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Introduction
Sesns comprise an evolutionarily conserved family of proteins universally found in 
animals. They are encoded by genes highly expressed in cells exposed to a variety of 
stresses, including oxidative stress, DNA damage, hypoxia, and starvation [1–3]. Verte-
brates express three distinct Sesns (SESN1, SESN2, and SESN3) [1]. SESN1 is a member 
of the growth arrest and DNA damage-inducible gene (GADD) family [2, 4]. It is ubiq-
uitously expressed in human tissues, mostly in skeletal muscle, heart, liver, and brain 
[5]. SESN2, known as hypoxia-inducible gene 95, is upregulated in cells under hypoxic 
conditions as well as oxidative stress, DNA damage, endoplasmic reticulum stressors, 
starvation, and high-fat diet [6–8]. It has also been identified as a key leucine sensor 
for the mTORC1 pathway in mammalian cells [9, 10]. SESN2 is highly expressed in kid-
ney, lungs, leukocytes, liver, gastrointestinal tract, and brain [5]. SESN1 and SESN2 are 
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regulated by the tumor-suppressor protein p53, while SESN3, the least reported one of 
the family, is majorly activated by FoxO transcription factors [11, 12]. SESN3 is highly 
expressed in brain, kidney, colon, small intestine, liver, and skeletal muscle [13, 14]. In 
normal physiology and organ homeostasis, Sesns control important cellular processes, 
including tissue growth, antioxidant response, metabolic homeostasis, nutrient sens-
ing, autophagy, protein synthesis, and age-related pathologies. Different pathways are 
involved in the mechanisms of these processes, such as the AMPK/mTORC1 pathway, 
GATOR-Rags pathway, Keap1-Nrf2 pathway, and mTORC2-AKT pathway [14]. The 
structures, regulators, and functions of human Sesns are summarized in Table 1.

Identified as substantial anti-aging genes and regulators of reactive oxygen species 
(ROS) and mammalian targets of rapamycin complex 1 (mTORC1) [15], Sesns are asso-
ciated with many age-related diseases, including cardiovascular diseases (CVDs), neu-
rodegenerative diseases, chronic respiratory diseases, intervertebral disc degeneration 

Table 1  Structure and functions of human sestrins

Sesn, Sestrin; Nrf2, nuclear factor erythroid 2-related factor 2; AP-1, activator protein 1; ATF4, activating transcription factor 
4; C/EBPβ, CCAAT/enhancer-binding protein beta; JNK, c-Jun N-terminal kinase; HIF1, hypoxia-inducible factor 1; FoxO, 
forkhead box protein O; ROS, reactive oxygen species; mTORC1, mechanistic target of rapamycin complex 1; mTORC2, 
mechanistic target of rapamycin complex 2; PKB, protein kinase B, also known as Akt; AMPK, AMP-activated protein kinase

Sestrins Transcript variant Crystal structure Regulators Functions References

hSesn1 3 (~ 48,55,68 kDa) Unknown (com-
posed mostly of 
α-helical regions)

p53, FoXO ① Inhibition of 
ROS
② Nutrition sens-
ing (amino acid, 
glucose, leucine)
③ Inhibition of 
mTORC1
④ Induction of 
autophagy

[48, 104, 163, 194]

hSesn2 1 (~ 60 kDa) Two-fold pseudo-
symmetry with 3 
subdomains

p53, Nrf2, ATF4, C/
EBPβ, JNK/c-Jun, 
AP-1, HIF1

① Inhibition of 
ROS, DNA damage, 
and ER stress
② Nutrition sens-
ing (amino acid, 
glucose, leucine)
③ Inhibition of 
cell growth and 
mTORC1
④ Induction of 
autophagy
⑤ Maintaining 
homeostasis of 
glucose, insulin, 
fatty acid, and 
triglyceride

[6, 9, 10, 22, 42, 48, 
57, 86, 136, 162, 
194]

hSesn3 2 (44,53 kDa) Unknown AP-1, FoxO1, 
FoxO3

① Inhibition of 
ROS
② Nutrition 
sensing (amino 
acid, glucose, and 
leucine)
③ Regulation 
of mTORC1/
mTORC2/PKB
④ Induction of 
autophagy
⑤ Maintaining 
homeostasis of 
glucose, insulin

[22, 39, 194]
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(IDD), sarcopenia, etc. [2, 3, 16, 17]. As regulators of cellular homeostasis, Sesns are also 
connected with diseases such as diabetes, obesity, obstructive sleep apnea (OSA), neuro-
pathic pain, epilepsy, and osteoarthritis. [16, 18–20].

In this review, we summarize the latest advances regarding the biological functions of 
human Sesns. In addition, the roles of Sesns in the pathophysiology of different human 
body systems and organs are discussed. Furthermore, we introduce the evidence of 
Sesns as potential biomarkers and therapeutic targets for various diseases. Nonetheless, 
most studies on Sesns are still in the experimental stages; thus, there is a long way to go 
before Sesns can be applied in clinical diagnosis and treatment. This article provides a 
comprehensive review on the roles of Sesns in the pathogenesis, diagnosis, and treat-
ment of human diseases, and offers an outlook on future directions in Sesns research.

Biological functions of Sesns in human pathophysiological processes
Numerous studies have demonstrated that Sesns protect organisms against various 
pathologies, such as aging, metabolic homeostasis, lipid accumulation, and insulin resist-
ance [21]. Sesns perform various biological functions by responding to different internal 
and external environmental stressors, including oxidative stress, genotoxic stress, hyper-
nutrition, starvation, hypoxia, ER stress, etc. [2, 3, 21–23]. Here, we summarize the func-
tions of Sesns under different unfavorable conditions (Table 2).

Oxidative stress

Oxidative stress is a phenomenon caused by the accumulation of excess reactive nitrogen 
species (RNS), ROS, and other reactive metabolic intermediates, which overwhelms the 
antioxidant system in living organisms [1, 3, 14]. Oxidative stress can cause damage to 
DNA, RNA, and other molecules such as proteins and lipids, contributing to aging, cell 
apoptosis, cardiovascular diseases, chronic kidney disease, neurodegenerative diseases, 
metabolic syndrome, etc. [3, 24–28]. Sesns are reported to be induced by oxidative stress 
in pathological conditions such as heart failure, colorectal diseases, atrial fibrillation, 
diabetes, cancer, chronic obstructive pulmonary disease, Alzheimer’s disease (AD), and 
Parkinson’s disease (PD) [14, 29–34]. Different mechanisms are reported to be involved 
in Sesns antioxidant reaction. Based on current evidence, SESN1 is induced by oxida-
tive stress in a p53-dependent manner. SESN2 is activated not only in a p53-dependent 
manner, but through the NMDA receptor pathway, Nrf2 pathway, and JNK-AP-1 signal-
ing axis as well [1, 35, 36]. The SESN2 gene is activated by mitochondrial specific ROS 
and dictates JNK specific inactivation of the apoptotic pathway [37]. SESN3 is stimulated 
by oxidative damage via activation of FoxO transcription factors [38, 39]. Although the 
mechanism of Sesns’ antioxidant function is still unclear, several proteins or pathways 
may contribute to this process. They include the regeneration of peroxiredoxin AhpC, 
mTORC1&Nox4 [13, 40, 41], the Keap1-Nrf2 pathway [3, 36], inhibition of uncoupling 
protein 1 expression by suppressing p38 MAPK [42], the dopamine D2 receptor [43], 
and the Akt/FoxO1 axis [44].

Genotoxic stress

Genotoxic stress is suggested to boost aging and activate DNA damage through muta-
tions or genomic instability [45]. Also, it is a common challenge for cells exposed to toxic 
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Table 2  Biological functions of sestrins in pathophysiological processes

Sesn, sestrin; Nrf2, nuclear factor erythroid 2-related factor 2; ARE, antioxidant responsive element; FoxO, forkhead box 
protein O; JNK, c-Jun N-terminal kinase; AP-1, activator protein 1; PERK, protein kinase RNA-like endoplasmic reticulum 
kinase; C/EBPβ, CCAAT/enhancer-binding protein beta; NMDA, N-methyl-d-aspartate; AMPK, AMP-activated protein kinase; 
mTORC1, mechanistic target of rapamycin complex 1; Nox4, NADPH oxidase 4; PDGFRβ, platelet-derived growth factor 
receptor beta; MAPK, mitogen-activated protein kinase; Beclin1, mammalian homolog of yeast ATG6; PGC-1α, peroxisome 
proliferator-activated receptor-gamma coactivator alpha; mTORC2, mechanistic target of rapamycin complex 2; S6K, 
ribosomal protein S6 kinase; HIF1, hypoxia-inducible factor 1; PI3K, phosphoinositide 3-kinase; PHD, prolyl hydroxylase; 
ATF4, activating transcription factor 4; IRE1, inositol-requiring enzyme 1; XBP1, X-box binding protein 1; ATF6, activating 
transcription factor 6; UPR, unfolded protein response; PERK, PKR-like ER kinase; CHOP, C/EBP homologous protein; ULK1, 
unc-51 like autophagy activating kinase 1; SQSTM1, sequestosome 1; RBX1, ring-box 1; NLRP3, Nod-like receptor family 
pyrin domain containing 3; Erk, extracellular signal-regulated kinase; ERs, estrogen receptors

Conditions Upstream 
pathways

Sestrins Downstream 
pathways

Functions References

Oxidative stress p53, Nrf2/ARE, 
FoxO1, FoxO3, 
JNK/AP-1, PERK-C/
EBPβ, NMDA 
receptor

Sesn1/2/3 AMPK/mTORC1, 
Nrf2,
peroxiredoxin 
AhpC, Nox4, 
PDGFRβ, p38 
MAPK, dopamine 
D2 receptor, and 
FoxO1

Increased expres-
sion of antioxidant 
enzymes (trigger 
antioxidant 
response)

[1, 14, 35, 36, 
38–44]

Genotoxic stress p53, FoxO3 Sesn1/2/3 AMPK/mTOR, 
AMPK/TOR, 
p-Beclin1-Parkin, 
JNK, PGC-1α

DNA repair [8, 48]

Carcinogenesis p53 Sesn2 mTORC2/Akt Oncogenesis [53]

Hypernutrition Glucose, insulin, 
fatty acid, and 
triglyceride

Sesn1/2/3 AMPK, mTORC1-
S6K, mTORC2/Akt

Maintain lipid and 
glucose homeo-
stasis

[1, 13, 22, 57, 58]

Nutrient starvation ATF4, Nrf2, JNK/ 
c-Jun, FoxO1, 
FoxO3, PGC-1α

Sesn1/2 mTORC1 Inhibition of 
necrosis and 
apoptosis in cells, 
represses majority 
of protein transla-
tion, growth regu-
lation, autophagy 
induction, regu-
late cellular energy 
homeostasis

[35, 37]

Hypoxia p53, HIF-1, PI3K/
Akt

Sesn2 VEGF, AMPK-PHD Reduce hypoxic 
damage

[6, 8, 54, 68]

ER stress PERK, PERK-C/
EBPβ, ATF4/Nrf2, 
IRE1/XBP1, ATF6

Sesn2 AMPK/mTORC1, c/
EBP homologous 
protein, p38, JNK, 
UPR, PERK-ATF4-
CHOP

Maintains 
autophagy 
homeostasis and 
prevents apop-
tosis

[71–79]

Autophagy dys-
regulation

AMPK/mTORC1, 
p53

Sesn2 AMPK/mTOR, PI3K/
Akt/mTOR, AMPKα, 
mTORC1-ULK1-S6, 
autophagy protein 
p62/SQSTM1,

Autophagy induc-
tion

[1, 15, 82, 83]

Mitochondrial 
dysfunction

ATF4, RBX1, p53 Sesn2 AMPK/mTOR, 
AMPK/TOR, 
p-Beclin1-Parkin, 
JNK, PGC-1α

Mitophagy induc-
tion

[85–87]

Immune dysregu-
lation

AMPK/mTORC1 Sesn2 NLRP3 inflamma-
some; Erk-JNK-p38 
MAPK; AP-1, ULK1, 
SQSTM1, AMPK/
ERs

Hyper-inflam-
mation; T-cell 
senescence; anti-
inflammation

[62, 75, 79, 85, 
89–91, 94–97]
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agents, including ultraviolet rays, chemotherapeutics agents, ionizing radiation, and 
overproduction of highly reactive molecules such as ROS, lipid peroxidation products, 
and DNA-alkylating agents [3, 46, 47]. SESN1 and SESN2 can both respond to genotoxic 
stress in a p53-dependent manner [8]. The ability of SESN1/2 to protect cells against 
DNA damage may be attributed to their redox activity and their redox-independent abil-
ity of inhibiting mTOR signaling [48]. Furthermore, Sesn2 can save energy from protein 
translation and membrane synthesis for DNA repair by activation of AMPK and inhibi-
tion of mTOR signaling [14].

Carcinogenesis

Carcinogenesis or tumorigenesis may be initiated and promoted by an imbalance 
between cell-intrinsic responses of target cells and changes in the tumor microenviron-
ment caused by genotoxic stress [49]. Considering the ability of Sesns in inhibiting geno-
toxic damage and the oncogenic mTOR pathway, the role of Sesns in carcinogenesis is 
expected [48, 50]. Previous studies on colon cancer, lung carcinoma, and lung adenocar-
cinoma have proved the tumor-suppressive functions of Sesns [2, 51, 52]. Surprisingly, 
Sesns are also vital in maintaining the viability of cancers under specific conditions. 
These cancers include squamous cell carcinoma (SCC), melanoma and hepatocellular 
carcinoma [37, 53]. The oncogenic function of Sesns may be ascribed to their protection 
against energetic stress via Akt and mTOR signaling [54]. Further studies are needed to 
elucidate the dual role of Sesns in different neoplastic diseases for potential anti-tumor 
therapeutic approaches.

Hypernutrition

Hypernutrition promotes the development of obesity and metabolic syndromes such as 
type 2 diabetes, insulin resistance, and elevated blood glucose levels [1, 55]. Sesns have 
been reported to be induced in organs such as the muscle, adipose tissue, and liver in 
animal models of type 2 diabetes and obesity [22, 56]. A previous study reported that 
SESN2-deficient obesity mouse developed glucose intolerance, insulin resistance, and 
hepatosteatosis, all of which were augmented by mTORC1-S6K activation in response to 
nutritional abundance [1, 57]. Tao et al. demonstrated that SESN3 protected high-fat-fed 
mice against insulin resistance through the mTORC2/Akt pathway [13]. Therefore, evi-
dence suggests that Sesns are essential in maintaining metabolic homeostasis and pro-
tecting against hypernutrition [13, 22, 58–61].

Nutrient starvation

SESN2 is the major Sesns family member that is activated under nutrient starvation [54]. 
Upon energy deprivation, SESN2 protects against cell apoptosis, and regulates protein 
synthesis and autophagy via the AMPK/mTORC1 pathway [62–64]. This proves that 
SESN2 is a crucial nutrient sensor that modulates energy homeostasis. Due to these 
functions, activation of Sesns may enhance the survival of tumor cells under the condi-
tion of limited nutrition. Different mechanisms are involve in Sesns induction by defi-
ciency of different nutrients. Under glucose scarcity, SESN2 elevation may depend on 
PGC-1α activation [37]. Under serum deprivation, the c-Jun N-terminal kinase (JNK) 
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pathway activation and its downstream factor c-Jun phosphorylation may activate the 
expression of Sesns [35].

Hypoxia

Hypoxia is one of the most severe metabolic insults, which is associated with a variety of 
pathological conditions, such as pulmonary arterial hypertension, arrhythmia, hypoxic-
ischemic encephalopathy (HIE), myocardial ischemia injury and cancer [65, 66]. SESN1 
and SESN2 can be induced by hypoxia in many human cancer cell lines [1]. The path-
ways vary among the isoforms. SESN1 is activated strictly in a p53-dependent manner 
[54], while SESN2 could be activated by hypoxia through the HIF-1-dependent pathway 
[67] and HIF-1-independent pathway [8]. The PI3K/Akt pathway may also be involved in 
the Sesn2 transcriptional process [54]. Sesns are found to protect against several hypoxia 
related pathological conditions. Harmful chemicals such as 2-deoxyglucose and met-
formin (an inhibitor of mitochondrial respiration) stimulate the expression of SESN2 
[54]. In hypoxic-ischemic mouse models, SESN2 was found to inhibit VEGF produc-
tion and attenuate the blood–brain barrier permeability to reduce brain damage [68]. A 
previous study with colorectal cancer cells and mouse xenograft models suggested that 
SESN2 inhibited tumorigenesis by promoting the degradation of HIF-1α via AMPK-
PHD regulation [6].

ER stress

ER stress occurs when misfolded proteins accumulate due to pathological conditions in 
normal aging and a variety of degenerative diseases, such as cancer, obesity, PD, AD, 
IDD, and sarcopenia [69, 70]. ER stress causes tissue damage by impairing a series of 
molecular and biochemical processes, including protein folding and protein transporta-
tion [7].

Studies have shown that ER stress induces SESN2 expression through the PERK and 
IRE1/XBP1 transduction pathways [3]. Ding et al. demonstrated that glucose starvation 
activated SESN2 via ATF4 and Nrf2 activation [71]. In the absence of SESN2, cells are 
highly susceptible to ER-related pathologies, including mitochondrial dysfunction, lipid 
accumulation, protein aggregate formation, and apoptosis [72–74]. SESN2 acts as a cru-
cial regulator in ER stress-related atherosclerosis [75], liver injury [76, 77], spinal cord 
injury [78], and sepsis-related dendritic cell apoptosis [79]. The AMPK/mTORC1 path-
way, CCAAT-enhancer-binding protein homologous protein, phosphorylation of both 
p38 and JNK, and sestrin-mediated unfolded protein response contribute to the protec-
tive mechanisms of SESN2 against ER stress-associated diseases [72, 75–77].

Autophagy dysregulation

Autophagy refers to cellular mechanisms by which cells break down and recycle dam-
aged or toxic cellular structures to maintain organelle function and cell homeostasis 
[80]. Autophagy impairment comes from accumulation of protein aggregates, dam-
aged mitochondria, and ROS. This deficiency can result in diverse neurodegenera-
tive diseases, such as Parkinson’s, Alzheimer’s, and Huntington’s diseases [81]. Sesns 
promote autophagy by activating AMPK and inhibiting mTORC1, thus attenuating 
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neurodegenerative diseases [15, 22, 82]. In addition, the induction of autophagy by 
p53-SESN2 enhances anticancer processes in various human carcinoma cells [83].

Mitophagy is a specific form of autophagy that is vital in ensuring the functional-
ity and integrity of the mitochondrial network. Dysregulation of mitophagy results in 
mitochondrial ROS accumulation and is crucial in diverse degenerative pathologies 
such as PD, AD, Leber’s hereditary optic neuropathy, inflammation, sepsis aging, and 
cancer [5, 84]. As a positive regulator of Parkin-mediated autophagy, SESN2 is essen-
tial in mitochondrial homeostasis [5]. SESN2 can regulate mitophagy by enhancing 
the targeting of impaired mitochondria for lysosomal degradation and via regulation 
of Parkin E3 ligase migration to damaged mitochondrial surface [85, 86]. It is demon-
strated that the p53-SESN2 axis provides a protective mechanism against acute kid-
ney injury by regulating autophagy and mitophagy in renal tubules [87]. Kumar et al. 
found that SESN2 could promote cell death under long-term mitochondrial damage 
rather than regulating the mitophagy upon normal mitochondrial stress [88].

Immune dysregulation

Immune dysregulation is associated with a variety of diseases, including infections 
and malignancy [89]. Recently, the involvement of SESN2 in immune cells, includ-
ing macrophages, monocytes, T cells, NK cells, and B cells, has been studied [54, 90]. 
SESN2 protected macrophages from apoptosis and alleviated the excessive inflam-
matory response of macrophages in diseases such as myocardial infarction [91–93]. 
Monocytes can also be regulated by Sesn2 to reduce the damage caused by LPS-
induced inflammation, atherosclerosis, high-glucose status, high-fat condition, and 
sepsis [76, 84, 94]. Mechanically, SESN2 knockdown significantly increases the secre-
tion of pro-inflammatory cytokines, regulates monocyte polarization, and increases 
monocyte recruitment to the vascular endothelial cells by downregulating AMPK 
signaling and the ER stress pathway. Additionally, SESN2 maintains immunological 
homeostasis by activating mitophagy in monocytes to restrain the NLRP3 inflamma-
some hyperactivation [85].

However, the effects of Sesns in T cells may oppose their functions in other cells 
[54]. Sesns expression and Sesn–MAPK activation immune-inhibition complex levels 
were higher in T cells from older humans and mice [95]. Inhibition of SESN1/2/3 in 
senescent T cells enhanced cell proliferation, telomerase activity, and IL-2 synthesis 
viability, demonstrating an anti-aging effect [21, 95]. A recent study in the acute coli-
tis mouse model suggested that SESN3 might be vital in generating pathogenic Th1 
and Th17 cells mediated by macrophage in inflammatory bowel diseases [96].

Also, Sesns could induce the reprogramming of non-proliferative senescent-like 
CD8(+) T cells to acquire a natural killer function, which may be vital to surveilling and 
eliminating senescent cells during aging [89]. In ovarian cancer cells, SESN2 and SESN3 
restrained NK cell-mediated cytotoxic activity through the AMPK and mTORC1 signal-
ing [97]. Experimental results in mouse B cells indicate that SESN2 may be a therapeutic 
target in IgE-mediated allergic diseases since SESN2-AMPK signaling selectively pro-
motes IgE class switching and IgE production [90]. In dendritic cells, SESN2 also exerts a 
protective effect against sepsis by inhibiting apoptotic ER stress signaling [79].



Page 8 of 24Chen et al. Cellular & Molecular Biology Letters            (2022) 27:2 

The roles of Sesns in human diseases
Sesns protect against various environmental stressors and regulate the AMPK/mTORC1 
pathway. Moreover, Sesns regulate cell metabolism and cellular homeostasis in both 
normal and diseased states [70]. The protective effects of Sesns in all sorts of human dis-
eases have significantly attracted researchers (Fig. 1).

Cardiovascular diseases

CVDs are the main cause of death worldwide [98]. Studies have shown that Sesns play 
important protective roles in various CVDs, including atherosclerosis (AS), acute myo-
cardial infarction (AMI), heart failure, hypertension, myocardial hypertrophy, atrial 
fibrillation, and myocardial fibrosis [3, 99, 100]. The role of Sesns in CVDs is associated 
with their versatile functions in cardiology. Their functions include reducing ROS level, 
alleviating inflammation, and attenuating aging. Sesns could also enhance autophagy, 
inhibit fibroblast proliferation, modulate substrate metabolism, and maintain the redox 
homeostasis [3, 98, 99].

CVDs such as heart failure, atrial fibrillation, hypertension, and AS are strongly asso-
ciated with excessive ROS [3]. Sesns can reduce production of ROS via mTORC1-inde-
pendent mechanisms and protect cells against ROS accumulation by promoting the 
cyclic absorption of over-oxidized peroxidase [42, 43]. This signifies the exciting poten-
tial for therapeutic and diagnostic applications in CVDs [92]. In patients with coronary 
heart disease (CAD), aortic dissection, and chronic heart failure (CHF), the level of 
SESN2 is elevated and appears to be related to the severity of the disease [101–103].

The macrophage-mediated inflammatory response also has important roles in CVDs 
such as AS, AMI and heart failure [3, 33]. M1 macrophages promote secretion of matrix 
metalloproteinases and pro-inflammatory factors to promote the development of CVDs, 
while M2 macrophages tend to secrete anti-inflammatory factors [8, 13]. Sesns affect 
the level of inflammatory factors and regulate the M1/M2 macrophage balance via the 

Fig. 1  Roles of Sesns in human diseases. Sesns are proved to regulate cell metabolism and cellular 
homeostasis with their biological functions of protecting against various kinds of environmental stressors and 
regulating the AMPK/mTORC1 pathway. The protective and harmful effects of Sesns in various age-related 
diseases, metabolic disorders, and cancers are shown in this figure. COPD, chronic obstructive pulmonary 
disease; ER, endoplasmic reticulum; ECM, extracellular matrix
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AMPK-mTOR pathway and eventually result in an anti-inflammatory response [3, 12, 
24, 104].

Myocardial ischemia and reperfusion (I/R) injury may lead to cardiac arrhythmia 
and heart failure [105]. Sesns may protect the cardiovascular system against I/R injury 
by attenuating ROS accumulation and enhancing autophagy [106]. Additionally, Sesns 
could prevent age-related intolerance to ischemic heart disease by LKB1-mediated 
AMPK activation and substrate metabolism modulation [107, 108].

Metabolic diseases

Metabolic disorders, such as obesity-associated CVDs, diabetes, and non-alcoholic fatty 
liver disease, are marked by the regulation of AMPK and mTOR [2]. Sesns have been 
demonstrated to play a critical role in metabolic control and glucose homeostasis by reg-
ulating AMPK/mTORC1 [109]. In contrast, the effects of SESN3 on insulin sensitivity 
and glucose metabolism is probably associated with mTORC2-Akt signaling with little 
involvement of AMPK [14]. Different Sesns isoforms have different responses to meta-
bolic disorders. SESN2 accumulated in the muscle, liver, and adipose tissues in a mouse 
model of type 2 diabetes and obesity [22], whereas SESN1 decreased in the skeletal mus-
cle and SESN3 decreased in the liver and adipose tissue in patients with high-fat diet 
and diabetics [29]. Lack of SESN2 increased the progression of diabetes, obesity-induced 
insulin resistance, and the severity of hepatosteatosis caused by obesity [22]. Moreover, 
a recent report showed that exercise could induce SESN2 and increase insulin sensitivity 
through autophagy [110].

Nervous system diseases

Various neurodegenerative diseases and neurological disorders are related to excessive 
oxidative stress with compromised antioxidant capacity and accumulation of misfolded 
proteins [111, 112]. Due to their biological functions in anti-oxidation and autophagy 
promotion, protective roles of Sesns are gradually appreciated in neurodegenerative dis-
eases and neurological disorders [19, 113–116]. The former diseases include AD, PD, 
Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). The latter refer to 
seizures, neuropathic pain, ischemic stroke, and neonatal hypoxic-ischemic encepha-
lopathy. The evidence of SESN1 and SESN3 in regulating the nervous system is relatively 
scarce since most studies focused on SESN2. This calls for further investigation into the 
potentially unique functions of these two proteins [113].

Liver diseases

The liver is a metabolically active organ that is susceptible to oxidative damage. Since 
Sesns are regarded as key inhibitors of oxidative stress, the roles of Sesns in liver diseases 
have been widely investigated. Sesns are associated with various liver diseases, including 
hepatocyte injury, hepatitis, nonalcoholic fatty liver disease (NAFLD), and liver cancers 
such as hepatocellular carcinoma (HCC) [117]. The hepatoprotective effect of SESN2 
may be due to its regulation upon the Nrf2/Keap1 pathway to reduce the liver’s suscep-
tibility to oxidative damage [118]. Inhibition of mitochondrial dysfunction and remit-
tance of ER stress-associated liver damage may also explain this effect [118]. The action 
of Sesns against hepatic metabolic stress, liver infectious disease and HCC is discussed 
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in other sections. Accumulated reports indicate that Sesns may be promising targets in 
liver disease; however, the exact mechanisms of action of Sesns against liver diseases are 
still unclear [118].

Respiratory system diseases

Recent studies have shown that Sesns are involved in many oxidative stress-related res-
piratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, 
acute respiratory distress syndrome (ARDS), OSA, and CS-induced emphysema 
[119–121].

SESN2 is upregulated in the lungs of COPD patients and mutational inactivation of 
SESN2 partially rescues the development of emphysema in mouse models by activation 
of PDGFRβ signaling or TGFβ signaling [122–124]. These results suggest that COPD 
patients might benefit from antagonists of Sesns function [122].

Airway remodeling is an important factor associated with the severity of lung function 
reduction in COPD. Zhang et al. found that the serum SESN2 level is positively related 
to airway remodeling [18]. This suggests that SESN2 may be a novel biomarker for prog-
nosis evaluation of COPD patients.

A recent clinical study demonstrated a relationship between SESN2 and asthma [109]. 
Both during and after asthma exacerbation, the SESN2 level increased [121, 125]. The 
imbalance between oxidative stress and antioxidant activity in severe asthma patients 
may explain the change of Sesn level [125].

OSA is characterized by repeated apnea during sleep and intermittent hypoxia, which 
can lead to serious complications, including coronary heart disease, type 2 diabetes, 
hypertension, cerebrovascular accident, and stroke [119, 120]. Intermittent hypoxia and 
the following oxidative stress may cause these complications, which led to research on 
stress-inducible proteins such as Sesns. Plasma and urinary SESN2 levels were found to 
increase in OSA patients and to be associated with the severity of OSA, implying that 
SESN2 can be an important marker of the severity of OSA and the effect of treatment 
[119, 120, 126].

Urinary system diseases

Sesns are assumed to play a critical protective role in the kidneys with its functions 
of mediating stressors such as oxidative stress, ERs, mitochondrial dysfunction, and 
autophagy, as well as attenuating inflammation and fibrosis [127]. Indeed, studies have 
shown that SESN2 is involved in acute kidney injury (AKI), glomerular parietal epithelial 
cells (PECs) injury, glomerular mesangial cell (MC) damage, and diabetic kidney disease 
(DKD) [127].

SESN2 is upregulated in proximal tubular cells during I/R-induced AKI in vivo, while 
overexpression of SESN2 induced autophagy in renal tubular cells [87]. Decreased 
expression of SESN2 in the renal proximal tubules causes ROS overproduction, high 
renal vascular blood pressure, and renal hypofunction [43]. In addition to AKI, SESN2 
has been reported to confer protection in PECs, MCs, and DKD [43]. The mechanism 
may relate to Sesns’ anti-apoptosis effects, regulation of mTOR, activation of AMPK/
Nox4, etc. [128, 129].
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DKD, a common diabetic complication that causes end-stage renal disease, is the 
major cause of chronic kidney disease worldwide [127]. In a human proximal tubule cell 
line (HK-2) model, over-expression of SESN2 repressed DKD-induced epithelial-mes-
enchymal transition and ER stress, demonstrating the therapeutic function of SESN2 in 
DKD [130]. Additionally, SESN2 is reported to improve mitochondrial dysfunction in 
podocytes under high glucose conditions [131].

Gout is a common type of arthritis caused by elevated serum uric acid (SUA) levels. 
SESN2 is identified to be one of the genes that potentially influence SUA, providing 
insights into the functions of Sesns in the pathogenesis, treatment, and prevention of 
hyperuricemia/gout [132].

Immune system related diseases

Sesns are expressed in multiple immune cells such as macrophages, monocytes, NK 
cells, and T lymphocytes [85, 95, 97, 133]. Sesns suppress the inflammatory response, 
inhibit T cell immunity, and support macrophage survival [85, 92, 134]. The expression 
of Sesns might impact the function of immune cells by activating AMPK, suppressing 
mTORC1 signaling, inhibiting the JNK pathway, or inhibiting the NLRP3 inflammasome 
from consistent activation [62].

Macrophages are the first line of immune cells that can recognize and eliminate endo-
toxin [135]. A previous study showed that NO and hypoxia up-regulate SESN2 in mac-
rophages [91]. Lipopolysaccharide (LPS), a representative Toll-like receptor 4 ligand, 
significantly increases SESN2 expression in macrophages [136]. The Toll-like receptor-
mediated induction of SESN2 is dependent on the Nrf2-ARE pathway, AP-1, and the 
suppression of ubiquitin-mediated degradation of SESN2 and may protect cells against 
endotoxin toxicity [136].

NK-92 cells are widely used for immunotherapy in cancer due to their high tumoral 
potency [97]. SESN2 and SESN3 expression levels of NK-92 cells were found to be much 
higher in ovarian cancer mouse samples, indicating that the tumor microenvironment 
increased the expression of Sesns [97]. Moreover, overexpression of SESN2 and SESN3 
impaired the tumoricidal effect of NK-92 cells, suggesting that downregulating Sesns 
expression may benefit NK-92 cell-based cancer therapy.

Musculoskeletal system diseases

The musculoskeletal system includes the skeletal system, which comprises bones and 
cartilages, and the muscular system, which comprises all the body muscles. Recent stud-
ies have demonstrated the function of Sesns in musculoskeletal system diseases, such as 
IDD, osteoarthritis (OA), and sarcopenia. (Fig. 2).

IDD is the primary cause of low back pain and the main factor of functional disabil-
ity, which significantly affects the quality of life among the elderly population and in 
some young people [137]. The degeneration of intervertebral disc tissue starts before 
the degeneration of other musculoskeletal tissues and is often asymptomatic [137]. 
Although the pathophysiology of IDD is not yet well understood, it is associated with 
cell senescence, excessive apoptosis, impaired autophagy, pro-inflammatory cytokine 
storm, and degradation of the extracellular matrix (ECM) [138–141]. As suppressors 
of cell aging and promotors of autophagy, Sesns are thought to be involved in the IDD 
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process [70, 141, 142]. Tu et  al. demonstrated that the expression of SESN1, 2, and 
3 markedly decreased in degraded human nucleus pulposus cells but increased after 
stimulation by an ER stress inducer [70]. Also, knockdown of SESN2 in stress-induced 
nucleus pulposus cells notably increased cell apoptosis and ECM degradation, while 
SESN2 overexpression repressed IDD by enhancing autophagy [70]. Consequently, 
inhibition of Sesns may be related to an essential cellular dysfunction mechanism in 
IDD. A recent study showed that FoxO, a family of transcription factors that regulate 
tissue homeostasis and longevity, was reduced in the degraded lumbar intervertebral 
disc [16]. As a key FoxO downstream target, SESN3 is also decreased in aged lumbar 
discs, which may compromise the ability of intervertebral disc cells to neutralize ROS 
[16].

OA is the most prevalent joint disease that affects all synovial joints (hand, hip, 
knee, and spine) [143]. Risk factors for OA include genetic tendency, aging, meta-
bolic disorders, obesity, previous injury, negative lifestyle, and female gender [144]. 
OA is mainly characterized by progressive degradation of the articular cartilage and 
accompanying secondary episodic synovitis and bone remodeling [143]. Several stud-
ies show that Sesns play a protective role in cellular homeostasis in OA cartilage [20, 
145]. PCR and immunohistochemistry results show that SESN1, SESN2 and SESn3 

Fig. 2  Functions of Sesns in musculoskeletal system diseases. Sesns play important protective roles in 
multiple musculoskeletal system diseases, such as diseases related to muscle atrophy, bone and skeletal 
disorders related to osteoclasts, osteoarthritis, intervertebral disc degeneration, etc. The role of Sesns in 
bone fracture is unproved. The red up arrows represent activation, while the blue down arrows represent 
inhibition in this figure. Sesns, sestrins; mTOR, mammalian target of rapamycin; mTORC1, mechanistic target 
of rapamycin complex 1; MAPK, mitogen-activated protein kinase; TRAF6, TNF receptor associated factor 6; 
NK-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ECM, extracellular matrix
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expression is suppressed in OA-affected cartilage [20]. In siRNA-mediated all Sesns 
knockdown and SESN2 overexpression experiments, Sesn supports chondrocyte sur-
vival under stress conditions by activating autophagy through mTOR signaling [20].

Sarcopenia is an age-related disease of skeletal muscle mass loss. The pathologies are 
connected with many factors, including inactivity, malnutrition, degeneration of neuro-
muscular junction, and skeletal muscle cell senescence [146, 147]. Muscle mass is related 
to survival under several pathological conditions, including sepsis, acquired immunode-
ficiency syndrome, sarcopenia, and cachexia [148]. Reduced activity, decreased appetite, 
and nutrient consumption may contribute to the muscle loss. Studies from Drosophila 
and mouse models found that knockout of Sesns resulted in muscle degeneration, pro-
viding a connection between Sesns and muscle growth [40]. Segalés and colleagues 
identified SESN1 and SESN2 as protectors of the muscle against aging-induced atrophy, 
probably through the inhibition of atrophic proteolysis and activation of homeostatic 
autophagy [147]. Interestingly, recent studies have shown that Sesns could maintain 
the homeostasis of muscle stem cells against aging and metabolic insults by inhibiting 
mTORC1 and maintaining the quiescent state [149].

Regular exercise is an effective intervention to slow down the progression of sarco-
penia and increase muscle mass [150, 151]. Sesns have recently been reported to be 
strongly associated with exercise benefits [110, 152–154]. Kim et al. showed that Sesns 
are molecular transducers of the beneficial effects of exercise, including enhanced 
endurance and improved insulin signaling [153]. Sesns expression decreases during 
inactivity [147]. Loss of Sesns inhibits exercise benefits, while overexpression of them 
reverses the immobilization/aging-related atrophy [151, 153]. Sestrin proteins are dif-
ferentially regulated in different training models [155]. Aerobic exercise increases SESN2 
protein expression [156], while acute resistance exercises transiently regulate SESN2 
[155]. Liu et al. found that long-term endurance exercise raised the protein expression 
of SESN2 and SESN3, and the basic level of muscle autophagy [110]. Nevertheless, in a 
recent study, the protein or mRNA expression level of SESN2 and SESN3 or the basal 
phosphorylation state of SESN2 was not modified after a 12-week long-term resistance 
training program, whereas the protein expression of SESN1 was induced in human skel-
etal muscle [155].

Apart from endurance exercise, dietary supplementation of essential amino acids can 
also lessen the loss of muscle mass [157]. Among all the essential amino acids, leucine is 
of critical importance since it stimulates skeletal muscle protein synthesis to the same 
degree as that of a complete mixture of amino acids [158]. Activation of mTORC1 is 
essential for muscle protein synthesis (MPS) after protein feeding [159–161]. Sesns 
play an important role in mTORC1 regulation and SESN2 has been considered as a leu-
cine sensor [10, 162]. The expression of Sesn isoforms differs among various tissues. In 
the skeletal muscle, SESN1 was more abundant than SESN2 and SESN3. Studies have 
implicated that oral administration of leucine to fasted rats promotes the dissociation 
of SESN1 from GATOR2 rather than SESN2 or SESN3, indicating that SESN1 regulates 
leucine-induced activation of mTORC1 in skeletal muscle [162, 163].

Fractures, mostly caused by injury, are significant public health burdens. The physi-
ological process of fracture healing involves a series of well-organized events, including 
the recruitment of regulatory factors and cell types [164]. Recent studies have suggested 
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that mTOR signaling may be involved in regulating cartilage development and pre-oste-
oblast differentiation [165]. As negative regulators of mTOR signaling, Sesns are thought 
to be involved in fracture healing. However, a recent study showed that serum SESN1 
levels in bone fracture patients did not differ from those in healthy people, while mTOR 
levels increased significantly [166]. A limitation of this study is that mTOR and SESN1 
levels were only measured on the first day after a fracture. Further clinical studies are 
needed to explore the potential role of mTOR signaling in the fracture healing process.

A large variety of bone diseases, such as periodontitis, osteoporosis, osteopetrosis, 
autoimmune arthritis, and bone tumors, are related to the homeostatic equilibrium of 
bone formation and bone resorption [167–170]. A recent study in mice showed that 
SESN2 influences bone remodeling and osteoclast differentiation by NFATc1 activation 
and TRAF6/p62 interaction [171]. Abnormal formation of osteoclasts is vital in vari-
ous bone and skeletal disorders, so the exact role of Sesns in the maintenance of bone 
homeostasis and treatment of bone remodeling related bone diseases deserves further 
investigation.

Cancer

Cancer is strongly associated with oxidative stress, gene mutation, and metabolic dys-
regulation. Unlike other cells, cancer cells favor conditions of oxidative stress. It has 
been reported that mTOR hyperactivation could lead to tumorigenesis and tumor pro-
gression [2]. Therefore, as ROS and mTOR inhibitors, Sesns may confer tumor suppres-
sor activity, and be employed in the diagnosis and treatment of multiple cancers [2, 3]. 
Accumulating evidence demonstrates that most forms of cancers are accompanied by 
remarkable change of Sesn expression. Sesns can suppress cell growth and proliferation 
in cancers such as colorectal cancer, lung carcinoma, and endometrial cancer [33, 52, 
172–174].

To survive in a hypoxic tumor microenvironment, most cancer cells induce expression 
of HIF-1α [2, 175]. A study by Seo et  al. demonstrated that overexpression of SESN2 
suppressed the accumulation of HIF-1α, hence preventing the metastasis of colorectal 
cancer [6]. Clinical evidence from patients with colon cancer showed that the expression 
of SESN2 was downregulated and SESN2 levels were negatively correlated with chemo-
therapy resistance, which further supports the view that SESN2 can serve as a tumor-
suppressive protein and a feasible prognostic marker in various cancers such as NSCLC 
and colon cancer [2]. However, a recent study by Shin et  al. showed that SESN2 lev-
els increased in endometrial cancer cells [174]. The study also proved that knockdown 
of SESN2 could promote cancer cell growth, migration and ROS accumulation via the 
mTORC1 pathway, indicating the anti-cancer potential of SESN2 and mTORC1 pathway 
inhibitors in endometrial cancer. Ding et al. reported that SESN2 can inhibit the devel-
opment of lung adenocarcinoma by regulating X-linked inhibitor of apoptosis protein 
and inducing cell death through the activation of death receptors [52].

Sesns are also vital in maintaining the viability of cancers under specific conditions 
[53, 83, 176, 177]. For instance, SESN2 supported the survival of melanoma cells and 
SCC cells after ultraviolet B radiation and chemotherapeutics [53], and hepatocellular 
carcinoma cells under glucose limitation [37]. These findings indicate that Sesns may 
promote tumorigenesis and chemoresistance of cancer cells [53, 97]. In addition, the 
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activation of SESN2 in tumor cells can induce an autophagic response, thus facilitat-
ing the growth of tumor cells under limited oxygen and nutrient conditions [83]. Fur-
ther investigations are needed to illustrate the advantageous or disadvantageous roles of 
Sesns in cancers and to determine their potential applications in radiotherapy or chemo-
therapy [3].

Future directions: Sesns as biomarkers and therapeutic targets of diseases
Given these multiple effects, members of the Sesns protein family are potential biomark-
ers and treatment targets in aging-related diseases, metabolic diseases, bone diseases, 
and various other diseases [2]. Here, we list the potential functions of Sesns and their 
regulators in modern medicine (Fig. 3).

Sesns for disease diagnosis

Sesns levels can reflect the status of many diseases, which could be used as valuable bio-
markers for diagnosis. For instance, the SESN2 level was suggested to be an early bio-
marker of atherogenesis, CAD, OSA and sarcopenia [17, 94, 103]. The sensitivity and 
specificity of SESN2 for OSA diagnosis were respectively 61.90% and 90.70%, which are 
clinically valuable levels [126]. What is more, SESN3 as a colon-specific marker might 
improve the detection of acute graft-versus-host disease (aGvHD) [178].

Sesns levels could also be prognostic markers for predicting the treatment outcome. 
Plasma or urinary SESN2 levels were reported to reflect the severity of CAD, CHF, coro-
nary stenosis, OSA and COPD [102, 103, 119]. SESN2 levels might be positive prognos-
tic markers in HCC [179], NSCLC [172], and neurodegenerative diseases such as AD [2]. 

Fig. 3  Small-molecule inducers or activators targeting Sesns may be used in diagnosis, treatment, and 
prevention of human diseases. Sesn, sestrin; CAD, coronary heart disease; OSA, obstructive sleep apnea; 
aGvHD, acute graft-versus host disease; CRC, colorectal cancer; CHF, chronic heart failure; AD, Alzheimer’s 
disease; HCC, hepatocellular carcinoma; NSCLC, non-small-cell lung cancer; PD, Parkinson’s disease; COPD, 
chronic obstructive pulmonary disease; SCC, squamous cell carcinoma
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They could be used to predict poor outcomes for patients with CHF [102] or colorectal 
cancer [173, 180]. Apart from that, SESN1 is associated with individual radiosensitivity, 
which could be utilized for predicting the toxicity of radiotherapy for cancers [181].

Sesns for disease treatment

Studies have shown that Sesns may be novel therapeutic drug targets. Small-molecule 
Sesns mimetics, inducers or activators might reverse pathologic conditions or diseases, 
such as heart ischemia, metabolic disorders, AD, PD, chemical-induced-neuronal adver-
sities, colorectal cancer, and lung adenocarcinoma [2, 52, 182, 183]. Sesns antagonists 
and inhibitors or siRNA drugs that could knock down Sesns might confer therapeutic 
benefits for diseases such as CS-induced emphysema, COPD [123], SCC, hepatocel-
lular carcinoma, ovarian cancer, and melanoma [53]. In addition to drugs with direct 
effects, Sesns could also be used to design adjuvant therapies. Based on a recent study, 
SESN2 might be an effective preclinical target for colorectal cancer in chemotherapy 
combined with nutritional supplements [184]. Pro-oxidant drugs that promote the pro-
tective effect of SESN1 in cancer cells might provide new therapeutic opportunities for 
cancer patients bearing the mutant TP53 gene [185]. Drugs that induce Sesns-mediated 
autophagy and inhibit growth of cancer cells could be a novel weapon against cancers 
such as human bladder cancer [186]. More importantly, Sesns might be a good target to 
overcome resistance of anticancer drugs, which is one of the main obstacles that influ-
ence cancer treatment [187].

In recent years, genetically modified cell sheets using virus-based or non-viral gene 
transfection have shown great potential in personalized and precision medicine [188]. 
Sesns-modified cell sheets might act as a promising preventive or therapeutic drug 
against aging-related diseases such as sarcopenia, cancers, AD, PD, and CAD. However, 
the diagnostic and therapeutic benefits of Sesns can only be obtained when its upstream 
and downstream pathways that underlie their biological effects are well understood.

Sesns for disease prevention

Sesns have also been reported to prevent diseases such as aortic dissection, ischemic 
heart disease, diabetes, insulin resistance, obesity, and hyperuricemia/gout [107, 108, 
132, 189, 190]. Patients with hypertension showed elevated circulating Sesns levels, 
which provides a clue for preventing clinical hypertension [190]. SESN2 can also prevent 
pregnancy-related complications given that it was found to correct impaired trophoblast 
invasion, ER stress and inflammation caused by palmitate [191]. Patients with diabetic 
nephropathy showed decreased serum SESN2 levels; thus, measurement of SESN2 levels 
may be an effective approach for early detection and prevention of diabetic nephropa-
thy [192]. Doxorubicin, a highly efficient chemotherapeutic medicine, is associated with 
high cardiotoxicity. A study showed that Sesns counteracted the detrimental effects of 
doxorubicin on cardiomyocytes, without causing cardiotoxicity [193]. It is therefore 
likely to be an important prevention and treatment agent against doxorubicin-induced 
cardiotoxicity.

Dietary restriction can increase longevity and improve health in diverse species [59]. 
Restriction of specific essential amino acids plays a key role, but the molecular and cel-
lular mechanisms are still elusive [60]. Recent studies show that Sesns may be the link 
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between dietary amino acids, intestinal stem cell function, gut health, and lifespan by 
regulating the mTOR pathway and autophagy, which could provide another clue for 
human disease prevention [61].

Conclusion
Sesns, stress-inducible metabolic proteins that repress ROS and provide cytoprotection 
against various noxious stimuli, have aroused great interest recently. Considering their 
pleiotropic functions including cellular stress elimination, AMPK promotion/mTORC1 
repression, autophagy induction, pro-survival effects on normal cells as well as anti-
proliferative effects on cancerous cells, Sesns are key regulators of cell metabolism and 
contribute to cell homeostasis in physiological and pathological conditions. Owing to 
their antioxidant function, Sesns protect tissues in neurodegenerative disorders such as 
PD and AD. As an activator of AMPK and an inhibitor of mTORC1, Sesns help animals 
fight against various metabolic disorders, such as diabetes, obesity, cancer, atheroscle-
rosis, and cardiac hypertrophy. Therefore, Sesns can serve as prognostic indicators and 
potential therapeutic targets in many disorders. Despite the protective roles of Sesns, 
whether uncontrolled activation of them would result in negative impacts should also be 
ascertained. Future studies based on transgenic animal models with silencing of Sesns 
should be developed to test small molecule Sesns mimetics or agonists in various dis-
eases. Personalized medicine targeting Sesns is promisingly envisioned to develop from 
bench to bedside in the next generation.
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