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Abstract

Background: The study aimed to investigate the effect of oxidative stress on Prestin
expression, and explore the transcription factors (TFs) that are involved in regulating
the expression of Prestin in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells upon
oxidative stress.

Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) and Western
blot were used to detect the expression level of Prestin. Reverse chromatin
immunoprecipitation (reverse ChIP) assay was performed to identify proteins that
could bind to the Prestin gene. Small interfering RNA (siRNA) and chromatin
immunoprecipitation (ChIP) experiments were used to further verify the results. HEI-
OC1 cells were incubated with four different concentrations of tert-butyl
hydroperoxide (t-BHP) for 24 h or 48 h to construct the oxidative stress model.

Results: Oxidative stress induced Prestin increase at the mRNA level but with a
concomitant decrease at the protein level. TF activating enhancer binding protein-2δ
(AP-2δ) screened by reverse ChIP assay was demonstrated to bind to transcriptional
start site 1441 of the Prestin promoter region and negatively regulate the expression
of Prestin by siRNA and ChIP experiments. Furthermore, AP-2δ was down-regulated
under oxidative stress.

Conclusions: In conclusion, oxidative stress inhibits the expression of Prestin protein,
and the transcription mechanism is triggered to compensate for the loss of Prestin
protein. AP-2δ is one of the important TFs that suppresses transcription of the
Prestin gene, and AP-2δ suppression further boosted Prestin mRNA activation under
oxidative stress.
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Background
The World Health Organization reported that 5% of the world population, which is

equal to 360 million people, had hearing issues in 2015. Hearing loss has a serious im-

pact on quality of life and the economy of society [1]. Sensory deafness (including

noise-induced deafness, drug-induced deafness, senile deafness, sudden deafness, etc.)

is a category of hearing loss disability and accounts for a large proportion of deafness.

The fundamental cause is the irreversible death of mammalian cochlea outer hair cells

(OHCs) [2, 3]. The electromotility of OHCs converts electrical signals into mechanical

energy and gives feedback to the basement membrane, further enhancing the

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Cellular & Molecular
Biology Letters

Luo et al. Cellular & Molecular Biology Letters           (2019) 24:45 
https://doi.org/10.1186/s11658-019-0170-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s11658-019-0170-0&domain=pdf
mailto:wjy925@163.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


vibrations of the basilar membrane and amplifying the sensitivity of the hair cells to

mechanical stimulation. The hearing threshold can be increased by 40–50 dB (dB)

through this local mechanical amplification, resulting in the exquisite hearing sensitivity

and frequency selectivity of the mammalian cochlea [4, 5]. This effect is achieved

through the exclusive motor protein of OHCs, Prestin [6].

In 2000, Zheng et al. [7] first isolated a gene encoding the motor protein of cochlea

OHCs, Prestin. Prestin, an important sense-function protein that is specifically expressed

in OHCs, is the OHC motor molecule [6, 8]. Seymour et al. [8] found that the electromo-

tility of the cells expressing Prestin is related to the expression level of Prestin protein.

Cell morphology changes with the protein conformation, contributing to the contact of

OHC stereocilia and tectorial membrane and directly affecting the degree of amplification

and the sensitivity of the audio signal [9, 10].

Noise, ionizing radiation, ototoxic drugs and other factors can cause sensory deafness

and alterations of the expression of the cochlea OHC Prestin. The expression level of

Prestin mRNA was elevated in cochlea OHCs of rats and guinea pigs exposed to impul-

sive noise [11], while the expression level of Prestin mRNA was lower in the OHCs of

mice stimulated by strong broadband noise [12]. Yang et al. [13] found OHC Prestin

protein increased in mice exposed to ionizing radiation. The expression of OHC Prestin

at the mRNA and protein levels showed a reversible increase in mice injected with so-

dium salicylate for a long time [14]. However, Prestin protein level decreased in the

OHCs of mice that received long-term administration of kanamycin [15]. Xia et al. [16]

discovered that the expression of Prestin at protein and mRNA levels increased after

normalizing the number of residual OHCs in mice exposed to short-term broadband

noise, and hypothesized that Prestin up-regulation may represent a generalized re-

sponse to compensate for a state of hearing loss. Combined, these results indicate that

the same exposure factors can induce different alterations of Prestin expression level in

cochlea OHCs, and the specific mechanism of this variation is still unclear.

So far, the study of Prestin has mainly focused on the molecular structure of the pro-

tein and the influence of different factors on the expression of Prestin, whereas little is

known about the transcriptional regulation mechanism of the Prestin gene. Transcrip-

tional regulation is the first step of gene expression regulation, and it is the most funda-

mental way to control gene expression and involves many related factors, such as

hormones, trans-regulatory factors, and so on. Thyroid hormone (TH) was the first

substance found to be involved in the regulation of Prestin expression [17]. Transcrip-

tion factors (TFs) are cofactors needed for RNA polymerase during transcription initi-

ation. TFs can participate in the regulation of transcription by directly or indirectly

recognizing cis-acting elements. TF Gata-3 [18], TF Brn-3c (Pou4f3) (a member of the

POU family), TF C/ebpb (CCAAT/enhancer binding protein beta), and the calcium-

dependent TF CaRF [19] contribute to regulating the expression of Prestin, but all the

transcription factor binding sites remained undefined.

A high level of reactive oxygen species (ROS) produced by oxidative stress injury is

an important mechanism of cochlea hair cell injury and the basic pathological process

of various types of sensory deafness [20, 21]. ROS can cause polyunsaturated fatty acid

peroxidation, DNA degradation and protein damage, which lead to cell dysfunction or

even death [20]. It has been demonstrated that oxidative stress injury can induce hair

cell death and influence post-transcriptional regulation. ROS can regulate the activation
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and signal transduction of pathways related to oxidative damage in cochlea hair cells

[21, 22], for example, the c-jun N-terminal kinase (JNK) signal pathway [23]. Referring

to many studies in the literature, the transcriptional regulation of the Prestin gene in

auditory cells with oxidative stress injury has not been reported. Therefore, further

study is necessary to understand the molecular mechanisms of Prestin expression varia-

tions induced by oxidative stress, an important cause of sensory deafness.

Materials and methods
Cell culture

House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were kindly provided by Dr. Fed-

erico Kalinec (Los Angeles, CA, USA). HEI-OC1 cells can be cultured in permissive

conditions (P-HEI-OC1) and non-permissive conditions (NP-HEI-OC1) [24]. Though

Prestin protein is expressed in plasma member of NP-HEI-OC1 cells, which is more

similar to OHCs, their cell viability decreases and cell death increases with respect to

P-HEI-OC1 cells [25, 26]. In addition, Prestin expression and membrane localization

are unstable during the differentiation process in NP-HEI-OC1 cells [24, 26]. Further-

more, HEI-OC1 cells are highly sensitive to pharmacological drugs or antibiotics, and

the phenotype and biological response will change easily [25], so all treatment with

HEI-OC1 cells was conducted under permissive conditions. In brief, the cells were cul-

tured under permissive conditions (33 °C,10% CO2) in high-glucose Dulbecco’s Eagle’s

medium (HyClone, Utah, USA) containing 10% fetal bovine serum (HyClone, Utah,

USA) without antibiotics [24]. HEI-OC1 cells at 1 × 106 cells/well were cultured in six-

well plates and treated with different concentrations (0 μM, 50 μM, 100 μM, and

200 μM) of tert-butyl hydroperoxide (t-BHP) (Wako, Japan) for 24 h or 48 h. The cells

were used at 70–80% confluence for the following experiments.

Reverse chromatin immunoprecipitation and liquid chromatography mass spectrometry

1 × 109 cells were cross-linked with 3% formaldehyde for 30 min at 37 °C to prepare

chromatin. Chromatin supernatant was collected after ultrasonication and prewashing.

The probes for Prestin were designed by EXIQON software online and labeled with

desthiobiotin; they were provided by Biosense Biotech Company (Guangzhou, China).

The sequences of probes were as follows: (a) 5-TACAGGCAGTCAGGTCATTAgt-3, (b)

5-TtgGTTCATCAGAAATGCTTcT-3, and (c) 5-gCACAGCAATCCACTTTACTAa-3

(the schematic diagram of the mouse Prestin gene shown in Additional file 1: Figure S1; it

demonstrates the targeted positions of probes sequences). The probes were subjected to

lock nucleic acid (LNA) modification treatment to increase the specificity. The LNA

probes with a final concentration of 1 μM were added into the supernatant followed by a

hybridization procedure (25 °C for 3 min, 70 °C for 6min, 38 °C for 60min, 60 °C for 2

min, 38 °C for 60min, 60 °C for 2min, 38 °C for 120min, and 25 °C for 3min). The super-

natant was incubated for 12 h at 37 °C with avidin-conjugated magnetic beads. Subse-

quently, elution buffer was added to resuspend beads and protein was eluted by

incubation with shaking. Protein samples were obtained after treating the samples in a

water bath at 99 °C for 25min with crosslinking reversal solution. Next, PAGE gel electro-

phoresis and Coomassie blue staining were performed to elute and detect the protein.

The liquid chromatography mass spectrometry (LC-MS) steps followed a previously
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described method [27]. In brief, the gels were digested with trypsin, reduced with DTT

and centrifuged. The peptide fragments were dissolved prior to LC-MS analysis and

loaded into the mass spectrometer (Thermo Scientific, Wagtham, USA) directly to detect

online; the general conditions were: resolution 70,000; AGC target 3e6; maximum IT 40

ms; scan range 350 to 1,800m/z; MS2: resolution 17,500; AGC target 1e5; maximum IT

60ms; TopN 20; and NCE/stepped NCE 27. The data acquired were transferred into

MGF-formatted files and used to search the uniprot Mus musculus database with

MASCOT.

Quantitative real-time polymerase chain reaction

Total RNA was isolated and prepared using TRE-Trizol (Invitrogen, California,

USA). Reverse transcription (RT) was performed after the concentration of total

RNA was tested and met the requirements. cDNA was synthesized using Prime-

Script II 1st Strand cDNA Synthesis Kit (TaKaRa, Japan) according to the manufac-

turer’s protocol followed by quantitative real-time polymerase chain reaction (qRT-

PCR) using SYBR Premix Ex Taq II (TaKaRa, Japan). The primers for qRT-PCR

(Sangon, Shanghai, China) are listed in Table 1. GAPDH was used as a housekeep-

ing gene [13]. The 2-ΔΔCt method was applied for relative quantitative gene expres-

sion [27].

Table 1 Primer sequences for qRT-PCR of target genes (F forward, R reverse, bp base pair)

Gene Protein Reference gene ID Primer sequence (5→ 3)

GAPDH GAPDH NM_008084.2 F: TGTGTCCGTCGTGGATCTGA

R: TTGCTGTTGAAGTCGCAGGAG

Tfap2a AP-2α 21,418 F: ACTCGGTGGTACAAGTTCGG

R: CGTGACGGTCCATAGCTGAA

Tfap2b AP-2β 21,419 F: TTATGAGGCGGTGTAGGCAA

R: AGACCTGCTCATCCGTCTCT

Tfap2c AP-2γ 21,420 F: ACATGGGAGGAGGGTTGTTG

R: TCCTGAGGGGACGAATCCTT

Tfap2d AP-2δ 226,896 F: TCTGATCCGGGCAAAACCAT

R: GTCGTGACGTATCTCCGCAT

Tfap2e AP-2ε 332,937 F: TGGCTCGGGACTTTGGTTAC

R: TCCTGAGCCATCAAGTCTGC

Ebf3 COE3 13,593 F: GTCAGAAGCCACTCCGTGTA

R: TCAGCTCACTCCACACCAAC

Tbx22 TBX22 245,572 F: AGGGATGGAAGGATTCAGAGG

R: TTGTGCTCACTTACATGGCCC

Tbx5 TBX5 21,388 F: CTCTAAGCCGTTCTGGAGCC

R: GCGAGGTTCTATTCTCGCTC

Prestin Prestin 80,979 F: CCTCTTGTTCCAGGGCCAAA

R: TTGGGAGCACTGCAATCCAT
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Western blotting

The expression levels of Prestin and AP-2δ protein in cells were detected by west-

ern blot. Protein samples were prepared in lysis buffer (50 mM Tris (pH 7.4), 150

mM NaCl, 1% Triton X-100, 1% sodium deoxycholate,0.1% SDS, 1 mM phenyl-

methylsulfonyl fluoride, PMSF), dissociated on ice for 30 min and centrifuged at

12,000 rpm for 10 min at 4 °C. A total of 40–60 μg of supernatant was mixed with

5X loading buffer and electrophoresed on 10% SDS-PAGE then transferred to poly-

vinylidene fluoride (PVDF) membranes (Merk Millipore, USA). The membrane,

blocked with 5% non-fat milk, was incubated with goat anti-Prestin (1:500; Santa

Cruz, USA), goat anti-AP-2δ (1:1000; Santa Cruz, USA) and anti-GAPDH (11,000;

CWBIO, China) at 4 °C overnight. Then, the corresponding secondary antibodies

with HRP (15000) conjugates were added and incubated for 1 h at 37 °C. Finally,

the signal was detected with BeyoECLPlus (Beyotime, China), analyzed by ImageJ

software, and normalized for GAPDH staining.

Chromatin immunoprecipitation

HEI-OC1 cells were cross-linked with 1% formaldehyde for 10 min at 37 °C, the

chromatin was prepared as described previously [28] and sheared into 200–600 bp

fragments using a Bioruptor (Diagenod, Belgium). The samples of 100 μl each in a

tube were diluted 10-fold in chromatin immunoprecipitation (ChIP) dilution buffer

and incubated with 1 μg of goat anti-AP-2δ (1:1000; Santa Cruz, USA) or 1 μg of

control nonimmune IgG at 4 °C overnight. Subsequently, the DNA-protein com-

plexes were precipitated and purified as described by Heimann et al. [29]: 2 μl of

IP DNA or input DNA were templated for SYBR PCR reactions using the primers

flanking the identified Prestin transcriptional start site (TSS) -2000 − + 500 bp. The

primer sequences (forward and reverse, respectively) were as follows: S-1441 ChIP-

Prestin, 5-CTTGTGGGGTGAGGGTAGAA-3, 5-GGAGAAACTGGCTGTCTTGC-

3; S-784 ChIP-Prestin, 5-TTGTGGATGCTGGCATTAGC-3, 5-TAAGCTTGAG-

CAGCAGGTG-3.

Small interfering RNA treatment

Combined with the results from reverse ChIP and qRT-PCR for the screened TFs,

the TF activating enhancer binding protein-2δ (AP-2δ) was initially identified to

participate in the regulation of Prestin. Three AP-2δ small interfering RNA

(siRNA) fragments targeted to AP-2δ mRNA sequences were designed. The sequences

of siRNA (forward and reverse, respectively) were as follows: siTfap2d-a, 5-UCAGUGA-

GAUGCUUAACUAUU-3, 5-UAGUUAAGCAUCUCACUGAUU-3; siTfap2d-b, 5-CAAA

CAGAAUCUAUUUCCAUU-3, 5-UGGAAAUAGAUUCUGUUUGUU-3; siTfap2d-c, 5-

CUCAGUUCUACUUCCAAAUUU-3, 5-AUUUGGAAGUAGAACUGAGUU-3. A scram-

bled siRNA (5-GACGATGATTCGTATGTAAdTdT-3, 5-AATCATACGAATCATCG

TCdTdT-3) served as a control group, and 2 × 105 HEI-OC1 cells were transfected with the

siRNA or control constructs and incubated in a six-well plate under permissive conditions

without any treatment. After 24 h transfection, cells were collected and subjected to qRT-

PCR and western blot experiments to measure the expression level of AP-2δ and to identify

the siTfap2d fragment with the highest specificity. Afterward, the best specificity siTfap2d
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fragment validated by qRT-PCR and western blot as described above was used for evaluat-

ing the effect of AP-2δ on Prestin.

Statistical analysis

Statistical analyses were performed with SPSS 21.0 software (IBM, USA). The results of

Prestin and TF expression levels from three independent experiments were presented

as the means±SD. All data were analyzed using Student’s t-test or one-way ANOVA

followed by Tukey’s test to compare differences. A P-value < 0.05 was considered statis-

tically significant.

Results
Prestin mRNA was up-regulated and Prestin protein was down-regulated in HEI-OC1 cells

injured by oxidative stress

To determine the effect of oxidative stress on the expression of Prestin, HEI-OC1 cells

were exposed to different concentrations of t-BHP for 24 h or 48 h. The expression

level of Prestin is shown in Fig. 1. At mRNA level, the quantity of Prestin was increased

in HEI-OC1 cells exposed to t-BHP in a dose-dependent manner (this meant that the

higher the concentration of t-BHP was, the higher was the level of mRNA) (Fig. 1a). At

protein level, oxidative stress induced a decrease of Prestin, and the expression level de-

clined with the rise of t-BHP concentration (Fig. 1b). Furthermore, the Prestin mRNA

Fig. 1 Expression level of Prestin in HEI-OC1 cells treated with t-BHP for 24 h and 48 h. a Expression level of
Prestin mRNA in HEI-OC1 cells exposed to different concentrations of t-BHP (0 μM, 50 μM, 100 μM, 200 μM)
for 24 h and 48 h. b Representative western blot of Prestin from cells treated with t-BHP. GAPDH was used
as an endogenous control. These images came from the same gel. c Expression level of Prestin protein in
HEI-OC1 cells exposed to t-BHP. The data were normalized to GAPDH expression, and they were presented
as the means±SD; n = 3 each group. * and # represent P < 0.05 compared with the control group
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expression level and protein level of the experimental groups in cultures after 48 h were

higher than after 24 h (Student’s t-test, P < 0.05) .

mRNA expression level of TFs probably modulated the Prestin gene in the state of

oxidative stress

To identify proteins bound to the Prestin gene, reverse ChIP was performed in HEI-

OC1 cells. 183 types of proteins (Additional file 1: Table S1) were recognized from the

digested peptides using LC-MS. Among the recognized proteins only those 8 TFs

(Table 1) with transcriptional function were chosen for further verification. Five of

them belong to the activating enhancer binding protein 2 (AP2) family, namely, AP-2α,

AP-2β, AP-2γ, AP-2δ and AP-2ε. The other three proteins were COE3 (transcription

factor COE3), TBX5 (T-box transcription factor TBX5) and TBX22 (T-box transcrip-

tion factor TBX22).

The relative expression level of TF in experimental groups treated with t-BHP charac-

terized by ≥2-fold up- or down-regulation was considered to be evidence that a given

TF may modulate Prestin, and it was further processed for verification. Among the

eight TFs, only AP-2δ met the requirement upon oxidative stress (Fig. 2). Additionally,

the expression of AP-2δ mRNA in cells treated with t-BHP apparently decreased.

ChIP assay confirmed AP-2δ as an interacting partner of the Prestin gene

AP-2δ was preliminarily regarded as a TF that potentially regulated the expression of Pres-

tin. To confirm whether TF AP-2δ binds to the transcriptional start site (TSS) of the Pres-

tin gene promoter region, ChIP assay was carried out. An association between AP-2δ and

S-1441 of the Prestin gene was observed in agarose gel electrophoresis after PCR, whereas

there was no association with S-784. It demonstrated that AP-2δ was recruited to S-1441

Fig. 2 Relative expression level of TFs mRNA in HEI-OC1 cells treated with 0 μM, 50 μM, 100 μM, and
200 μM t-BHP for 24 h. mRNA level was assayed by qRT-PCR and normalized against the control group (the
group treated with 0 μM t-BHP). The data are presented as the mean ± SD, n = 3 each group
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of Prestin, as shown in Fig. 3a. The differences of enrichment of ChIP (S-1441 of Prestin)

between the IP group and IgG group were statistically significant (Student’s t-test, P<

0.05), it was shown in Fig. 4b, further suggesting that AP-2δ is involved in the transcrip-

tional regulation of Prestin.

AP-2δ had a negative regulatory role in Prestin expression

The ChIP experiment demonstrated that AP-2δ bound to Prestin. Next, small interfer-

ing RNA treatment was performed to explore the regulatory effect of AP-2δ on Prestin.

Three AP-2δ siRNA fragments were designed and transfected into untreated HEI-OC1

cells, and qRT-PCR and western blot were used to screen the most effective siTfap2d

fragment and to evaluate the function of AP-2δ. Figure 4 revealed that the expression

of AP-2δ at mRNA and protein levels decreased obviously when cells transfected with

siTfap2d-a, b, or c were compared with cells transfected with siScrambled (ANOVA,

P < 0.05), and the differences between the group treated with siTfap2d-b and groups

treated with siTfap2d-a, c were statistically significant (Tukey’s test, P < 0.05). This illus-

trated that the knockdown efficiency of siTfap2d-b was the highest.

HEI-OC1 cells were transfected with siScrambled and siTfap2d-b fragment for 24 h

and subjected to qRT-PCR and western blot to evaluate the effect of AP-2δ on Prestin.

Figure 5 indicates that the expression of Prestin at mRNA and protein levels was ele-

vated in HEI-OC1 cells with silenced AP-2δ, and there were significant differences

Fig. 3 AP-2δ bound to Prestin in HEI-OC1 cells, as validated by ChIP assay. a The product of two primers
flanking the transcriptional start site (TSS) of Prestin (S-1441 and S-784) was subjected to agarose gel
electrophoresis after PCR. An input group, IP group, and IgG group were set up for each site. b Enrichment
analysis of AP-2δ ChIP on Prestin regulatory regions. GAPDH was used as an endogenous control.
Enrichment of AP-2δ-bound Prestin amount was normalized to corresponding amount in input group. The
data were presented as the mean ± SD, n = 3 each group. * and # represent P < 0.05 compared with the
IgG group of S-1441 and the IP group of S-784 respectively

Luo et al. Cellular & Molecular Biology Letters           (2019) 24:45 Page 8 of 14



between the groups (Student’s t-test, P < 0.05). It implied that AP-2δ may negatively

regulate the transcription of Prestin.

AP-2δ at mRNA and protein levels were down-regulated in HEI-OC1 cells upon oxidative

stress

The expression level of AP-2δ is shown in Fig. 6. Oxidative stress induced decreased.

AP-2δ at the mRNA level and protein level in HEI-OC1 cells treated with t-BHP, and

the higher the concentration of t-BHP was, the lower was the expression level of AP-2δ

(Fig. 6a, c), and the differences between the experimental groups and the control group

were significant (ANOVA and Tukey’s test, P < 0.05). Moreover, AP-2δ at both mRNA

and protein levels after 48 h treatment was lower than after 24 h treatment.

Discussion
The results revealed that oxidative stress induced a Prestin increase at the mRNA level

but a concomitant decrease at the protein level. Also, the higher the concentration of t-

BHP was, the higher was the Prestin mRNA level and the lower was the Prestin protein

level. It illustrated that the expression of Prestin mRNA was activated and the expres-

sion of Prestin protein was suppressed when HEI-OC1 cells were treated with t-BHP,

and the reaction was more apparent when damage to cells was more severe.

Fig. 4 The siTfap2d-b fragment was characterized by the best specificity in knocking down AP-2δ. a HEI-
OC1 cells were transfected with three siTfap2d fragments for 24 h and subjected to qRT-PCR to detect the
expression level of AP-2δ mRNA. b Representative western blot of AP-2δ from cells treated with siTfap2d.
GAPDH was used as an endogenous control. These images came from the same gel. c Expression level of
AP-2δ protein in HEI-OC1 cells treated with siTfap2d. The data were normalized to GAPDH expression, and
they were presented as the means±SD; n = 3 each group. * and # represent P < 0.05 compared with the
group treated with the siScrambled fragment and the group treated with the siTfap2d-b
fragment respectively
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Unfortunately, due to the existence of multiple oxidative stress regulatory systems in

animal in vivo and the lack of a single research environment, it is difficult to verify the

results of the cell model studies, which is also a limitation of the study. Combined with

the above observations, it suggests that the protein level of Prestin is more sensitive to

oxidative stress, and that a transcription mechanism is triggered to compensate the loss

of the protein. When HEI-OC1 cells were treated with t-BHP, the level of ROS in-

creased [22]. Proteins are among the main targets for oxidants due to their high rate

constants for several reactions with ROS and their abundance in biological systems

[30]. ROS can directly interact with proteins and cause their peroxidation and change

their structure or function [31]. This might explain why the Prestin protein level de-

creased. The formation of protein requires the participation of transcription, post-

transcriptional regulation and translation regulation, and it takes a period of time for

Prestin mRNA to be translated and processed into Prestin protein, which explains why

the Prestin protein level was higher after 48 h exposure than that after 24 h exposure.

Thus it can be speculated that the regulation of Prestin in HEI-OC1 cells upon oxida-

tive stress occurs at the transcriptional level.

Based on the above hypothesis, we searched for TFs that could modulate the Prestin

gene. There were 8 TFs found: AP-2α, AP-2β, AP-2γ, AP-2δ, AP-2ε, COE3, TBXA5

and TBX22. The expression of AP-2δ mRNA under oxidative stress showed the stron-

gest correlation. It indicated that AP-2δ specifically bound to the Prestin gene and

negatively regulated its expression based on the results of siRNA and ChIP

Fig. 5 AP-2δ negatively regulated the transcription of Prestin. a HEI-OC1 cells were transfected with the
siTfap2d-b fragment for 24 h and subjected to qRT-PCR to detect the expression level of AP-2δ and Prestin
mRNA. b Representative western blot of AP-2δ and Prestin from cells treated with siTfap2d-b. GAPDH was
used as an endogenous control. These images came from the same gel. c Expression level of AP-2δ and
Prestin protein in HEI-OC1 cells treated with siTfap2d-b. The data were normalized to GAPDH expression,
and they were presented as the means±SD; n = 3 each group. * represents P < 0.05 compared with the
group treated with the siScrambled fragment
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experiments. Interestingly, oxidative stress induced decrease of AP-2δ at the mRNA

level and protein level in HEI-OC1 cells treated with t-BHP, and the higher the concen-

tration of t-BHP was and the longer the exposed time, the lower was the expression

level of AP-2δ, while oxidative stress induced an increase of Prestin mRNA, which re-

vealed that AP-2δ suppression further boosted Prestin mRNA activation.

TF AP-2δ is one of the five subtypes (AP-2α, AP-2β, AP-2γ, AP-2δ, and AP-2ε) of

AP-2 family members in mammals. All mammalian AP-2 proteins, except AP-2δ, share

a common highly conserved sequence and structure, and they play an important role in

cell proliferation, differentiation, apoptosis, and carcinogenesis by regulating the tran-

scription of target genes through binding to a specific sequence [32]. AP-2δ is a diver-

gent member among AP-2 proteins because of the absence of the PY motif. It is

encoded by the Tfap2d gene, and its expression is mainly restricted to the developing

heart, central nervous system and retina in mice [33, 34]. Li et al. [33] found that audi-

tory information could still be recorded in AP-2δ-deficient mice that lack a central part

of the auditory pathway. They also showed that Brn3c (Pou4f3) was a gene targeted and

positively regulated by AP-2δ. Brn3c (Pou4f3) plays an essential role in cell maturation

and the survival of cochlea hair cells in inner ear sensory epithelia [35], and it partici-

pates in the modulation of the Prestin gene [18]. To maintain homeostasis and to pro-

tect cells, mitochondria produce not only ROS but also superoxide dismutase 2 (SOD2)

under oxidative stress conditions [36]. SOD2 single nucleotide polymorphisms (SNPs)

are associated with age-related deafness or noise-induced deafness [37], and mutations

Fig. 6 Expression level of AP-2δ in HEI-OC1 cells treated with t-BHP for 24 h and 48 h. a Expression level of
AP-2δ mRNA in HEI-OC1 cells exposed to different concentrations of t-BHP (0 μM, 50 μM, 100 μM, 200 μM)
for 24 h and 48 h. b Representative western blot of AP-2δ from cells treated with t-BHP. GAPDH was used
as an endogenous control. These images came from the same gel. c Expression level of AP-2δ protein in
HEI-OC1 cells exposed to t-BHP. The data were normalized to GAPDH expression, and they were presented
as the means±SD; n = 3 each group. * and # represent P < 0.05 compared with the control group.
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in different promoter regions lead to different binding affinities to AP2 proteins, thus

regulating AP2 protein and influencing hearing. Nolan et al. [38] made the same obser-

vation in inner-ear-derived cell lines and populations in London. The above studies in-

dicate that AP-2δ protein plays a pivotal role in the development and function of the

hearing apparatus, although there has so far been no evidence that Prestin is a target of

AP-2δ. In this study, ChIP assay confirmed that AP-2δ occupied the Prestin promoter

in HEI-OC1 cells. However, genes and proteins are characterized by spatial and tem-

poral expression patterns in each stage of development in the inner ear of animals and

humans; therefore, it is necessary to carry out relevant experimental verification at the

animal or the human level. In addition, a large number of downstream target genes are

modulated by the same TF due to the limited total TF pool, and downstream gene

function has both specificity and crosstalk. Therefore, it is vital to further explore the

upstream and downstream factors related to AP-2δ involvement in the transcription of

Prestin in order to elucidate the overall signaling pathway, which will provide a detailed

understanding of the molecular mechanisms and a theoretical basis for the biological

treatment of sensory deafness. This research revealed that decrease of AP-2δ expression

level in HEI-OC1 under oxidative stress conditions perhaps aggravated the increase of

Prestin at both the mRNA level and the protein level, reflecting a compensatory mech-

anism to maintain the expression of Prestin protein in cells.

Conclusions
This study revealed that oxidative stress induced Prestin increase at the mRNA level

but with a concomitant decrease at the protein level. Also, the expression of Prestin at

both the mRNA level and the protein level in HEI-OC1 cells cultured with t-BHP for

48 h was higher than that for 24 h in experimental groups, which indicated a compen-

satory repair mechanism. AP-2δ is one of the important TFs modulating the Prestin

gene, and plays a negative regulatory role at the transcriptional level. Under the oxida-

tive stress state, AP-2δ was down-regulated to aggravate the increase of Prestin to

maintain the expression of Prestin protein in cells. However, the regulatory pathway of

AP-2δ is still unclear, and searching for other factors regulated by AP-2δ is our next

goal. In addition, the seven remaining potential TFs of the Prestin gene should be fur-

ther verified.
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