooling. The vials (1.8 ml) in the container were placed in a −70 °

C freezer for 12 h, then placed in liquid nitrogen vapour for 24 h and then in liquid

nitrogen for long-term storage.
Vimentin and F-actin filaments staining

Second passage HTF cells were seeded in the wells of a flat-bottom 96-well plate in

100 μl of complete culture medium at a concentration of 1 × 105 cells/ml (1 × 104 cells

per well) and cultured for 48 h at 37 °C in an atmosphere of 5% CO2. To visualize the

cytoskeletal filaments (vimentin and actin), cells were fixed according to a previously
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described procedure [13]. Briefly, cells were washed with PBS buffer, fixed with 3.7%

formaldehyde (Avantor Performance Materials) for 10 min, permeabilized with 0.2%

TritonX-100 (Sigma-Aldrich Chemicals) for 15 min and incubated with a blocking

solution of 1% bovine serum albumin (BSA; Sigma-Aldrich Chemicals) for 30 min.

Vimentin, a specific marker of mesenchymal cells that are highly expressed in

fibroblasts, was visualized using the direct immunofluorescence technique. Cells were

incubated with AlexaFluor488-conjugated mouse anti-vimentin (V9) monoclonal anti-

bodies (Abcam) at a concentration of 1 μg/ml overnight at 4 °C. Afterwards, cells were

washed with PBS buffer and simultaneously stained for 30 min at room temperature

with 2 units of phallotoxin–AlexaFluor635 conjugate (Invitrogen) for F-actin filament

labelling and 0.5 μg/ml DAPI (Sigma-Aldrich Chemicals) for nucleus counterstaining.

To reduce nonspecific background staining, the working solution of fluorescent dyes

was prepared in 1% BSA. Stained cells were observed under a fluorescence laser scan-

ning microscope using the two-dimensional scan technique (Olympus Fluoview IV81

equipped with FV1000 laser scanner). Tenon’s fibroblasts revealed vimentin-positive

(green) and actin-positive (red) fluorescence of cytoskeletal filaments, whereas

epithelium-derived cells were vimentin-negative and showed only red fluorescence of

actin filaments.
Viability of the cells after thawing

After long-term storage in liquid nitrogen, the cells were rapidly thawed by placing the

vials in a 37 °C water bath. Then, the viability of the cells was determined using a

Countess automated cell counter (Invitrogen), which evaluates cell number and viability

based on trypan blue staining.
Parallel cultivation of HTFs in 5% FGF-EMEM and 10% DMEM

Upon thawing, the cells were washed with fresh medium via centrifugation at 125 × g

for 5 min and seeded (approx. 1.2 × 104 cells per cm2 of the growth area) in two

25 cm2 T-flasks. Since 10% DMEM is widely described in the available literature as a

recommended medium for maintenance and propagation of isolated HTFs, the thawed

cells were cultured in parallel in two different media: 5% FGF-EMEM and 10% DMEM.

When the cells reached 90% confluence, they were detached by trypsinization and

seeded in 96-well plates to evaluate the effect of applied culture medium on HTF

morphology and size, viability, proliferation, and type I collagen production.
Viability comparison

HTF cells were seeded in the wells of a flat-bottom 96-well plate in 100 μl of the

complete culture medium at a concentration of 1.5 × 105 cells/ml (1.5 × 104 cells per

well) and cultured for 24 h at 37 °C in 5% FGF-EMEM and 10% DMEM. Cell viability

was determined by double fluorescent staining of the nuclei of dead cells with propi-

dium iodide (red fluorescence) and the cytoplasm of viable cells with calcein-AM

(green fluorescence). The dyes were the components of the Live/Dead Double Staining

Kit (Sigma-Aldrich Chemicals). The staining procedure was performed according to

the manufacturer’s protocol. Stained HTFs were observed under a fluorescence laser

scanning microscope using the two-dimensional scan technique.
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The viability of HTFs was also assessed quantitatively based on their metabolic activ-

ity using the MTT test (Sigma-Aldrich Chemicals). After 24 h incubation, 25 μl of

MTT solution (5 mg/ml in PBS) was added to each well and the cells were returned to

the CO2 incubator for 3 h. Then, formed formazan crystals were dissolved using 100 μl

of 10% SDS solution (Sigma-Aldrich Chemicals) prepared in 0.01 M HCl (Avantor

Performance Materials). After 12 h incubation, the absorbance was measured at

570 nm using a BioTek Synergy H4 Hybrid Microplate Reader.
Cell morphology and size

HTF cells were seeded in wells of a flat-bottom 96-well plate in 100 μl of the complete

culture medium at a very low concentration of 1.5 × 104 cells/ml (1.5 × 103 cells per well)

and cultured for 24 h at 37 °C in 5% FGF-EMEM and 10% DMEM. Then, cells were fixed

and stained using phallotoxin–AlexaFluor635 conjugate and DAPI dye as described in the

Vimentin and F-actin filaments staining section. The morphology of the stained cells was

observed under a fluorescence laser scanning microscope. For each sample, images were

taken from 4 randomly selected fields of view and a spreading area of at least 60 indivi-

dual cells was measured using ImageJ software.
Proliferation ability

HTF cells were seeded in wells of a flat-bottom 96-well plate in 100 μl of the complete

culture medium at a very low concentration of 1.5 × 104 cells/ml (1.5 × 103 cells per

well) and cultured for 7 days at 37 °C in 5% FGF-EMEM and 10% DMEM. Every 2–3

days, the culture media were renewed. On the 1st, 3rd and 7th days of the experiment,

cell number was determined based on the WST-8 proliferation test (Sigma-Aldrich

Chemicals) and the calibration curve was prepared for known concentrations of cells.

The test was performed according to the manufacturer’s protocol. The growth rate and

doubling time of the cells were calculated using Doubling Time Computing software.
Type I collagen production

HTF cells were seeded in wells of black, clear and flat-bottom 96-well plates in 100 μl

of the complete culture medium at a low concentration of 3 × 104 cells/ml (3 × 103 cells

per well) and cultured for 4 days at 37 °C in 5% FGF-EMEM and 10% DMEM. Then,

cell number was determined based on the WST-8 test and calibration curve as

described in the Proliferation ability section. Since WST-8 is nontoxic to the cells, the

same plates were used for type I collagen (Col I) synthesis evaluation via the indirect

immunofluorescence technique. The cells were fixed as described in the Vimentin and

F-actin filaments staining section and incubated with primary goat anti-type I collagen

(Col1a1/Col1a2) polyclonal antibodies (Abnova) at a concentration of 20 μg/ml (pre-

pared in 1% BSA) overnight at 4 °C. Afterwards, the cells were washed with PBS and

incubated with 2 μg/ml of the secondary AlexaFluor647-conjugated donkey anti-goat

IgG polyclonal antibodies (Abcam) for 1 h at room temperature. For quantitative

evaluation, the fluorescence intensity was read using a BioTek Synergy H4 Hybrid Mi-

croplate Reader with the excitation wavelength at 628 nm and emission wavelength at

670 nm (area-scan readings were recorded). The fluorescence intensity was normalized

per 103 cells. To visualize Col I in HTF cultures, the nuclei of the cells were
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additionally stained using 0.5 μg/ml DAPI. Col I production by HTFs was observed

under a fluorescence laser scanning microscope using the three-dimensional scan

technique.
Results
Isolation of HTF culture

Three parallel HTF isolations were performed using tissue specimens obtained from 3

different patients (n = 3) and each time the scenario was the same. Application of 5%

FGF-EMEM allowed for achievement of the first monolayer in a single well of a 12-

well plate after an average time of 15 days of culture (Table 2), which is very short time

taking into account the single 2–3 mm × 1 mm biopsy used for the isolation.

More importantly, healthy outgrowth of spindle-shaped fibroblasts with individual (if

any) epithelial-like cells was observed (Fig. 2a). Initial fibroblast outgrowth occurred on

the approx. 4th day. This concurs with De Falco et al. [14] and Gross [15], who demon-

strated that initial, crucial adhesion of the cells from explants is observed between 4

and 8 days.

Similarly, a relatively short time (an average of 13 days) was required to reach first

monolayer when 10% DMEM was used (Table 3). However, in the case of 10% DMEM,

the monolayer of cells was predominantly composed of epithelium-derived cells and

only single fibroblasts (Fig. 2b). For comparison, De Falco et al. used 10% DMEM and

relatively large specimens (approx. 12 mm × 2.5 mm biopsies obtained after vitreoret-

inal surgery) to set up HTF culture and demonstrated that long-term incubation,

approx. 20–30 days, was required to form the first monolayer [14].

When cells formed the first monolayer, passage 1 was performed regardless of the ap-

plied culture medium. After passage 1, cells reached 90% confluence (2.2 × 104 cells ±

0.2 × 104 cells per cm2) in a 25 cm2 T-flask within an average time of 7 days when 5%

FGF-EMEM was used (Tables 2 and 4). Moreover, there were only spindle-shaped fi-

broblasts (Fig. 2c). On the approx. 23rd day of the isolation, passage 2 was carried out

using two 25 cm2 T-flasks and HTFs formed a monolayer within 48 h (Table 2).

Immunofluorescent staining of vimentin, a specific marker of fibroblasts, revealed that

near 100% of the cells after passage 2 were vimentin-positive (Fig. 3a and c).

Unlike 5% FGF-EMEM, in the case of isolation conducted using 10% DMEM, 7 days

after passage 1 there was low density culture of mainly epithelial-like cells and single
Table 2 HTF isolation using 5% FGF-EMEM

Description of each isolation
step

Passage
number

Culture dish
used

Time needed to
reach monolayer

Features of obtained
monolayer

Biopsy cutting and setting up
of the isolation

0 Well of 12-
well plate

15.3 ± 2.1 days Mostly HTFs, possible single
epithelial cells

Cell detachment using trypsin
and cell scraper

1 One
25 cm2 T-
flask

7.3 ± 0.6 days Mostly HTFs

Cell detachment using trypsin 2 Two
25 cm2 T-
flasks

2 days 99–100% of vimentin-
positive HTFs

Trypsinization and
cryopreservation of HTFs

- - - -



Fig. 2 Nomarski contrast images of cells during parallel isolations from the same single trabeculectomy biopsy
using 5% FGF-EMEM and 10% DMEM. a – Healthy outgrowth of only fibroblasts from the explant when 5%
FGF-EMEM was used. b – Healthy outgrowth of a co-culture of predominant epithelium-derived cells (white
arrows) and single HTFs (black arrows) from the explant when 10% DMEM was used. c – Monolayer of HTFs
7 days after passage 1 when 5% FGF-EMEM was used. d – Few epithelium-derived cells (white arrows) and
single fibroblast (black arrow) 7 days after passage 1 when 10% DMEM was used. e –Few epithelium-derived
cells (white arrows) and fibroblasts (black arrows) 13 days after passage 1 when 10% DMEM was used. f – Initial
recovery of HTF culture 4 days after medium change to 5% FGF-EMEM (black arrows indicate fibroblasts, white
arrows indicate epithelium-derived cells); scale bar = 75 μm, magnification 200x
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fibroblasts (3.9 × 102 cells ± 1.3 × 102 cells per cm2; Fig. 2d). All 3 tissue specimens (n = 3)

were maintained in 10% DMEM for 13 days after passage 1 (Table 3). On the 26th day of

the isolation (13 days after passage 1) there were still a few clusters of epithelium-derived

cells and only single spindle-shaped fibroblasts (Fig. 2e), so it was decided to change the

medium from 10% DMEM to 5% FGF-EMEM at this point. In the case of sample number

2, medium exchange did not result in HTF recovery and the isolation failed (Table 4). In

the other two samples, medium replacement resulted in rapid HTF division rates.



Table 3 HTF isolation using 10% DMEM

Description of each isolation
step

Passage
number

Culture dish
used

Time needed to
reach monolayer

Features of obtained
monolayer

Biopsy cutting and setting up
of the isolation

0 Well of 12-
well plate

13.3 ± 3.1 days Co-culture of mostly epithelial
cells and single HTFs

Cell detachment using trypsin
and cell scraper

1 One
25 cm2 T-
flask

13 days- failure Few clusters of epithelial cells
and single HTFs

Medium change from DMEM
to FGF-enriched EMEM

- One
25 cm2 T-
flask

15.5 ± 2.1 days Mostly HTFs and single
epithelial cells

Cell detachment using trypsin 2 Two
25 cm2 T-
flasks

2 days 99–100% of vimentin-positive
HTFs

Trypsinization and
cryopreservation of HTFs

- - - -
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However, the cells required at least 4–6 days to start recovery (Fig. 2f). As a consequence,

fibroblasts surpassed epithelium-derived cells in growing and in an average of 15 days

after medium exchange, the HTFs achieved 90% confluence (Table 3). On the approx.

43rd day of the isolation, passage 2 was carried using two 25 cm2 T-flasks and the HTFs

formed a monolayer within 48 h (Table 3). Fluorescence laser scanning microscope obser-

vation performed after passage 2 showed that over 99% of the cells were actin-positive

and vimentin-positive, indicating that they were in fact fibroblast cells (Fig. 3b and d).

The efficiency of the isolation was high: the protocol enabled the isolation of

1.3 × 106 vimentin-positive fibroblasts (near 100% of the cell suspension) from a

single 2–3 mm × 1 mm trabeculectomy biopsy. The procedure performed for the

single biopsy resulted in cryopreservation of two 1.8 ml vials and each vial con-

tained 6.6 × 105 ± 0.8 × 105 cells. More importantly, the new protocol allowed the

maintenance of high viability of HTFs through long-term storage (8–12 months) in
Table 4 Key times during 3 parallel isolations using 5% FGF-EMEM and 10% DMEM with medium
change to 5% FGF-EMEM

Type of
sample

Time from biopsy to
passage 1 (days)

Time from passage 1 to
passage 2 (days)

Time of complete procedure, from
biopsy to cryopreservation (days)

Sample 1/5%
FGF-EMEM

17 7 26

Sample 2/5%
FGF-EMEM

13 8 23

Sample 3/5%
FGF-EMEM

16 7 25

Mean ± SD 15.3 ± 2.1 7.3 ± 0.6 24.7 ± 1.5

Sample 1/10%
DMEM/5%
FGF-EMEM

14 30 46

Sample 2/10%
DMEM/5%
FGF-EMEM

10 failure failure

Sample 3/10%
DMEM/5%
FGF-EMEM

16 27 45

Mean ± SD 13.3 ± 3.1 28.5 ± 2.1 45.5 ± 0.7

Bold data are the mean values



Fig. 3 Fluorescence laser scanning microscope images of HTF cultures obtained 48 h after passage 2. a, c – HTFs
isolated using 5% FGF-EMEM. b, d – HTFs isolated using 10% DMEM with medium change to 5% FGF-EMEM on
the approx. 26th day. a, b have a scale bar = 75 μm, magnification 200x, while c, d have a scale bar = 37 μm,
magnification 400x. Green fluorescence – vimentin filaments; red fluorescence – F-actin filaments; blue
fluorescence – nuclei
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liquid nitrogen (Table 5). After thawing, the cells revealed an average viability of

94% ± 2.6% (see Additional file 1).
Parallel cultivation of HTFs in 5% FGF-EMEM and 10% DMEM

Live/dead fluorescent staining followed by microscopic observation demonstrated that

regardless of culture medium applied for HTF maintenance, cell viability was high

(Fig. 4a and b). Microscopic images showed a high-density culture of viable HTF cells

with green fluorescence. Red fluorescence indicating the nuclei of dead cells was not

detected. The MTT viability test confirmed that the type of culture medium had no

effect on cell viability and showed comparable metabolic activity of HTFs regardless of

the medium used for cell cultivation (Fig. 4c).



Table 5 Viability of HTFs after long-term storage in liquid nitrogen

Sample no. Time of storage (months) Viability after thawing (%)

Sample 1 12 93

Sample 2 8 92

Sample 3 11 97
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Interestingly, HTF morphology, size, proliferation ability and Col I production ability

were highly dependent on the applied culture medium. HTFs maintained in 5% FGF-

EMEM were relatively small and had mostly spindle- or stellate-shaped morphology

(Fig. 5a), whereas HTFs cultured in 10% DMEM were mostly large stellate-shaped cells

(Fig. 5b). Moreover, the average size (spreading area) of the cells maintained in 5%

FGF-EMEM was almost 4-fold lower (3353 μm2 ± 1680 μm2) than the spreading area

of HTFs cultured in 10% DMEM (12019 μm2 ± 6785 μm2; Fig. 5c).

The type of culture medium used for cultivation of HTFs had also great impact

on the cell proliferation ability, and thus on their growth rate and doubling time.

Fibroblasts cultured in 5% FGF-EMEM revealed significantly faster proliferation

and growth rates, resulting in meaningfully shorter doubling time (32.33 h) com-

pared to the cells maintained in 10% DMEM (45.92 h; Fig. 6).

Considerable differences in Col I synthesis were also observed between the cells

cultured in 5% FGF-EMEM and 10% DMEM. In the case of HTFs cultured in 5%

FGF-EMEM, microscopic observation showed both intracellular formation of Col I

protein and the accumulation of large and elongated collagen fibrils in the extra-

cellular space (Fig. 7a). HTFs maintained in 10% DMEM revealed only intracellular

accumulation of considerable amounts of Col I molecules (Fig. 7b). Surprisingly,

despite the formation of an extensive network of Col I fibrils (a major component

of ECM) by HTFs cultured in 5% FGF-EMEM, the analysis of the intensity of Col

I fluorescence normalized per 103 cells revealed that HTFs maintained in 10%

DMEM produced slightly higher amounts of Col I than cells cultivated in 5% FGF-

EMEM (Fig. 7c). Although only a slight difference in fluorescence intensity

between the cells maintained in the different media was recorded, the result is

considered statistically significant (p = 0007).
Fig. 4 Viability of HTFs during parallel cultivation in 5% FGF-EMEM and 10% DMEM. a, b – Fluorescence
laser scanning microscope images obtained upon live/dead staining of HTFs; scale bar = 150 μm,
magnification 100x; green fluorescence – viable cells. c – HTF viability assessed based on their metabolic
activity (using the MTT test). Results are expressed as means ± SD (GraphPad Prism 5, Version 5.03 Software)



Fig. 5 Morphology and size of HTFs during parallel cultivation in 5% FGF-EMEM and 10% DMEM.
a, b – Fluorescence laser scanning microscope images obtained upon cytoskeleton staining of HTFs
(white arrows indicate fibroblasts just after division); scale bar = 75 μm, magnification 200x; red
fluorescence – F-actin filaments; blue fluorescence – nuclei. c – HTF size determined using ImageJ
software; results are expressed as means ± SD. *Significantly lower spreading area (p < 0.0001)
compared to 10% DMEM according to the unpaired t-test (GraphPad Prism 5, Version 5.03 Software)
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Discussion
In this study, two different culture media were used for HTF isolation: basal EMEM

supplemented with key factors for fibroblast proliferation; and the commonly recom-

mended medium for this purpose, basal DMEM. It was demonstrated that effective

HTF isolation was possible only when 5% FGF-EMEM was used. The complete proced-

ure from the single 2–3 mm × 1 mm trabeculectomy biopsy to the cryopreservation

procedure (two 1.8 ml vials) took approx. 25 days (Tables 2 and 4). Application of 10%

DMEM alone resulted in isolation failure: after a 26-day culture, there were only single

fibroblasts and a few clusters of epithelial-like cells (Table 3, Fig. 2e). Medium replace-

ment to 5% FGF-EMEM at this point led to HTF recovery, but the isolation procedure

(from biopsy to cryopreservation) was extended to approx. 45 days (Tables 3 and 4). It

should be noted that ready-to-use specialist media enriched with FGFs and designed

for optimal growth of fibroblasts would be also appropriate for HTF isolation. In our

other studies, we used Quantum 333 medium (PAA Laboratories) supplemented with

5% FBS (5% Quantum 333) and we achieved comparable successful results. Similarly to

5% FGF-EMEM, the complete procedure from the single trabeculectomy biopsy to

cryopreservation procedure took approx. 27 days (see Additional file 2).

According to the available literature, there are some protocols for primary Tenon’s

fibroblast isolation [4, 5, 14]. Most papers present effective isolation of Tenon’s

fibroblasts or trabecular meshwork cells using a complicated collagenase digestion

method [1, 5] with basal culture media such as MEM [15], DMEM [1, 4, 14, 16] or

RPMI-1640 [4, 17]. According to these protocols, successful HTF isolation requires

long-term culture of the tissue explants: approx. 20–30 days to the first monolayer [14]

unless whole eye tissue is used [1]. As trabeculectomy biopsies are very tiny (approx.

2 mm in length), most researchers describe isolation from relatively large tissue speci-

mens obtained during other ophthalmologic surgeries, e.g. vitrectomy [14], or obtained

from fibrotic scars formed after trabeculectomy [17, 18]. There are only a few protocols

in the available literature describing HTF isolation from tissue biopsies obtained during

glaucoma filtering surgery [15, 16].

Since FBS is a complex mixture of a large number of biologically active molecules, such

as growth factors, hormones, binding and transport proteins, attachment and spreading

factors, amino acids, vitamins, trace elements, fatty acids, lipids, or protease-inhibitors,



Fig. 6 Proliferation of HTFs during parallel cultivation in 5% FGF-EMEM and 10% DMEM assessed using the
WST-8 proliferation test. Results are expressed as means ± SD. *Significantly more cells (p = 0.0012 on the 3rd

day, p < 0.0001 on the 7th day) compared to 10% DMEM according to the unpaired t-test (GraphPad Prism
5, Version 5.03 Software)
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the 10% supplementation of the culture medium with FBS is commonly recommended

for cultivation of the vast majority of cell lines and primary cultures [19]. However, in the

case of isolation of specific cell types, a serum-free culture system consisting of basal

medium supplemented with growth factors, vitamins and hormones is recommended. Be-

cause serum-free media do not have any attachment/spreading factors, a pre-coating of

culture dishes with components of the ECM (e.g. collagen, fibronectin) is often required.

Another approach includes the use of a low concentration of FBS in culture medium

(low-serum medium) instead of pre-coating of culture vessels to provide adhesive proteins

(fibronectin, vitronectin, collagen), which are essential for adhesion and survival of

anchorage-dependent cells [19].

In this protocol, basal EMEM was supplemented with FGF, insulin and ascorbic acid

to selectively promote fibroblast proliferation. Based on the available literature, FGF
Fig. 7 Type I collagen production by HTFs during parallel cultivation in 5% FGF-EMEM and 10% DMEM. a, b
– Fluorescence laser scanning microscope images obtained upon immunofluorescent staining of Col I; scale
bar = 37 μm, magnification 400x; red fluorescence – Col I, blue fluorescence – nuclei. c – Intensity of the
Col I fluorescence (normalized per 103 cells) measured using microplate reader. Results are expressed as
means ± SD. *Significantly lower intensity of Col I fluorescence (p = 0.0007) compared to 10% DMEM
according to the unpaired t-test (GraphPad Prism 5, Version 5.03 Software)
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promotes fibroblast proliferation and maintains the normal biological function of these

cells [19, 20], whereas ascorbic acid not only stimulates fibroblast proliferation [21], but

also induces enhanced type I and III collagen synthesis [21, 22]. Insulin is also known

to promote fibroblast proliferation [23], as its degradation products mimic the growth-

stimulatory activity of insulin-like growth factors and somatomedins [19]. FBS was

added to EMEM at a low concentration of 5% only to provide essential adhesive

proteins, spreading factors and trace elements. During the isolation procedure with

DMEM, the FBS was the only source of growth factors, vitamins and hormones, so it

was applied at a higher concentration (10%). The proliferation test, which was

performed for HTFs cultured in 5% FGF-EMEM and 10% DMEM, clearly proved that

addition of FGF, ascorbic acid and insulin to the basal medium significantly enhances

fibroblast proliferation (Fig. 6).

Parallel cultivation of isolated HTFs in 5% FGF-EMEM and 10% DMEM revealed

great differences in fibroblast behaviour. HTFs maintained in 5% FGF-EMEM were

small spindle- or stellate-shaped fibroblasts with centrally placed oval nuclei, which is

characteristic of active, mitotic fibroblasts [24, 25]. The cells in 5% FGF-EMEM were

either fibroblasts in a late interphase just before mitosis or very small daughter cells

after division, which had not reached their critical size to enter the subsequent mitosis

(Fig. 5a) [26, 27]. The cells cultured in 10% DMEM were mostly large stellate-shaped

cells. According to the available literature, large spindle- and stellate-shaped cells are

post-mitotic fibroblasts [25] that do not have the DNA synthesis ability and thus do

not enter mitosis [28]. However, post-mitotic cells possess an increased ability to pro-

duce other macromolecules, e.g. proteins [27, 28]. In this study, it was demonstrated

that cells maintained in 10% DMEM stopped dividing on the 3rd day of the experiment

(Fig. 6) and consumed all of the available energy for protein synthesis and growth. It

was also proved that HTFs cultured in 10% DMEM were almost 4-fold larger than cells

cultivated in 5% FGF-EMEM (Fig. 5c) and produced relatively high amounts of Col I

protein (Fig. 7c), which was not released to the extracellular space but was accumulated

inside the cells (Fig. 7b). Thus, it may be inferred that large stellate-shaped cells

cultured in 10% DMEM were mostly post-mitotic fibroblasts.

According to the available literature, ascorbic acid enhances type I and III collagen

production by fibroblasts [21, 22]. Interestingly, in this study it was demonstrated that

cells cultured in 5% FGF-EMEM produced slightly lower amounts of Col I compared

to HTFs maintained in 10% DMEM (Fig. 7c). Nevertheless, unlike the cells cultivated

in 10% DMEM, they revealed the ability to form large collagen fibrils, which were

deposited in great amounts in the ECM (Fig. 7a and b). Thus, it may be assumed that

ascorbic acid does not enhance Col I synthesis but rather induces ECM formation by

promoting the excretion of collagen molecules into the extracellular space and their

assembly into fibrils.

Conclusions
The HTF isolation protocol presented here is a simple, fast method to obtain great

number of cells (1.3 × 106 vimentin-positive fibroblasts) from a single 2–3 mm × 1 mm

trabeculectomy biopsy within approx. 25 days. Our protocol may allow for easy setup

of cell banks under laboratory conditions and for novel ophthalmologic drug testing

in vitro. It was also demonstrated that 5% FGF-EMEM is a better choice than 10%
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DMEM for fast propagation of HTFs before the preparation of the experiments.

However, in the case of the studies aiming to assess the effect of a tested agent on pro-

liferation rate or type I collagen production ability, 5% FGF-EMEM should be used only

for isolation of HTFs, and then 10% DMEM should be applied for experimental setup,

as 5% FGF-EMEM significantly affects cell divisions and the ECM-forming ability of

fibroblasts.

Additional files

Additional file 1: Viability of the cells upon thawing. Report generated using a Countess automated cell counter
upon thawing of HTFs isolated from sample 3. The vial contained 1.8 ml of cell suspension. (TIF 5742 kb)

Additional file 2: Isolation performed with ready-to-use FGF-enriched medium. Example of
another FGF-enriched medium (specialist Quantum 333) giving similar successful results. A – Nomarski contrast
image of HTF monolayer 17 days after passage 1 when 5% Quantum 333 was used; scale bar = 150 μm,
magnification 100x. B – Fluorescence laser scanning microscope image of HTF culture 48 h after passage 2 when
5% Quantum 333 was used; white arrows indicate single actin-positive/vimentin-negative cells; scale bar = 75 μm,
magnification 200x; green fluorescence – vimentin filaments, red fluorescence – F-actin filaments, blue fluorescence
– nuclei. (TIF 8732 kb)
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