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Introduction
The biological functions of miR-152-3p are contradictory to the current understanding 
of the carcinogenesis of multiple malignant tumours [1–3]. miR-152-3p is recognized as 
an oncosuppressor in breast cancer [1], prostate cancer [3], colorectal cancer [4, 5] and 
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glioma [6, 7]. Conversely, up-regulation of miR-152-3p is revealed in plasma from pros-
tate cancer patients compared with healthy control subjects [2]. In our previous study 
[8], miR-152-3p repressed cyclin-dependent kinase 8 to restrain hepatic carcinogenesis. 
Herein, we further explored the roles of miR-152-3p and its gene target in the prognosis 
and immune infiltration of HCC.

ROBO1 is a member of the roundabout transmembrane protein receptor family and 
contributes to axonal guidance in neurogenesis [9, 10]. Recently, ROBO proteins have 
been implicated in tumour angiogenesis, endothelial cell migration and immune cell 
recruitment, interacting with Slit2 as a corresponding ligand [11, 12]. The SLIT/ROBO 
signalling pathway exhibits Janus-faced properties in cancer progression [9]. In several 
studies, the Slit2/ROBO1 axis restrains the malignant phenotypes, such as migration, 
invasion and epithelial–mesenchymal transition, of cancer cells [13–15]. However, up-
regulation of ROBO1 is correlated with poor prognosis and accelerates osteosarcoma 
cell growth [16]. Moreover, ROBO1 expression is elevated in nasopharyngeal cancer and 
is associated with worse overall survival [17]. In HCC, ROBO1 is up-regulated in tumour 
tissues and is one of the poor-prognosis-related and immune-related genes that may 
contribute to hepatic carcinogenesis [18, 19]. ROBO1 is also substantiated as a serologic 
marker for the diagnosis of HCC [19].

In our study, miR-152-3p was up-regulated in nine cancer types and down-regulated 
in five cancer types in a pan-cancer analysis of the TCGA database. Compared with non-
tumour tissues, the elevation of ROBO1 and the reduction of miR-152-3p were observed 
in HCC tissues. Bioinformatics prediction and experimental measurements validated 
that ROBO1 is a direct gene target of miR-152-3p that can repress the protein expression 
of ROBO1 in HCC cells. We further investigated the antineoplastic activity, prognosis 
and immune infiltration of the miR-152-3p/ROBO1 axis in HCC.

Materials and methods
Prediction of miR‑152‑3p‑related gene targets

Three miRNA prediction databases, TargetScan, miRDB and RNA22, were used to 
predict miR-152-3p-related gene targets. A Venn diagram was utilized to visualize the 
potential gene targets with R software and the ggplot2 package (version 3.3.3).

TCGA data analysis

The expression profiles of miR-152-3p and ROBO1 in pan-cancer or HCC were evalu-
ated using the TCGA database with the ggplot2 package (version 3.3.3). The prognostic 
analysis was carried out using the TCGA database with the survminer package (version 
0.4.9) and the survival package (version 3.2–10) as described previously [20]. In addition, 
the HCCDB database and the HPA database were used to evaluate ROBO1 gene expres-
sion and immunostaining in HCC tissues, respectively.

Prognostic analysis of ROBO1

The Kaplan–Meier Plotter database (https://​kmplot.​com/​analy​sis/​index.​php?p=​backg​
round) was used to analyse the prognostic significance of ROBO1 in HCC. In addi-
tion, to investigate whether ROBO1 is an unfavourable factor for OS by mediating the 
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enrichment of immune cells, the Kaplan–Meier Plotter database was used to evaluate 
OS in the subgroups with enriched and decreased immune cells.

Immune infiltration

The association between the enrichment of immune cells and ROBO1 expression in HCC 
was analysed using the GSVA package (version 1.34.0) with the ssGSEA algorithm [21, 
22]. In addition, the correlation of ROBO1 with immune checkpoint molecules [cyto-
toxic T-lymphocyte associated protein 4 (CTLA-4), programmed cell death 1 (PDCD-1), 
CD274, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), butyrophilin sub-
family 2 member A1 (BTN2A1) and BTN2A2] was assessed in the TCGA database using 
the ggplot2 package (version 3.3.3).

GSEA, GO and KEGG pathway enrichment

An analysis of single-gene differences of ROBO1 in the TCGA database was prepared for 
GSEA using the DESeq2 package (version 1.26.0) as described previously [23]. In addi-
tion, GO and KEGG pathway enrichment analyses were predicted by the DAVID online 
database (https://​david.​ncifc​rf.​gov/).

Cell experiments

Cell experiments, including cell culture, cell transfection, luciferase reporter assays 
(Promega, USA), western blotting (anti-ROBO1: ab7279; dilution: 1:500; Abcam) and 
CCK8 assays (Beyotime), were carried out as described previously [8]. miR-Com-, miR-
152-3p-, sh-Con-, sh-ROBO1- and ROBO1-overexpressing plasmids were obtained 
from GenePharma (Shanghai, China). A TUNEL kit (Roche) was utilized to analyse cell 
apoptosis.

Statistical analysis

The data were analysed using Mann–Whitney U test, Wilcoxon signed rank test, one-
way analysis of variance log-rank test, univariate Cox regression analysis and Spearman’s 
correlation analysis.

Results
Prediction of gene targets of miR‑152‑3p

Based on three miRNA prediction databases, TargetScan, miRDB and RNA22, a total 
of 101 gene targets of miR-152-3p were collectively identified in those three databases 
(Fig.  1A). The heatmap shown in Fig.  1B presents the differential expression profiles 
of the 101 gene targets in the TCGA database, which contained 160 non-tumour tis-
sues and 371 HCC specimens. According to log2(fold change) > 2 and p < 0.05, ROBO1 
[log2(fold change) = 2.21; p < 0.001] and COL4A1 [log2(fold change) = 2.07; p < 0.001] 
expression levels were elevated in HCC tissues and filtered out for further investigations 
(Fig. 1C). In 50 paired tissues, both ROBO1 and COL4A1 were expressed at significantly 
higher levels in cancerous tissues than in paracarcinoma tissues (Fig. 1D).

https://david.ncifcrf.gov/
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Prognostic significance of ROBO1 and COL4A1 in HCC

The Kaplan–Meier Plotter database was used to evaluate the association of ROBO1 and 
COL4A1 with prognosis in HCC. Worse OS, PFS and DSS were observed in patients 
with high ROBO1 expression than in those with low ROBO1 expression. However, 
COL4A1 expression had no significant correlation with OS, RFS, PFS or DSS in HCC 
patients (Fig. 2B).

Further validation of ROBO1 expression in HCC

The HCCDB database was utilized to analyse ROBO1 gene expression in 12 datasets. 
In 11 of the 12 datasets, up-regulation of ROBO1 gene expression in HCC tissues was 
validated by the HCCDB database (Fig.  3A). Intriguingly, the HPA database revealed 
prominent positive staining of ROBO1 expression in HCC tissues (Fig. 3B). As shown in 
Fig. 3C and Table 1, ROBO1 expression was not significantly different in the T, N, M and 

Fig. 1  Prediction of gene targets of miR-152-3p. TargetScan, miRDB and RNA22 were implemented to predict 
gene targets of miR-152-3p (A). Heatmap represents the differential expression of 101 gene targets (B). 
ROBO1 and COL4A1 expression in non-paired HCC tissues and non-tumour tissues (C). ROBO1 and COL4A1 
expression in paired HCC tissues and adjacent tissues (D). ***p < 0.001
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Fig. 2  Prognostic significance of ROBO1 and COL4A1 in HCC. Kaplan–Meier Plotter database was used to 
evaluate the prognostic significance of ROBO1 (A) and COL4A1 (B) in HCC

Fig. 3  Further validation of ROBO1 expression in HCC. HCCDB database was utilized to analyse ROBO1 gene 
expression (A). HPA database revealed prominent positive staining of ROBO1 (B). The association between 
ROBO1 expression and clinical parameters in HCC (C)
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pathologic stage subgroups. However, up-regulation of ROBO1 showed significant cor-
relations with high histologic grade and AFP levels in HCC patients.

Relationship of ROBO1 expression with immune infiltration and immune checkpoint 

molecules

To evaluate whether ROBO1 expression was associated with tumour immunity, the 
ssGSEA algorithm was implemented to investigate whether ROBO1 expression medi-
ates immune cell enrichment in HCC tissues. Spearman correlation analysis revealed 
that ROBO1 was positively correlated with five immune cell enrichments and negatively 

Table 1  The association of ROBO1 expression with clinical parameters in HCC patients

Characteristic Low expression of ROBO1 High expression of 
ROBO1

p

n 187 187

Age, n (%) 0.797

 ≤ 60 87 (23.3%) 90 (24.1%)

 > 60 100 (26.8%) 96 (25.7%)

Gender, n (%) 0.507

 Female 64 (17.1%) 57 (15.2%)

 Male 123 (32.9%) 130 (34.8%)

Race, n (%) 0.617

 Asian 76 (21%) 84 (23.2%)

 Black or African American 10 (2.8%) 7 (1.9%)

 White 94 (26%) 91 (25.1%)

Pathologic stage, n (%) 0.384

 Stage I 91 (26%) 82 (23.4%)

 Stage II 40 (11.4%) 47 (13.4%)

 Stage III 36 (10.3%) 49 (14%)

 Stage IV 3 (0.9%) 2 (0.6%)

T stage, n (%) 0.563

 T1 97 (26.1%) 86 (23.2%)

 T2 44 (11.9%) 51 (13.7%)

 T3 38 (10.2%) 42 (11.3%)

 T4 5 (1.3%) 8 (2.2%)

N stage, n (%) 1.000

 N0 124 (48.1%) 130 (50.4%)

 N1 2 (0.8%) 2 (0.8%)

M stage, n (%) 1.000

 M0 132 (48.5%) 136 (50%)

 M1 2 (0.7%) 2 (0.7%)

Histologic grade, n (%)  < 0.001

 G1 39 (10.6%) 16 (4.3%)

 G2 95 (25.7%) 83 (22.5%)

 G3 45 (12.2%) 79 (21.4%)

 G4 4 (1.1%) 8 (2.2%)

AFP (ng/ml), n (%) 0.012

 ≤ 400 123 (43.9%) 92 (32.9%)

 > 400 25 (8.9%) 40 (14.3%)

 Age, median (IQR) 61 (52, 69) 61 (51.25, 68) 0.486
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correlated with six immune cell enrichments in HCC tissues (Fig.  4A). The top three 
correlated immune cells, including T-helper cells (r = 0.329; p < 0.001), DCs (r = −0.203; 
p < 0.001) and cytotoxic cells (r = −0.190; p < 0.001), are listed in Fig. 4B and C. In addi-
tion, ROBO1 was positively correlated with five immune checkpoint molecules (Fig. 4D), 
including PDCD1 (r = 0.170; p = 0.001), CTLA4 (r = 0.220; p < 0.001), TIGIT (r = 0.190; 
p < 0.001), BTN2A1 (r = 0.320; p < 0.001) and BTN2A2 (r = 0.260; p < 0.001).

Fig. 4  The relationship of ROBO1 expression with tumour immunology. ssGSEA algorithm was implemented 
to explore the correlation between ROBO1 expression and immune cell enrichment in HCC tissues (A). 
Spearman correlation analysis evaluated the correlation of ROBO1 with T helper cells (B), DC and cytotoxic 
cells (C). Spearman correlation analysis evaluated the correlation of ROBO1 with 6 immune checkpoint 
molecules (D)
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Prognostic significance of ROBO1 expression based on immune cell enrichment in HCC 

patients

The TIMER database was also used to validate the association between ROBO1 expres-
sion and immune cell enrichment in HCC. As shown in Fig. 5A, ROBO1 expression was 
positively correlated with B cells (r = 0.154; p = 4.31 ×  10−3), CD4+ T cells (r = 0.244; 
p = 4.55  ×  10−6), macrophages (r = 0.176; p = 1.11  ×  10−3), neutrophils (r = 0.202; 
p = 1.56 ×  10−4) and dendritic cells (r = 0.116; p = 3.25 ×  10−2). Based on ROBO1, in 
the above-mentioned results, high ROBO1 expression was correlated with poor progno-
sis and immune cell enrichment. Therefore, we hypothesized that the ROBO1-regulated 

Fig. 5  Prognostic significance of ROBO1 expression based on immune cells enrichment in HCC patients. 
TIMER database was used to validate the association between ROBO1 expression and immune cell 
enrichment in HCC (A). The association between ROBO1 and OS was analysed in subgroups of enriched and 
decreased immune cells of B cells (B), CD4+ T cells (C), macrophages (D), natural killer T cells (E), regulatory 
T cells (F) and type-1 T-helper cells (G) and type-2 T-helper cells (H). Univariate Cox regression was used to 
analyse the association between ROBO1 and OS in enriched and decreased immune cell subgroups (I)
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poor prognosis was associated with immune cell enrichment. The association between 
ROBO1 and OS was analysed in the subgroups with enriched and decreased immune 
cells. In both the enriched and decreased subgroups of B cells (Fig. 5B, I), CD4+ T cells 
(Fig. 5C, I) macrophages (Fig. 5D, I), natural killer T cells (Fig. 5E, I), regulatory T cells 
(Fig.  5F, I) and type-1  T-helper cells (Fig.  5G, I), high ROBO1 expression was signifi-
cantly correlated with poor OS in HCC patients. As shown in Fig. 5H and I, high ROBO1 
expression correlated with poor OS in HCC patients with enriched type-2 T-helper cells, 
suggesting that poor ROBO1-related OS may be partially mediated by the enrichment 
of type-2  T-helper cells. To further validate the association of ROBO1 with immune 
cell enrichment in HCC, the correlation between ROBO1 and multiple biomarkers of 
immune cells was evaluated using TCGA database. As shown in Table 2, ROBO1 was 
significantly positively correlated with T-helper cell biomarkers (CXCR3, CCR4, CCR6 
and CCR10), Tcm biomarkers (CD62L, CCR5, CD58 and TCF7), Th2 cell biomarkers 
(PTGDR2, IL5 and IL10) and macrophage biomarkers (PPARG​, IRF5 and CD68) in HCC.

Differentially expressed genes in HCC based on ROBO1 expression

According to |log2(fold change)|> 2 and adjusted p < 0.05, 132 up-regulated and 68 down-
regulated genes were filtered based on the ROBO1 high- and low-expression subgroups 
(Fig. 6A). A heatmap was constructed to visualize the expression profiles of the top five 
up-regulated and down-regulated genes in HCC tissues (Fig. 6B). GSEA suggested that 
ROBO1-related genes were enriched in the Biocarta intrinsic pathway, Reactome CD22 
mediator BCR regulation, the PID/PLK1 pathway, Reactome mitotic prometaphase, the 
PID/MYC activity pathway and the PID/beta-catenin Nuc pathway (Fig. 6C).

GO and KEGG analyses

The ROBO1-related top 100 up-regulated and down-regulated genes were used to per-
form GO and KEGG analyses. Seven BP terms (Fig. 7A), 15 MF terms (Fig. 7B) and 7 
KEGG pathways (Fig. 7C) were enriched in HCC.

Table 2  The association of ROBO1 expression with the biomarkers of immune cells

Immune cell Biomarker r value p value

T-helper cell CXCR3 0.167 0.001

CCR4 0.222 < 0.001

CCR6 0.327 < 0.001

CCR10 0.148 0.004

Tcm CD62L 0.183 < 0.001

CCR5 0.201 < 0.001

CD58 0.354 < 0.001

TCF7 0.305 < 0.001

Th2 cells PTGDR2 0.228 < 0.001

IL5 0.162 0.002

IL10 0.181 < 0.001

Macrophage PPARG​ 0.379 < 0.001

IRF5 0.224 < 0.001

CD68 0.179 < 0.001
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Validation of ROBO1 as a gene target of miR‑152‑3p

The analyses performed in the online databases revealed that ROBO1 might be a 
potential gene target of miR-152-3p, which was predicted to bind with the 3′-UTR of 
ROBO1 (Fig. 8A). In vitro luciferase activity was significantly diminished in HepG2 
and Huh7 cells after transfection with miR-152-3p mimics compared with the con-
trol group (Fig.  8B), indicating that miR-152-3p can directly bind with ROBO1. 
Western blot analysis revealed significant decreases in ROBO1 protein expression in 
HepG2 and Huh7 cells transfected with miR-152-3p mimics (Fig. 8C). To investigate 
the roles of miR-152-3p and ROBO1 in the progression of HCC, miR-152-3p mimics, 
sh-ROBO1 or ROBO1 overexpression plasmids were delivered into HepG2 and Huh7 
cells. As shown in Fig. 8D and E, transfection of miR-152-3p mimics or sh-ROBO1 
inhibited cell proliferation and induced cell apoptosis of HepG2 and Huh7 cells. 
However, the inhibition of cell proliferation and the enhancement of cell apoptosis 
by miR-152-3p mimics were counteracted by overexpression of ROBO1 in HepG2 
and Huh7 cells (Fig. 8D, E).

Fig. 6  Differentially expressed genes in HCC based on ROBO1 expression. Differentially expressed genes 
were categorized on the basis of ROBO1 high- and low-expression subgroups (A). Heatmap presents the 
expression of the top five up-regulated and down-regulated genes in HCC tissues (B). GSEA analysis based on 
ROBO1-related differentially expressed genes in HCC (C)
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The association between miR‑152‑3p and HCC

As shown in Fig.  9A, miR-152-3p was up-regulated in nine cancer types and down-
regulated in five cancer types in pan-cancer analysis of the TCGA database. Compared 
with non-tumour tissues, miR-152-3p was significantly down-regulated in HCC tissues 
(Fig. 9B), while miR-152-3p expression had no significant correlation with OS (Fig. 9C), 
T stage (Fig. 9D), N stage (Fig. 9E), M stage (Fig. 9F), pathologic stage (Fig. 9G) or histo-
logic grade (Fig. 9H). As shown in Fig. 9I, low miR-152-3p expression was significantly 
correlated with high AFP levels in HCC patients.

The association between miR‑152‑3p and immune infiltration

To determine whether miR-152-3p expression was associated with tumour immunity, 
the ssGSEA algorithm was implemented to explore the correlation between miR-152-3p 
expression and immune cell enrichment in HCC tissues. Spearman correlation analysis 
revealed that ROBO1 was positively correlated with six immune cell enrichments and neg-
atively correlated with two immune cell enrichments in HCC tissues (Fig. 10A). The top 

Fig. 7  GO and KEGG analysis. ROBO1-related top 100 up-regulated and down-regulated genes were used to 
perform GO [BP terms (A) and MF terms (B)] and KEGG analysis (C)
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Fig. 8  Validation of ROBO1 as a gene target of miR-152-3p. miR-152-3p binds with the 3′-UTR of ROBO1 
(A). In vitro luciferase activity in HepG2 and Huh7 cells (B). ROBO1 protein expression in HepG2 and Huh7 
cells with miR-152-3p mimics transfection (C). Cell proliferation (D) and apoptosis (E) of HepG2 and Huh7 
cells were analysed using CCK8 and TUNEL. *p < 0.05 versus miR-Con group; #p < 0.05 versus sh-Con group; 
$p < 0.05 versus mimics group
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six correlated immune cells, including Th17 cells (r = 0.180; p < 0.001), NK cells (r = 0.180; 
p = 0.001), DCs (r = 0.170; p = 0.001), mast cells (r = 0.160; p = 0.002), neutrophils (r = 0.140; 
p = 0.007) and Tgd (r = 0.130; p = 0.012), are shown in Fig. 10B.

Fig. 9  Clinical significance of miR-152-3p in HCC. miR-152-3p expression in pan-cancer analysis of TCGA 
database (A). miR-152-3p expression in TCGA database (B). The association between miR-152-3p and OS 
(C), T (D), N (E), M (F) and pathologic stage (G), and histologic grade (H). miR-152-3p low expression was 
significantly correlated with high AFP levels in HCC patients (I). *p < 0.05; ***p < 0.001
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Discussion
Our findings revealed a novel signalling axis, miR-152-3p/ROBO1, that contributes to 
hepatic tumorigenesis by regulating cell proliferation and apoptosis in vitro and medi-
ates immune cell enrichment in HCC. ROBO1 was identified as an oncogene to acceler-
ate the enrichment of type-2 T-helper cells that may be correlated with poor prognosis 
in patients with HCC.

The convertible role of ROBO1 as a tumour suppressor or an oncogene has been 
observed in different cancer types [15, 24–26]. At present, the transcription level and 
functions of ROBO1 are consistent in the progression of HCC [19, 27, 28]. For example, 
the enhancement of ROBO1 expression triggers tumour growth, invasion and metasta-
sis in HCC Sk-hep-1 cells [27]. Down-regulation of ROBO1 by miR-490-5p contributes 
to the induction of apoptosis and inhibits malignant phenotypes in HCC Hep3B cells 
[28]. Hirotaka et  al. substantiated that ROBO1 is overexpressed in the serum of HCC 
patients, HCC tissues and cell lines and may be a serologic marker for the diagnosis 
of HCC [19]. In our study, marked elevations in ROBO1 gene and protein expression 

Fig. 10  The association between miR-152-3p and immune infiltration. ssGSEA algorithm was implemented 
to evaluate miR-152-3p mediated immune cell enrichment (A). The top six correlated immune cells, including 
Th17 cells, NK cells, DC, mast cells, neutrophils and Tgd (B)
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were corroborated by three databases, TCGA, HCCDB and HPA, in HCC tissues, and 
ROBO1, as an unfavourable prognostic marker, was correlated with worse OS, PFS and 
DSS. We also found that ROBO1 loss of function augmented the proportion of apoptotic 
cells and restrained the proliferation of HCC cell lines.

Diversiform immune cells are an important component of the tumour microenviron-
ment and correlate with prognosis, metastasis and immunotherapy in cancer [29, 30]. 
HCC is associated with inflammatory processes, such as viral infection and cirrhosis, 
which drive the enrichment of immune cells, especially lymphocytes, contributing to 
poor prognosis [30, 31]. In our study, both the TCGA and TIMER databases indicated 
that ROBO1 was significantly and positively correlated with macrophages in HCC tis-
sues. Tumour-associated macrophages (TAMs) contribute to the initiation and progres-
sion of HCC by secreting pro-inflammatory cytokines and triggering the expansion of 
cancer stem cells [32]. In addition, TAMs facilitate metastasis and predict poor progno-
sis in patients with HCC [32, 33].

Our findings also suggested that poor OS in ROBO1HCC patients with high ROBO1 
expression was associated with the enrichment of Th2 cells. The TCGA database also 
validated a significant positive correlation (r = 0.182; p < 0.001) between ROBO1 and 
Th2 cells in HCC tissues. Enrichment of Th2 cells has frequently been reported in HCC 
patients and is implicated in tumour invasion and metastasis [34, 35]. Duan et al. indi-
cated that inhibition of Th2 cell activity by immune checkpoint blockades (ICBs) may be 
associated with increased survival time and decreased tumour recurrence in a mouse 
model of HCC [36]. These findings suggested that enrichment of Th2 cells represented 
an unfavourable biomarker of HCC prognosis.

ICBs are a class of antitumour immunotherapeutic drugs that suppress immune check-
point molecules, such as PD-1, PD-L1, CTLA-4 and TIGIT, to restore immune recog-
nition and immunogenicity in HCC [37–39]. Our findings suggested that ROBO1 was 
positively correlated with five immune checkpoint molecules, PDCD1, CTLA4, TIGIT, 
BTN2A1 and BTN2A, in HCC, reflecting that ROBO1 inhibitors may have a synergis-
tic effect and enhance the potency of ICBs to improve therapeutic efficiency in HCC 
patients.

In this study, both predictions and experiments corroborated that ROBO1 is a direct 
gene target of miR-152-3p. In our previous study [8], miR-152-3p expression was 
decreased in HCC tissues, and overexpression of miR-152-3p targeted cyclin-dependent 
kinase 8 to mediate antineoplastic activity in HCC. Other studies have also shown that 
miR-152-3p possesses outstanding anticancer properties in colorectal cancer, prostate 
cancer and lymphoma [5, 40, 41]. Based on our previous findings [8] and the present 
results, miR-152-3p may function as a tumour suppressor by mediating multiple gene 
targets to prevent hepatic tumorigenesis.

In conclusion, ROBO1 was identified as an unfavourable prognostic marker and was 
correlated with the enrichment of Th2 cells in HCC. ROBO1 expression was also posi-
tively correlated with multiple immune checkpoint molecules, suggesting that ROBO1 
may be a potential drug target to enhance the potency of immunotherapy. Further, 
ROBO1 was identified as a direct target of miR-152-3p, indicating that the miR-152-
3p/ROBO1 signalling axis may be involved in the pathogenesis of hepatic tumorigenesis.
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