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Abstract

CBP and p300 are histone acetyltransferase coactivators that control the transcription
of numerous genes in humans, viruses, and other organisms. Although two separate
genes encode CBP and p300, they share a 61% sequence identity, and they are often
mentioned together as p300/CBP. Zhou et al. showed that under hypoxic conditions,
HIF1α and the tumor suppressor p53 compete for binding to the limiting p300/CBP
coactivator. Jethanandani & Kramer showed that δEF1 and MYOD genes compete for
the limited amount of p300/CBP in the cell. Bhattacharyya et al. showed that the
limiting availability of p300/CBP in the cell serves as a checkpoint for HIF1α activity.
Here, we use the microcompetition model to explain how latent viruses with a specific
viral cis-regulatory element in their promoter/enhancer can disrupt this competition,
causing diseases such as cancer, diabetes, atherosclerosis, and obesity.
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With at least 315 different cellular and viral interacting proteins, CBP and p300 are

considered the most heavily connected coactivators in the mammalian protein–protein

interaction network [1, 2]. Both are histone acetyltransferases, and they control the

transcription of numerous genes in humans, viruses, and other organisms. Although

two separate genes encode CBP and p300, they share a 61% sequence identity, and they

are often mentioned together as p300/CBP [3].

p300/CBP is a 300-kDa protein that has a CH2 domain, which contains its acetyl-

transferase activity, and five protein-binding domains [3]. Many studies have shown

that competition for the limiting p300/CBP is an important mechanism that regulates

transcription and cellular activities. This commentary discusses three of these studies

[4–6] and connects their observations to the microcompetition model [7, 8].

Using differential equations and a dimensionless state variable, Zhou et al. [5] de-

termined the effect of p300 on the steady-state concentrations of proteins. They dis-

covered that under hypoxic conditions, HIF1α and the tumor suppressor p53

compete for binding to the coactivator p300. They showed that p300 is required for

full transcriptional activity of both p53 and HIF1α. According to Zhou et al., this

competition indicates that p300 is limiting.

The α7 integrin is involved in the differentiation of myoblasts and is negatively regu-

lated by δEF1, a zinc finger transcription factor, and positively regulated by MYOD. δEF1
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has an NR (negative region) domain that binds the p300/CBP coactivator. Overexpression

of δEF1 inhibits muscle cell differentiation and represses the activation of the muscle cre-

atine kinase enhancer. On the other hand, MYOD activates muscle genes by binding

p300, and uses p300/CBP histone acetylase activity to allow for transcription [4].

Jethanandani & Kramer [4] transfected C2C12 cells with the p400 fragment of the α7 in-

tegrin promoter. Then, they co-transfected the cells with either δEF1 alone, δEF1 and

MYOD, or δEF1 and CBP, and measured the CAT reporter activity. They observed that

CBP increased CAT activity, i.e., an increase in CBP levels mitigated the repression of α7 by

δEF1. Based on their results, Jethanandani & Kramer concluded that p300/CBP is limiting,

and that δEF1 competes with MYOD for the limited amounts of p300/CBP in the cell.

Bhattacharyya et al. [6] infected human gastric epithelium cells with Helicobacter

pylori. The results showed an increase in transcription complex formation at the HREs

(hypoxia-response elements) of the mcl1 promoter. Then, they observed that the com-

plex included p300, HIF1α, and APE1 (apurinic/apyrimidinic endonuclease 1). Western

blotting on whole cell lysates from AGS cells showed that the binding of p300 to the

hif1α promoter decreased at higher levels of H. pylori infection, without a decrease in

the p300 concentration. Moreover, they found that higher levels of H. pylori infection

increased the expression of hif1α, but decreased the expression of the mcl1 promoter,

which is transactivated by HIFα. They discovered that at higher H. pylori levels, HIF1α

binds to the HIF-binding site (HBS) on the hif1α promoter. Since the HBS is transcrip-

tionally inactive (it lacks the required HIF ancillary sequence, denoted as HAS), this

binding does not further transactivate the hif1α promoter. However, this binding has a

sequestering effect that limits the intracellular availability of the HIF1α•p300 complex

to the mcl1 gene, which decreases mcl1 expression.

The observations in the Bhattacharyya et al. study indicate that p300 is limiting,

meaning the HIF1α•p300 complex is limiting. They also show that the decrease in

HIF1α•p300 binding to the mcl1 promoter, which decreases mcl1 transcription, is due

to competition for the limiting HIF1α•p300 by the hif1α promoter itself. Based on their

observations, Bhattacharyya et al. concluded that the limiting availability of p300 in the

cell is a checkpoint for HIF1α activity.

These studies showed that competition between cellular transcription factors to bind

the limiting p300/CBP is an important regulator of transcription. According to the micro-

competition model, disrupting this regulation causes many diseases. The microcompeti-

tion model was first described in the book Microcompetition with Foreign DNA and the

Origin of Chronic Disease [7, 8]. It centers on one type of disruption of this regulation: the

one caused by the viruses with an N-box, which is a strong cis-regulatory element found

on their promoters/enhancers. During the latent phase, this element binds the cellular

GABP•p300/CBP transcription complex, which is limiting, because p300/CBP is limiting.

Therefore, the viral N-boxes decrease the availability of GABP•p300/CBP in the cell. The

result is abnormal expression of the cellular genes that bind GABP•p300/CBP. The genes

that are transactivated by the GABP•p300/CBP complex synthesize fewer proteins, while

those that are transrepressed by the complex synthesize more proteins. The abnormal

levels of these cellular proteins can cause disease, such as cancer, diabetes, atherosclerosis,

and obesity. The book lists human genes that bind the GABP•p300/CBP complex (Table 1)

and presents supporting evidence to show that these genes express abnormal levels of

their proteins in these diseases.
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Some common viruses with an N-box are the cytomegalovirus (CMV), Epstein-Barr

virus (EBV), herpes simplex virus 1 (HSV-1), human T-cell lymphotropic virus (HTLV),

and human immunodeficiency virus (HIV). These viruses are highly prevalent. For in-

stance, an estimated 3.7 billion people worldwide, or around 67% of the global population,

are infected with HSV-1 [9]. Since the virus is highly prevalent, why do only a fraction of

infected people develop the disease? The answer is that the copy number during latency

matters. Only a high enough copy number produces the strong enough sequestering effect

that causes a disease (Fig. 1).

A recent paper by Zuo et al. [10] showed that the copy number of latent EBV, a virus

that binds GABP•p300/CBP during latency, is strongly associated with oncogenicity

[11, 12]. What determines the copy number of a virus during its latent phase? It is well

known that there is a balance between the efficiency of the immune system and the

copy number of latent viruses. It is also known that many events can cause immuno-

deficiency, including aging [13], certain medications [14, 15], surgery [16–18], chemo-

therapy [19], radiation [20], and stress [21]. Such events decrease the efficiency of the

immune system, increasing the copy number of latent viruses and the risk of disease, as

observed by Zuo et al., who stated:

“It has been noticed that EBV load in tumor tissues or blood is associated with the

clinical progression and prognosis in both lymphoma and NPC. Our result verifies

this association. We also emphasize the importance to measure the level of gene

expression or copy number in the virus study instead of only concerning ‘with and

without’.”

Table 1 List of some human genes that bind the GABP•p300/CBP transcription complex

Gene Reference

β2 leukocyte integrin (CD18) Rosmarin et al. 1998 [22]

Interleukin 16 (IL-16) Bannert et al. 1999 [23]

Interleukin 2 (IL-2) Avots et al. 1997 [24]

Interleukin 2 receptor β-chain (IL-2Rβ) Lin et al. 1993 [25]

IL-2 receptor γ-chain (IL-2 γc) Markiewicz et al. 1996 [26]

Human secretory interleukin-1 receptor
antagonist (secretory IL-1ra)

Smith et al. 1998 [27]

Retinoblastoma (Rb) Sowa et al. 1997 [28]

Human thrombopoietin (TPO) Kamura et al. 1997 [29]

Aldose reductase Wang et al. 1993 [30]

Neutrophil elastase (NE) Nuchprayoon et al. 1999 [31],
Nuchprayoon et al. 1997 [32]

Folate binding protein (FBP) Sadasivan et al. 1994 [33]

Cytochrome c oxidase subunit Vb (COXVb) Basu et al. 1993 [34],
Sucharov et al. 1995 [35]

Cytochrome c oxidase subunit IV Carter et al. 1994 [36],
Carter et al. 1992 [37]

Mitochondrial transcription factor A (mtTFA) Virbasius et al. 1994 [38]

β subunit of the FoF1 ATP synthase (ATPsynβ) Villena et al. 1998 [39]

Prolactin (PRL) Ouyang et al. 1996 [40]

Oxytocin receptor (OTR) Hoare et al. 1999 [41]
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Fig. 1 Latent viruses, the microcompetition model, and disease. a Immunodeficiency occurs due to stress,
aging, disease, etc. b More copies of the latent virus are present in the system c Due to the increase in the
copies of latent viruses, more GABP•p300/CBP complexes bind the viral promoters. d As a result, fewer
GABP•p300/CBP complexes are available to bind the promoter of the cellular gene. e A lower or higher
expression of cellular genes. f Disease occurs
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Our interpretation of the microcompetition model agrees with that of Zuo et al. It is

the copy number of the viruses that sequester the limiting GABP•p300/CBP transcrip-

tion complex and not the ‘infected or not infected’ that determines the fate of the in-

fected individual. Therefore, it should be measured in clinical practice.

To conclude, the microcompetition model explains how an increase in the copy

number of a latent virus that binds the limiting GABP•p300/CBP transcription complex

increases the sequestering of the complex. This disrupts the allocation of the complex

to cellular genes that compete to bind the complex. When this disruption is large

enough, the host develops a disease.
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